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Learning objectives

* To understand and apply
— The solution of exterior orientation parameters
— The solution of relative orientation parameters

— The solution of forward intersection parameters
(3D point)




Exterior orientation

Exterior orientation

Known/measured object coordinates XYZ

Measure image coordinates (Xy) of known points

Solve six parameters of orientation (the location of the

projection center and the rotation angles of the image)
— Interior orientation is expected to be known, and corrected

—c rll(x - Xo)"‘ rlZ(Y_YO)+ rlz(z _Zo) _
rsl(x_Xo)+r3z(Y_Yo)+r33(Z_Zo) g

y=-c rZI(X - xo)+ rzz(Y_Yo)"' rzz(z _Zo) —
rsl(x_Xo)+r32(Y_Yo)+r33(Z_Zo) ’

Collinearity equations | x=

There are 2 equations per point, and we have 6 unknowns =>
at least 3 points are needed (3x2=6)




Collinearity equation
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3D object point

Exterior orientation

* Assume object points to be constants (extremely accurate
points) => an explicit non-linear model. Alternatives:
— LS adjustment with observation equations. Object points are constants.

— Weighted LS adjustment with observation equations. Both exterior
orientation parameters and object points are unknowns. For object
points, we write additional constraints equations that are given very
high (eo) weights in the adjustment.

* Object coordinates are also observations (less accurate ground
measurements) => a non-linear mixed model. Alternatives:

— Weighted least squares (LS) adjustment with observation equations. We
add additional constraints equations of object coordinates. Weights are
proportional to accuracy!

— General LS adjustment




Exterior orientation, Object points
are constants

» After the linearization,
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Exterior orientation, Object points
are constants

* The error equation becomes
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We get residuals of image observations v, and v,
* In this case, the redundancy of equations (the number of

observations — the number of parameters) is (N = the
number of observations between an image and object

points)

r=2N-6




Exterior orientation, Partial
derivatives of rotation matrix

* When we linearize the collinear equations, we have to
make partial derivations of a 3D rotation matrix

 To assist this task, we examine what happens when a
rotation matrix is partially derivated with respect to
omega, phi, kappa (rotations)

* A 3D rotation matrix is (rotations happen around
moving axes)

cosk sink Ofcosp 0 —sing|!l 0 0
R=R.R,R,=|-sink cosx 0 0 1 0 0 cosw sinw

0 0 1fsing 0 cosp [0 —sinw cosw

Exterior orientation, Partial
derivatives of rotation matrix

* The first example: partial derivative with respect to an
omega rotation

3 3R 0 0 0 0 00 0 00
—R:RKR«J—‘“:RKR«J 0 -sinw cosw|=RRR,0 0 1|=RO0 0 1
0w 0w .

0 —cosw -sinw 0 -1 0 0 -1 0

* We have to make derivation to only one of the sub-
matrices R, . In addition, we detect that the result of the
derivation can, actually, be expressed by using the
original rotation matrix R, and an assisting matrix

0 0 0 0 00 [t o o0 0o

0 0 1]:{0 cos @ sinwﬂo 0 1}

0 -1 0 0 —sinw cosw|[0 -1 0

0 —-sinw cosw

R,

Jw

=R,

0 —cosw -sinw
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Exterior orientation, Partial
derivatives of rotation matrix

* Corresponding partial derivatives with respect to
phi and kappa rotations are:

—sing 0 —cosg 0 0 -1 0 sinw —cosw
0 0 OR,=R-sinw 0 0
1 0 0 cosw 0 0

0 0 0
R IR —sink  cosk O 010 010
=—*RR,=|-cosxk —-sink O0RR,=|-1 0 0|RRR,=|-1 0 OR
ok dx 7 ¢ ¢

JR

SRR -
5o~ R RR R,=RR,

cosp 0 —sing
0 00 000 000

* As a conclusion, we can express all three partial
derivatives by using the original 3D rotation
matrix and a proper assisting matrix
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Exterior orientation,
Linearization of collinearity equations

For a while, we shorten the collinearity equations
=—¢ r]l(x - xo)+r12(Y_Yo)+r13(Z _Zo) —
X =X)+1,(Y =) +1,(Z-2Z)
y=-c TZI(X—XO)+I’22(Y—Y0)+F23(Z—ZO) —
I’“(X _Xo)+r32(Y_Yo)+r33(Z_Zo) ’

by introducing new variables

X= fx=—cB and y= fy:—cX
W W

Therefore, variables U (numerator), V (numerator) and W
(denominator) are (temporarily, we take these out from the

context for partial derivations)
U X=X,
V |[=R| Y=Y,
w Z-2,

12




Exterior orientation,
Linearization of collinearity equations

 Partial derivation of collinearity equations can
be done by using following rules of partial
derivatives of quotients

ap ap

o, _—c(au,, ,aW)_-c(u U aw
op W? W

o, - -
y c[avw Vawj_l[av vaw]
I P

p W Wlop W op
In these equations, p symbolizes any parameter
with respect to we make partial derivation (i.e.

omega, phi, kappa, X,, Yo, Zo, X, Y, Z)

Exterior orientation,
Linearization of collinearity equations

* Case X: the partial derivatives of U, V and W (with

respect to X,
-1 -,
0 |=|-1,
0 -,

XX, -1
J
=R—/| Y=Y, |=R =
X,
z-2, 0

* The result after substituting partial derivatives is
of, —c(au U awj —c[ U j c[ U ]

YV VYY) =—| -~ |=— |~ ()
X, Wl(ax, wax,) w w wi"w

o, -cfav Vow) -c v c Y%
= —— = = () = T (1)
oX, W\odX, WdX, W W W W

U
\Y
W

]

1 rl 2 r13

9
X,

N_.‘

1 r22 r23

e

1 r3 2 r3 3
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Exterior orientation,
Linearization of collinearity equations

e Case X: [y X — X 1
d d ’
—|V |=R=—| Y=Y, |=R|0|=
oX oX
W Z-2, 0

—_
)
—
w

RN
K
[N
e
o

(=
Il

e

1 r32 r33

e The result is

o, _;c(au u an

X WLaX Wax

-C U
W[rn _W(rsl)j

(N YW o V)
oX, Wlax woax /) wi* w

Exterior orientation,
Linearization of collinearity equations

* Case omega: At first, we make partial derivation to U, Vand W
(with respect to omega)

Ul [aU/ow X=X, 0 0 0X-X, 0
9 V |=|oV/dw :E Y-Y, [=RO 0 1||Y-=Y, |= zZ-27,
Jw Jw

W | |[aW/0w z-2, 0 -1 0| 2z-2, —(Y-Y,)

* These results are then placed in the equation

—_

200 w) W

afx_;c(auw an)_;c[aiu Uaﬂj
o W Jdw

s w o0 V90

o, - _
y_7C(E)VW Vaw):i(av VM)
o W dw

o W oo dw) W




Exterior orientation,
Linearization of collinearity equations

e The result is:

of, _—c{oU _UJIW)_-c vy oy Y 7yt (Y
aw—w(aw Waw] W[{nz(z Z)-1:(Y =Y} W{rn(z Z))—1y5(Y mﬂ

of, __c(av v aw]

-C \%
%_ W EYRNEYVEEYN Wl:{rzz(z_Zo)_rzs(Y_Yo)}_W{rsz(z_zo)_r33(Y_Yo)}:|

U U /ow 0
ai V|=|av/ee |=R z-z,
“lw| [aw/ew| |-Y-Y,)

Jo W dw

Correspondingly, we should solve partial derivatives with respect
to phi, kappa, Y, Z,, Y and Z.
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Exterior orientation,
Object points are constants

* This method is obviously iterative (non-linear). This
means that we have to give some initial values
(relatively good ones) to each parameter, and after
several iteration rounds, we approach close to the
correct solution of unknown parameters (until the
corrections become very small ones)

* The correction vector X is computed by using LS
adjustment with observation equations, and these
corrections are added to current approximate values
of parameters (I=image observations. f “=estimated
image observations)

X=(ATAAT(I-%  x=(ATA]'ATy

18




Exterior orientation,
Object coordinates are also observations

* Infollowing, a method (also iterative) in which, in addition to
image observations (x,y), also object space coordinates (X,Y,Z)
are considered to be observations (e.g. GPS measurement).
This requires so called combined LS adjustment

* Linearized error equations become now as

9 dx
LdX,
Ay,
fdz,

do |
dep

dX

Ay
V: AX— y"~......."' dZ
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Exterior orientation,
Object coordinates are also observations

*  Error equation [ da |
do
of, of of, of, of of of of of | dx
o, of, df, df df, of, df of o, .
V| |d@ 9p ok oX, 9Y, 0Z, oX oaY oz || [x=T,
= dy,
o (0, A A, A A A, A g | |y
dw dp ok X, oY, 9Z, oX I IZ| gx
dy
_dz_

B[ fo @0 k0, X0,Y0, 20, XY, 2")
01| f, (@,0°,6°, X0,Y0, 28, X°,Y°,2°%)

i.e. values of equations calculated using approximate

values of parameters
20
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Exterior orientation, Object
coordinates are also observations

In this case, we need additional error equations of
object coordinate observations for the combined LS

adjustment
1 [dx] [X°=X
v = dY [+ Yo=Y
az| | z2°-z

The combined LS adjustment can be solved (P = a
weight matrix) — y _ (A"pa+ P, (A"PI+PJ,)

o[]Sl 2L

< £ KL

Exterior orientation, Object
coordinates are also observations

Weights P, (a diagonal matrix) of object
coordinates are proportional to accuracy!
Example: We assume that the standard deviation
of image coordinate observations (unit: mm) is
0.005mm (5 um), and the standard deviation of
object coordinate observations (unit: m) is 0.01m
If we select image coordinate observations as a
unit of weight (weight=1), we get the weight of
object coordinate observations as (unit mm?/m?)

p=(0.005/0.01)* =0.25
Redundancyis r=5N-(6+3N)
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Exterior orientation, Object
coordinates are also observations

* An alternative to the combined LS adjustment
is to solve the problem by using an implicit
model

F (% X,Y,Z,0,0,k,%,.Y,,Z,) ==X+ T (XY, Z,0,0,K, X,.,Y,,Z,) =0

{Fy(y, X,Y,Z,0,0,%, X,,Y,,Z)) ==y + £,(X,Y,Z,0,0, %, X,,Y;, Z,) = 0

* However, this leads to the general LS
adjustment (4 observations/equation), which
is more complicated than the (combined) LS
adjustment with observation equations

Exterior orientation, Direct solutions

* So far least-squares solutions were applied to linearized non-linear
models

* Such solutions require good initial values. To get initial
approximation we need direct methods, in which solution doesn’t
require iteration

* Direct methods are usually not as accurate than indirect (iterative)
methods
* Examples of direct methods

— A pyramid method (Presented in the course Photogrammetry, Laser
Scanning and Remote Sensing, also available in Kraus, 2007,
Photogrammetry, Vol. 2, pp. 48-58)

— A method basing on vanishing lines (requires such objects that has
perpendicular break-lines, such as buildings)

24

12



Change of exterior orientation when the object
coordinate system is transformed

* Let’s make a similarity transformation to the object
coordinate system (scaling, rotation and translation)

X X =X,
Y |=u8 Y-Y,
z z'-7,

* When this is placed in the collinearity equations

X X =X, X X =X
y =R Y=Y, | ,weget y |=AR] Y=Y,
-c z -2, -c -2

Change of exterior orientation when the object
coordinate system is transformed

. X X=X

[ ]
In the equation y =Rl vy
-c z2’-7;

— Anewscaleis 1" = uA

— A new rotation matrixis R = RS X’
Y,
Z;

— A new location of projection center is _lg

Xo| [Xn
Y, |+| Y,
z, | |z

m

* Using these equation, you can calculate the
exterior orientation of images when you know
the relative and absolute orientation of images

|

13



Relative orientation

27

Relative orientation

* In relative orientation, we try to solve relative
location and attitude between two images
(observation rays)

* We have several alternative methods to solve
relative orientation

* First of all, we can select our mathematical
model to be
— Coplanarity condition
— Collinearity condition

14



Relative orientation

* In both cases, we can select parameters to be solved
with several variations (we define the model
coordinate system i.e. remove datum defect =7)

— Relative orientation of successive images: we fix
K.0.@. %, .Y, . Z, andX, (i.e. left image+ X component of base)
and solve «,,¢,,0,., .2,

— Relative orientation by rotations of the images: we fix
@, Xy .Yy . Zy » Xo,5 Yo, Z,, (base and rotation around the base) and solve
K15¢15K23¢25w2

— Minimum norm method: a unique solution is ensured by
using minimum norm condition |p|=min , in which p isa
vector that includes 12 exterior orientation parameters
(and possibly also coordinates of object points).

29

Datum defect

* In relative orientation, image observations
give no information about a 7-parameter
transformation of the object coordinate
system, because we measure only
corresponding points between images
— Scale, three rotations (e.g. omega, phi, kappa) and

three shifts (e.g. X,, Yo, Z,)

— If we make any 3D measurements from stereo
images (relative oriented), we’ll have an arbitrary
scale and coordinate system

15



Relative orientation of successive images,
Coplanarity condition

* Solution that is basing on the Coplanarity
condition relies on the fact that corresponding

observation rays lay on the same plane

« b, b
XY Z
X

S A

G= =b(YZ, =Y,2) =b,(X,Z, = X,Z)) +b, (XY, = X,¥)) =0

The Coplanarity Condition ’./

Vectors b, U, and U, should lie on the same plane. If
the volume of the parallelepiped (triple product)
defined by these three vectors equals to zero, we
know that the vectors lie at the same plane

< X

bX
G=b-U xU,=0 b—M ul—{
bZ

N

The triple product in the
determinant form:

o
<

b,
G=

X X
<X <X F
N N

I

-

. X
U,=Y,
1 Z,

|

16



Relative orientation of successive
images, coplanarity condition

» The observation vector of the left image FHW
(rotations is fixed to zero) al e

XZ
Y,

%

Y2
—C

* The observation vector of the right image |v |-

N

"

* Base vector

by Xp
b= Yoo
Zy

b,
b,

Changing the length
of the image base
(b,) affects only to

the scale of 3D
model

34
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Relative orientation of successive
images, coplanarity condition

* A non-linear mixed model => linearization and the general LS
adjustment b b b,

. . G X\ Y\ ZI
e Coplanarity equation |x v, 2

becomes after linearization (for one corresponding point pair)
db,
db,

=b><(Y|Zz 7Y2Z|)7b((X‘Z2 - Xzzx)erz(X\Yz - X2Y|)=0

dx,
a6° 96" 96" 36"y | [a6° a6 6" a6’ aG"
ox, 9y, 9x, 9y, |dx

dy,
i.e. C'dl+Ddp+G°=0

* Inwhich G°=G(x’,y’,x{,y,b%,b%, 0,00, x0) is the value of the
coplanarity equation calculated using a current approximate
values of parameters

Relative orientation of successive images,
coplanarity condition
* In the general LS adjustment, the corrections to

parameters (dp) and observations (residuals, V) and
Lagrange multipliers (K) are solved from

HER

in which h=-G(°,x")-C"(1-1°) and a weight matrix P
usually equals to | (identity matrix)

h
X, =X,
A FG 6, 2, 66} R L AT
! Polox, oy 9%y 9y, | X% X, :
yZJ_ygj h, 36

18



Relative orientation of successive images,
coplanarity condition { c MH

c" 0 D

=}

v}
%

=}

* In addition, design matrices are

The design matrix of observations

ﬁ oG 96 96 0 0 0 o ... 0 0 0 0
aXl 1 ayl 1 aXZI ay21
C = aXIZ aylZ aXZZ ay22 . . . .
0 0 0 0 0 0 0 0o ... 96, 96, 96, 96,
L aXln ayln aX2n ayZn B

[0G, oG, 09G, dG, dG, |
ob, db, Jdw, J¢, Ik,
0G, 0G, 0G, 09G, oG,

The design matrix D=

of orientation al?Y at?z af‘)z 84:02 d ’f P
parameters 3G, 3G, 9G, 9G, 9G,
L abY abz aa)2 E)goz 37(2 | 37

Relative orientation of successive
images, coplanarity condition

* Equations have to be linearized by computing partial derivatives
with respect to all unknown parameters

* Asan example, here we present only the partial derivation of the
coplanarity equation with respect to a parameter b,

ob, /db, oh,/db, db,/db,] [0 1 0
X, Y, Z, |=|X, Y z|=-
X, Y, z, X, Y, Z,

Xl Zl

X, 2, =-X,Z,+ X,Z,

"

)

* Because parameter b, exists only in one row (in the determinant
form), we are able to make partial derivation separately to that row,
and after that to calculate the determinant

* Inthe case of rotations, we can use previously presented methods
how to make partial derivatives of 3D rotation matrices with
respect to rotation angles

38
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Relative orientation of successive images,
coplanarity condition

. . -p Cc ofv¢] [o

» Step-by-step solution is [CT 0 D}HH

0o D" ofdp| |0
Corrections to A (T -1 T W=(C"P'C)"
orientation parameters dp - (D VVD) D'Wh h=-G, - cT

Lagrange multipliers |2 = W(h - de)

Corrections to image A CR
observations V=

Relative orientation of successive images,
coplanarity condition

» Again, the method is iterative and therefore we need
initial values to parameters

* One method to get approximate values is to use a
linear (projective) method (corresponding points —
epipolar matrix — physical parameters)

» After each iteration round, new approximations to
parameters are calculated 0 = b 4 gp®

IRV
* [f the number of measured corresponding points is N,

redundancy is
r=n->5

40
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Relative orientation of successive images,
collinearity condition

* The relative orientation of successive images can be
established also by using the collinearity equations
(instead of the coplanarity equations)

» This method is called as the relative orientation with
the bundle block method, because it is only a special
case of bundle block adjustment (the number of
images is only two)

41

Relative orientation of successive images,
collinearity condition

* In this case, we have to linearize collinearity equations (with
respect to unknown parameters)
—c rll(x — Xo)+ rlz(Y_Yo)+ r13(z — Zo) —
r31(x_Xo)+r32(Y_Yo)+r33(Z_Zo) *
. rZI(X - Xo)+ rzz(Y_Yn)"' r23(Z _Zo) =f
r31(X_X0)+r32(Y_Yo)+r33(z_Zo) Y

X=

* The result of linearization is (for one corresponding point pair)

.| da,

X Y oz ,

% 0 0 0 0 0 % % i dr, fa

Vi oX Y  9Z | dY, f)

xzzafixza‘;xzafixzafixzafixza‘;xzafixzaf7x2dzoz+ff2

Jw, dp, Jk, dY, 0JZ, oX JIY dZ dX fo0

Ay Wy g Ay oy o, A, af, | LY
dw, Jdp, Jk, dY, 9Z, JX dY 0Z | &z "

21



Relative orientation of successive images,
collinearity condition

* In these equation, values of the collinearity equations are
calculated using current approximations of parameters

fxol fx](a)l’¢]’K1’XOI’YOI’ZM’XO’YO’ZO)
f)i)l — fyl(a)l5¢l’Kl’XO]’YO]’ZOI’XO’YO’ZO)

0 0 0 0 0 0 0 0 0 0
fxz fxz(a)z 7¢2!K23X027Y0252027X 3Y 7Z )
0 0 0 0 0 0 0 0 0 0
fy2 fy2(w2’¢2’K2’XOZ’YOZ’ZOZ’X 7Y ’Z )

* In a design matrix, two first rows are associated to one
image (because the coordinate system is set to the camera
coordinate system of this image, we don’t have to solve
its rotations or translations -> = 0)

* Next two rows are associated to another image (the
adjacent image to the first one)

Relative orientation of successive images,
collinearity condition

* A solution can be calculated using LS adjustment with
observation equations

* Notice that object coordinates are now included in
adjustment. Therefore, we need approximate values
also for them

* However, there is a possibility to eliminate object
points from the normal equation

* As aresult, we get a reduced normal equation, from
which we can solve five orientation parameters
* If the number of corresponding points is N => we get

u=5+3N equations =>n=4N unknowns => should
be N=>5 inorder to get redundancy
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Space intersection

Space intersection

We know (interior and) exterior orientation of
images

We measure image observations (image coordinates)
of a common object point from two or more images

We solve object coordinates (X,Y,Z)

23



Space intersection

The collinearity equations are used as the
mathematical model

X=_Crll(x_X0)+r12(Y_Y0)+r]3(Z_ZO)=fx ﬁ\/%
I’31(X—X(,)+I’32(Y—Y0)+I’33(Z—ZO)

z
y:_CrZI(X_X(l)+r22(Y_YO)+r23(Z_Z[]): f Y XYz
Ly (X=X +r,(Y=Y)+r,(Z2-2,) ~ X

After the linearization (X, Y and Z are unknown
parameters), we get normal equations (indices:
image i, object point )
X .
v | [ofl/ax  afl/ay of/oz cciiYJ X, — f2
vy | |of) /X off/aY of)/0z a | it
] 47

Space intersection

In error equations, values of the collinearity
equation are computed by using approximate
values of parameters

I:fx(i)j } _|:fx (@, 9,5, X, Yo, Ly X?anOaZ,p)
¥ fy (@, 0,5, X Yo, Zois X1,Y]L Z)
3 unknowns

2 equations/images

overdetermined, if we have at least two images
Iterative LS solution

48
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Space intersection,
alternative solution

* We modify the collinearity equations to the form

X(I‘3](X - Xo) + I'32(Y _Yo) + rzs(z - Zo)) = —C(I’H(X - Xo) + r]z(Y _Yo) + r]s(z - Zo))
Y, (X = X) + 1, (Y =Y) + 15 (Z = Z,)) = =1, (X = X)) + 1, (Y = Y) +1,(Z = Z))

and furthermore
{(xr31 +Cr, ) X+ (Xry, +Cr,)Y + (X, +Cr;)Z = (Xr;, +¢r, ) X, + (Xry, +Cr,)Y, + (Xry,; +cr,)Z,
(yr3l + CrZI)X + (yr32 + CrZZ)Y + (yr33 + CrZ})Z = (yr3l + Cer)XO + (yr32 + CrZZ)Y() + (yr33 + CrZ})ZO

* When image coordinates (X,y) of an unknown object
point are measured from k>2 images, we can solve
object coordinates directly without iterations or initial
values (we get 2N linear equations)

Space intersection, accuracy

* The accuracy of object points is dependent on
— Measuring accuracy
— The number of intersecting rays
— Scale (c/2)
— Geometry of intersecting rays (imaging geometry)

* The effect of geometry :

— Planimetric accuracy is linearly dependent on Z. The
best geometry is achieved when X=Y=0.

— Height accuracy is proportional to z°

50
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