# GIS-E3010 Least-Squares Methods in Geoscience Lecture 4/2018 

Datum problem

## Iterative least squares process

1. Functional model: in the case of observation equation model we have one equation for each observation. Express each observation as a function of unknown parameters
2. Initial values for parameters. Approximate values are necessary for linearization
3. Number of rows and columns of A-matrix
4. Linearization: partial derivtives, Jacobian matrix , design matrix A
5. $y$-vector: observed minus calculated (with approximate values)
6. Numerical values for the elements of A-matrix using approximate values of unknown parameters (number of columns equals to number of unknown parameters, number of rows equals to number of observations)
7. Stochastic model: weighting; $P=m_{0}^{2} \Sigma^{-1}$
8. Normal equations
9. Solve normal equations for the corrections to approximate values
10. Correct initial values (new approximate values)
11. Iteration : go back to 6. (Gauss-Newton -iteration)

## Datum-problem,

 how to connect the network to the reference frame georeferencing

- Where the network is? (position, translation)
- What is the attitude of the network in the reference frame (orientation)
- Size of the network vertices (scale)
- Have we observed position, scale or orientation
- Datum defect? Rank of A , rank of N

| dimension | Datum- <br> parameters | Maximum <br> datum defect |
| :---: | :--- | :---: |
| 1 | translation | 1 |
| 2 | translation(2), <br> orientation (1), <br> scale(1) | 4 |
| 3 | translation(3), <br> orientation (3), <br> scale(1) | 7 | <br> \title{

What kind of datum information we get <br> \title{
What kind of datum information we get from observations?
}

- Height difference: scale
- Height observation: translation
- Distance: scale
- Coordinate differences: orientation, scale
- Coordinates: translation
- Azimuth: orientation (1)
- Horizontal angle: direction of the vertical axis
- Zenith angle: direction of the vertical axis


## Constraint equations

Additional rows and columns to Normal matrix

| $N$ | $G^{T}$ |
| :---: | :---: |
| $G$ | 0 |



$$
\begin{aligned}
& N=A^{T} P A \\
& u=A^{T} P y
\end{aligned}
$$

Additional observations, weighted parameters or conditions between parameters to observation equations


## Example: levelling network

$A=$

| -1 | 1 | 0 | 0 | 0 |
| ---: | ---: | ---: | ---: | ---: |
| -1 | 0 | 1 | 0 | 0 |
| -1 | 0 | 0 | 1 | 0 |
| -1 | 0 | 0 | 0 | 1 |
| 0 | -1 | 1 | 0 | 0 |
| 0 | -1 | 0 | 1 | 0 |
| 0 | -1 | 0 | 0 | 1 |
| 0 | 0 | -1 | 1 | 0 |
| 0 | 0 | -1 | 0 | 1 |
| 0 | 0 | 0 | -1 | 1 |

$\operatorname{Diag}(P)=$

| 1.0829 | -4.39640 |
| ---: | ---: |
| 1.3815 | 1.87664 |
| 1.0191 | -5.03596 |
| 1.1445 | -0.31572 |
| 1.2726 | 6.26616 |
| 1.5118 | -0.64889 |
| 5.8017 | 4.07619 |
| 1.3329 | -6.91318 |
| 5.5142 | -2.19066 |
| 1.7395 | 4.71801 |



## Normal equation matrix N and vector u

| $\mathrm{N}=$ |  |  | $\mathrm{u}=$ |  |  |
| :--- | ---: | ---: | ---: | ---: | :---: |
|  |  |  |  |  |  |
| 4.6281 | -1.0829 | -1.3815 | -1.0191 | -1.1445 | 7.6619 |
| -1.0829 | 9.6691 | -1.2726 | -1.5118 | -5.8017 | -35.4034 |
| -1.3815 | -1.2726 | 9.5012 | -1.3329 | -5.5142 | 31.8613 |
| -1.0191 | -1.5118 | -1.3329 | 5.6033 | -1.7395 | -23.5348 |
| -1.1445 | -5.8017 | -5.5142 | -1.7395 | 14.2000 | 19.4150 |

Eigenvalues of $\mathrm{N}:(\mathrm{eig}(\mathrm{N})$
-4.4756e-016
$5.7499 \mathrm{e}+000$
7.1932e+000
$1.0866 \mathrm{e}+001$
$1.9793 \mathrm{e}+001$

The rank of A - matrix and N -matrix is $4, \mathrm{~N}$ is singular matrix due to the datum defect. The translation (height level of the network) information is missing.
We need to bring the height level some how to the adjustment

## Minimum constraints using inner constraints

| $\mathrm{N}=$ |  |  |  |  |  | $u=$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.62812 | -1.08294 | -1.38154 | -1.01911 | -1.14453 | 1.00000 |  |
| -1.08294 | 9.66905 | -1.27261 | -1.51177 | -5.80173 | 1.00000 | -35.4034 |
| -1.38154 | -1.27261 | 9.50123 | -1.33289 | -5.51418 | 1.00000 | 31.8613 |
| -1.01911 | -1.51177 | -1.33289 | 5.60330 | -1.73953 | 1.00000 | -23.5348 |
| -1.14453 | -5.80173 | -5.51418 | -1.73953 | 14.19997 | 1.00000 | 19.4150 |
| 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 0.00000 | 0 |

$$
\sum H=H_{1}+H_{2}+H_{3}+H_{4}+H_{5}=0
$$

$$
\begin{aligned}
& x=i n v(N) * u \\
& x=
\end{aligned}
$$

| 1.5742 |
| ---: |
| -2.8180 |
| 3.4490 |
| -3.4632 |
| 1.2579 |
| 0 |

## Or fixing one height

| $=$ |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- |
|  |  |  |  |  |  |  |
| -1.6281 | -1.0829 | -1.3815 | -1.0191 | -1.1415 | 7.6619 |  |
| -1.0829 | 9.6691 | -1.2726 | -1.5118 | -5.8017 | -35.4034 | By remowing the |
| -1.3815 | -1.2726 | 9.5012 | -1.3329 | -5.5142 | 31.8613 | row and the column |
| -1.0191 | -1.5118 | -1.3329 | 5.6033 | -1.7395 | -23.5348 | from $N$ |
| -1.1445 | -5.8017 | -5.5142 | -1.7395 | 14.2000 | 19.4150 |  |

By adding constraint equation

Or by adding Height observation to observation equations as a weighted parameter

## Connecting the levelling network to reference frame

- Height differences don't determine height level of the network
- We need at least one known height
- In order to save the shape of the network we like to use minimum constraints
- Adding one height observation to observation equations
- Or using inner constraints
- Fixing more than one point we affect the shape of the network
- If we like to study time series of networks, we use minimum constraints
- In hierarchical networks (densification of the network) it is quite usual to fix the known points


## Connecting the plain network to the reference frame

- Distances (measured with calibrated instrument) bring the scale to the network
- If we have two fixed points we have brought the orientation (and scale) to the network
- With an atzimuth observation and one fixed point we get the orientation and position
- If we have more constraints (more fixed points in network) than what is necessary, we have over constraint network.
- Fixed points or extra constraints affect the shape and size of the network
- Over constraint network is quite usual in In hierarcical measurements (densification of the network)

Minimum constraints with inner constraint equations


## Inner constraints in 3D network

$$
G^{T}=\left(\begin{array}{ccccccc}
x_{1} & 0 & -z_{1} & y_{1} & 1 & 0 & 0 \\
y_{1} & z_{1} & 0 & -x_{1} & 0 & 1 & 0 \\
z_{1} & -y_{1} & x_{1} & 0 & 0 & 0 & 1 \\
x_{2} & 0 & -z_{2} & y_{2} & 1 & 0 & 0 \\
y_{2} & z_{2} & 0 & -x_{2} & 0 & 1 & 0 \\
z_{2} & -y_{2} & x_{2} & 0 & 0 & 0 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
x_{m} & 0 & -z_{m} & y_{m} & 1 & 0 & 0 \\
y_{m} & z_{m} & 0 & -x_{m} & 0 & 1 & 0 \\
z_{m} & -y_{m} & x_{m} & 0 & 0 & 0 & 1
\end{array}\right)
$$



If observations already determine some of the datum elements, then the respective column in $G$ should be removed It is usual to apply inner constraints over part of the points (datum points)

## Fixed positions

- By removing the respective rows and columns from normal matrix (1)
- By adding constraint equations in normal equationst (2)
- By using weighted parameter equations in observation equations painotettuna parametrina havaintoyhtälöihin (3)

(2)


0


$$
X_{\text {tunnettu }}-X_{\text {liki }}
$$



Weighted parameters is better than removing rows and columns from N , because the constraints are possible to be remove.

## Principle of stacking normal equations

$$
\begin{gathered}
A^{T}=\left(\begin{array}{llll}
A_{1}^{T} & A_{2}^{T} & \cdots & A_{n}^{T}
\end{array}\right) \\
A^{T} P=\left(\begin{array}{llll}
A_{1}^{T} P_{1}+A_{2}^{T} 0+\cdots+A_{n}^{T} 0 & A_{2}^{T} P_{2} & \cdots & A_{n}^{T} P_{n}
\end{array}\right)
\end{gathered}
$$

$$
A^{T} P A=A_{1}^{T} P_{1} A_{1}+A_{2}^{T} P_{2} A_{2}+\cdots+A_{n}^{T} P_{n} A_{n}
$$

$$
A^{T} P y=A_{1}^{T} P_{1} y_{1}+A_{2}^{T} P_{2} y_{2}+\cdots+A_{n}^{T} P_{n} y_{n}
$$

Benifits of the stacking:

- Combination of different epochs (sub networks) in large networks is easy
- It is not necessary to have the full Amatrix, save memory space

A, P and $y$ are partitioned. The Normal equation matrix and vector is a sum of the normal equations of the uncorrelated parts of observations. It is possible to update normal equation with new observations one observation in time (adding or removing)


## Least squares process



