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Learning objectives

• To understand

– Bundle block adjustment (continue)

2



2

Bundle triangulation/adjustment, 

constraints 

• Usually, some parameters or values of their 
functions are known so accurately that we can 
keep them as known constants 

• This can be taken account by including 
constraints equations in bundle block 
adjustment. These constraints fix wanted 
parameters or their functions
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Bundle triangulation/adjustment, 

constraints 

• Constraints equation is and it 
establishes a bordered structure of a normal 
equation (LS condition  )

• Examples of constraints equations: a point lays on 
a line or on a circumference of a circle
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Bundle triangulation/adjustment, 

constraints 

• If basic assumptions are valid, a bordered 
normal equation is regular (non-singular), and 
therefore we get a unique solution of a system

• However, a coefficient matrix is not positively 
definite, and therefore we cannot use 
Cholesky decomposition. 

• Instead we can use e.g. LU  decomposition 
(Gaussian elimination method ).
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Bundle triangulation/adjustment, 

minimum constrained solution

• If we don’t have (real) datum information, we can 
remove datum defect by defining the object 
coordinate system using (fictive) minimum 
constraints. 

• As a result, we get the right shape of the model. 

• It’s crucially important to have the minimum 
amount of constraints equations that equal to 
datum defect, in which case constraints have no 
determinist effect to the shape of a reconstructed 
model
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Bundle triangulation/adjustment, 

minimum constrained solution

• Minimum constraints can be selected in infinitely many 
ways

• A simple alternative is to fix 7 parameters or 7 functions of 
parameters by giving them (in principle) arbitrary values

• Such solution is called as a (minimum constrained) basic 
solution (outer constrained) 

• A more complicated, but a numerically and statistically 
better alternative, method is so called minimum norm 
solution, which fulfills additional condition

• That is found by using, e.g. singular value decomposition or 
by using inner constraints
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Bundle triangulation/adjustment, 

minimum constrained solution

• All minimum constraints give identical
– Residual vector
– Sum of squares of residuals 
– Standard deviation of unit weight.

• However, the weight matrix of parameters 
change when minimum constraints change

• Therefore, the shape of reconstructed objects is 
dependent on the definition of datum. 

• We can prove that the a minimum norm solution 
is also a minimum-variance solution, and 
therefore it is recommended
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Bundle triangulation/adjustment, 

minimum constrained basic solution

• In a minimum constrained basic solution, we fix 7 
parameters or functions of parameters by giving 
them arbitrary values

• The algorithm of such case is identical to the 
previously introduced case, in which part of the 
observations were known

• If we select 7 object coordinates to be fixed, our 
constrain equations become
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Bundle triangulation/adjustment, 

minimum constrained basic solution

• However, it appears that in this special case a 
constrained solution changes back to ordinary LS 
adjustment 

• If we eliminate      from normal equations, we get 
error and normal equations
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Bundle triangulation/adjustment, 

minimum constrained basic solution

• We get similar type of equations if we fix, instead of 
object points, parameters of exterior orientation. 

• Examples:  
– Two XYZ points and one Z point
– The exterior orientation of one image and one coordinate 

of one projection center (relative orientation with 
successive images!) 

– Projection centers of two images and ω rotation of one 
image (relative orientation with rotating images!) 

– One XYZ point, azimuth angle, height angle and distance to 
another point, and furthermore height angle to the third 
point
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Bundle triangulation/adjustment, 

minimum constrained basic solution

• An example of outer constraints: how to fix one 3D 
object coordinate
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Bundle triangulation/adjustment, 
minimum norm solution

• Minimum norm condition        can be 
written also

in which N(A) is the kernel of A, and E is such 
a matrix whose columns establish the (some) 
base of kernel, i.e.

• Minimum norm constraints                  is also 
called as inner constraints.
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Rank-deficient LS adjustment, inner 
constraints

• Many geodetic and photogrammetric observations 
are invariants to similarity transformation or to some 
special case of it. In such case, we have datum 
defect. 

• Then, however, it is especially easy to find inner 
constraints starting from the (invariant) 
transformation
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Rank-deficient LS adjustment, inner 
constraints

• 1D:   (translation & scale)
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For small changes:

Rank-deficient LS adjustment, inner 
constraints

• 2D:   (2 translations, rotation& scale)
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Rank-deficient LS adjustment, inner 
constraints

• 3D: (3 translations, 3 rotations & scale)
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For small changes:

Bundle triangulation/adjustment, 

minimum norm solution

• When the values of a 3D similarity 
transformation are small, the effect of the 
transformation to the coordinates of an object 
point j can be defined using differential 
equations
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Bundle triangulation/adjustment, 

minimum norm solution

• The effect to the exterior orientation 
parameters of an image i is
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Bundle triangulation/adjustment, 

minimum norm solution

• We can add constraints equations to the 
adjustment
– the effect to orientation parameters of an image

– the effect to object coordinates

– Both

• Therefore, minimum norm constraints are   
and normal equation is
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Bundle triangulation/adjustment, 

minimum norm solution

• For example if only the constraints of object 
coordinates are included in the normal 
equation

we actually get
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Bundle triangulation/adjustment, 

minimum norm solution

• An example of inner constraints matrix       
when we have 3 object points 
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Bundle triangulation/adjustment, 

minimum norm solution

• Constraints can be applied also to the certain 
part of object points

• Object points       are constrained but       are 
not
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Bundle triangulation/adjustment, 

minimum norm solution

• Bordered normal equation becomes

• If we solve the third equation block
and place it to the first equation block, we get 
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Bundle triangulation/adjustment, 

minimum norm solution

• Now we notice that this result is a reduced normal equation 
that has been bordered with constraints equations
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Robustified LS adjustment (weight 
iteration)

• The principle is simple: we repeat adjustments in such a way that 
new weights (k=1,2,...) are computed from residuals of previous 
iteration round using the equation

in which f is a properly selected non-growing function, e.g. 
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Robustified LS adjustment (weight 
iteration)

• If the residual of an observation is large, such observation will 
get a small weight in the next iteration round 

• Because of that, the residual of such observation will increase 
further

• As a result, we (hopefully) get a situation in which the weights 
of a gross error observations are close to zero, and residuals 
are good estimates to gross errors

• A threshold b is typically proportional to the standard 
deviation of observations   or
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Robustified LS adjustment (weight 
iteration)

• The Robustified LS adjustment method is a simple alternative 
to automatize the searching of gross errors

• The method functions well when we have a lot of redundancy 

• In a non-linear case, we might face problems, if initial values 
of parameters are not close enough to the correct ones

• In such case, the changing of weights is recommended, and 
can be applied after couple of adjustment iterations
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Camera calibration

• Camera calibration includes 
– Geometric calibration 
– Evaluation of image quality and 
– Radiometric calibration (perhaps)

• Here we examine only geometric calibration 
• We want to solve

– Interior orientation (principle point and camera 
constant)

– Systematic errors (deformations of image plane, lens 
distortions, refraction of atmosphere) 

• We need extended collinearity equations

29

Camera calibration
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Test field /range calibration

• Test field calibration is an analytical calibration 
method in which interior orientation and 
systematic errors are defined from images by 
using a known test field 

• In principle, a test field can be any target with 
known geometry 

• Usually, a test field includes a set of points, 
whose coordinates are known with a great 
accuracy 

• Instead of points, we can also use lines and 
planes for calibration

31

Test field /range calibration

• One problem with field calibration is that even if the 
measurements are accurate, the results do not 
necessarily be valid in operative conditions 

• This problem can be avoided only, if we solve 
calibration and object points simultaneously 

• This is possible only when we measure relatively small 
objects 

• If an object to be measured is placed inside of a test 
field, or a test field is constructed around a target (e.g. 
a car measurement system). 

• Such ”local” calibration is called as on-the-job 
calibration.

32
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Basic method of test field calibration

• In the basic method of test field calibration, interior 
orientation and systematic errors are defined by taking 
images from a test field that includes known points, and by 
solving simultaneously  
– Exterior orientation parameters and 
– Calibration parameters of extended collinearity equations 

(additional parameters)

• In principle, one image is enough, however, including more 
images we can increase the accuracy (by improving the 
point distribution in the image plane and by improving 
imaging geometry)

• If we have a lot of points in our test field, we have better 
possibilities to solve all deformations reliably

33

Basic method of test field calibration

• A functional model of a test field calibration is the 
extended collinearity equations

• Alternatives to extend (dx & dy ) the model:
– Physical approach 

– Mathematical approach
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Basic method of test field calibration

• Typical physical model is e.g. Brown’s model

in which and
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Basic method of test field calibration

• In order to solve unknown parameters we get an 
error equation 

i.e.

In which      contains improvements of exterior 
orientations and       contains additional 
parameters. Notice that          , because the object 
coordinates are known

• An explicit non-linear model => linearization and 
LS adjustment with observation equations
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Basic method of test field calibration

• When the model is extended with additional 
parameters, there is a danger that we are not 
able to solve all parameters reliably 
(overparametrization problem) 

• It is important to distinguish two different cases:
– We cannot solve a single parameter 
– It’s not possible to define a linear combination of two 

or more parameters. Such parameters has perfect or 
high correlation. If the number of correlating 
parameters is k, we have to remove at least one, but 
maximum of k-1 parameters, from the adjustment

37

Basic method of test field calibration

• Examples of parameters that typically has strong 
correlations:

– From interior and exterior orientation: ,           
and 

– Principle point and tangential lens distortion:  
and            . This is understandable, because tangential 
lens distortion parameters corresponds to a case that 
we place a thin prism in the front of objective. 
Correlation increases when camera constant grows 

– Parameters of radial lens distortion
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Basic method of test field calibration

• High correlation between interior and exterior 
orientation parameters can be avoided by 
ensuring sufficient variation of scale within 
image-object transformation. This happens if 
we 

– Use a 3D test field (the variation of points should 
be large in all directions) and/or

– Using convergent imaging geometry (large 
variation of image rotation angles)

39

Basic method of test field calibration

• Rotation around optical axis (κ rotation) is enough to 
significantly reduce correlations between interior and 
exterior orientation parameters (  and ). 
Instead, they have no significant effect on correlations 
between principle point and tangential lens distortion  
(           &          )

• Correlation problems can be reduced during the 
computation, e.g., by following acts:
– Use orthogonalized functional model
– Use weights for additional parameters (let the expected 

values of fictive observations to equal to zero)

40
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Self calibration

• If we define ”self calibration” strictly, it means 
such calibration, in which we do not use any 
known external information, i.e., calibration is 
completely based on information from 
measured corresponding points (image 
measurements) 

• Only condition is that we have two or more 
(partially) overlapping images 

41

Self calibration

• If we have three images, we are able to establish two 3D 
models that are identical, if no errors are present 

• Systematic image errors cause differences/conflicts that can 
be used when solving calibration parameters 

• It’s obvious that the more we have overlapping images, the 
better possibilities we have in order to make a successful 
self-calibration  

• Even if a self-calibration is possible by using only image 
information, it is advantageous to use all available 
information (e.g. known coordinates or distances)  

• Additional information always improves accuracy and 
reliability of results. In addition, we can remove or reduce 
the effect of datum defect

42
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Self calibration

• Such adjustment of an image block, in which interior 
orientation and systematic errors are solved simultaneously 
with other unknown parameters, is called self calibrating 
bundle block adjustment

• The functional model of adjustment is the same as in the test 
field calibration, i.e. 
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Self calibration

• Error equation is 

in which      include improvements of interior orientation 
parameter approximations,       contain improvements of 
additional parameter approximations and        include 
improvements of object coordinate approximations 
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Self calibration

• LS condition gives a normal equation 

• If we eliminate object coordinates (     ) we get reduced 
normal equation (solution for image orientations and 
additional parameters)
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Self calibration

• The coefficient matrix of a reduced normal equation is a 
bordered band matrix, in which the thickness of borders 
equals to the number of additional parameters
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Appendix. The accuracy of bundle 
block adjustment (this is not 

presented in the lecture)

47

Accuracy of bundle block adjustment

• Alternatives to evaluate accuracy:

– Theoretically

• Law of random error propagation (inverse method)

• Simulation 

– Empirically (we use known control points or test fields)

• Here we focus on theoretical alternative, by 
applying law of random error propagation

48



25

Accuracy of bundle block adjustment

• Variance covariance matrix of parameters is defined 
as

• is the variance of unit weight (reference variance) 
and           is a cofactor matrix of parameters

• Unbiased estimate of reference variance is computed 
from adjustment by using the equation
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Accuracy of bundle block adjustment

• From the adjustment, we know (the law of error 
propagation) that the cofactor matrix is an inverse of 
coefficient matrix of normal equations (or reduced 
normal matrix), i.e. 

• It is important to realize that we are able to compute        
even before the solution of adjustment, 

because the weight and design matrices are known
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Accuracy of bundle block adjustment

• From the mixed adjustment of image and other 
observations

we get the cofactor matrix of parameters
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Accuracy of bundle block adjustment

• For sub-matrices          and         we get
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Accuracy of bundle block adjustment

Cofactor matrix of minimum norm solution

• Here we examine a general case, in which only object points 
are included in inner constraints, i.e. bordered normal 
equation is

• Usually, the primary focus is on 

• If we change the order of rows and columns, we get a new 
version of normal equations
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Accuracy of bundle block adjustment

• If we name

we get
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Accuracy of bundle block adjustment, 
approximate evaluation

• Calculation of variance-covariance matrix requires a lot of 
calculation if image block is large

• Therefore, there are methods how to approximately evaluate 
accuracy

• This requires pre-knowledge of factors that affect to accuracy

• Accuracy is depended on 
– The accuracy of measurements (standard deviation of weight unit       

and weight matrix P ) and

– The geometry of image block (design matrix A )
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0

Accuracy of bundle block adjustment, 
approximate evaluation

• The factors that affect to measuring accuracy are usually easy 
to evaluate 

• However, it is more difficult to evaluate the geometric 
structure of an image block 

• In following, we examine the most important factors of 
accuracy
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Accuracy of bundle block adjustment, 
approximate evaluation

• Imaging scale 
– Accuracy is linearly  dependent on imaging scale

• Imaging geometry
– Intersecting angle of observation rays has a significant effect to 

accuracy 
– Convergent imaging has better geometry than the normal case 

of stereo imaging
– In the case of the normal case of stereo imaging, the ratio 

between base and imaging distance is significant

• The number of image locations 
– Adding more intersecting rays increases strongly the accuracy, at 

first (2→3→4 images).
– True effect is difficult to separate, because if the number of 

image locations increases, also imaging geometry changes
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Accuracy of bundle block adjustment, 
approximate evaluation

• The number of object points 
– Effect of this is (surprisingly) small. Relatively sparse , 

but evenly distributed, set of control points is 
sufficient, at least in the design phase 

– Self calibration? 

• Camera constant 
– If a camera constant shortens, angles of intersecting 

rays grow (in the normal case of stereo imaging)  
– When a camera constant grows (and imaging scale 

remains) imaging geometry becomes more 
homogeneous, which makes also accuracy more 
homogeneous

58



30

Accuracy of bundle block adjustment, 
approximate evaluation

• In large image blocks, solving of cofactor 
matrix       using equations 

requires a lot of computation!

• We can make computation more efficient if 
we leave out correlations between points, i.e. 
calculate only 3x3 sub-matrices
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Accuracy of bundle block adjustment, 
approximate evaluation

• Because image blocks are typically very regular, the 
structure of accuracies is simple and can be evaluated 
reliably by using results from theoretical research of 
accuracies

• In theory, the accuracy usually is claimed to be related 
with following project parameters: 
– Measurement accuracy 
– Camera constant 
– Image scale 
– Side and forward overlap 
– The size of a block 
– The number and distribution of ground control points 
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Accuracy of bundle block adjustment, 
approximate evaluation

• We can examine separately planimetric and 
height accuracies 

• Planimetric accuracy of aerial triangulation 
– Ground control points are needed only in the borders 

of image block 
– The effect of image block size to the accuracy is small
– Increase of side overlap (20%→60%) improves 

accuracy, especially when we have relatively few 
ground control points (improvement ratio is 1.5 – 2)

– Camera constant has no effect on planimetric
accuracy  
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Accuracy of bundle block adjustment, 
approximate evaluation

• The height accuracy of aerial triangulation 
– We need height ground control points also in the 

middle of an image block 

– Height accuracy is linearly dependent on the 
spacing between ground control points 

– 60% side overlap provides ca. two times better 
accuracy 

– Change of camera constant affects to the height 
accuracy by simply scaling with the ratio of values 
of camera constants
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