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Context, motivation

• Local area networks
• Local reference frame or connection global
• For construction work
• For monitoring
• Special purpose networks
• Industrial measurements
• Networks form a control for laser scanning or photogrammetry
• Small area networks

• Terrestrial (tachymeter) 3D networks are nowadays mostly used for precision
measurements, like monitoring measurements in small area. (Maximum 1 
square kilometer)

• Distances between points only 5m-200m
• The uncertainty of refraction does not dominate in vertical angles (like in the

case of larger networks with vertices several kilometers) and they are as usefull
in adjustment as the horizontal angles and distances
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Local area network in global frame
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Model

Corrections to observations before adjustment:
• Deflection of vertical (to horizontal and vertical angles)
• Refraction (to vertical angle)
• The first velocity correction (to distances)

• In larger networks more corrections are needed (2. velocity, 
curvature)

• Centering elements and their covariance matrix must be converted to 
global system (NEU to UVW and UVW to 𝜑,λ,h conversions with
covariances )

Deflection of vertical correction is 
necessary because the normal of the 
reference ellipsoid and the normal
of the geoid are not same. We
assume that we have oriented to 
gravity our istruments and targets. 
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3D model for terrestrial network in global coordinate
system, partial derivates
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It is quite easy to add new observation types:
Height differences, coordinate differences…



Example network

Red: station points, two
setups at each station
points
Blue: prism points
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Example network

from to 𝛼0𝑜𝑏𝑠 𝛽𝑜𝑏𝑠 𝑠𝑜𝑏𝑠 𝜎𝛼 𝛽𝛽 𝜎𝑠 ℎ𝑠𝑝 ℎ𝑡𝑝

1 2 303.4648 91.12726 12.66408 0.0003 0.0005 0.00032 1.4887 1.4619

1 10 333.6974 78.90239 0 0.0003 0.0005 100.0003 1.4887 0

1 0 369.1179 89.32862 12.84218 0.0003 0.0005 0.00032 1.4887 0

1 3 378.2358 99.35329 16.91204 0.0003 0.0005 0.00032 1.4887 1.4719

1 2 41.00568 91.34972 12.65804 0.0003 0.0005 0.00032 1.489 1.4168

1 10 71.23692 78.8885 0 0.0003 0.0005 100.0003 1.489 0

1 0 106.6563 89.32219 12.84244 0.0003 0.0005 0.00032 1.489 0

1 3 115.7755 99.33971 16.91205 0.0003 0.0005 0.00032 1.489 1.4756

2 3 23.72309 105.8412 16.78997 0.0003 0.0005 0.00032 1.4144 1.4749

2 0 32.58689 97.79492 12.43505 0.0003 0.0005 0.00032 1.4144 0

2 10 42.9914 81.64232 0 0.0003 0.0005 100.0003 1.4144 0

2 1 100.3017 108.622 12.65716 0.0003 0.0005 0.00032 1.4144 1.4936

2 3 147.661 105.7652 16.78828 0.0003 0.0005 0.00032 1.4201 1.5026

2 0 156.5248 97.82854 12.43496 0.0003 0.0005 0.00032 1.4201 0

2 10 166.9293 81.72781 0 0.0003 0.0005 100.0003 1.4201 0

2 1 224.2395 108.6503 12.65797 0.0003 0.0005 0.00032 1.4201 1.4943

3 1 242.0176 100.8088 16.91266 0.0003 0.0005 0.00032 1.5031 1.4756

3 0 266.9403 75.23898 5.11965 0.0003 0.0005 0.00032 1.5031 0

3 10 280.789 82.16708 0 0.0003 0.0005 100.0003 1.5031 0

3 2 290.666 94.37759 16.7844 0.0003 0.0005 0.00032 1.5031 1.3847

3 1 375.5538 100.8701 16.91306 0.0003 0.0005 0.00032 1.5178 1.4766

3 0 0.480085 75.42832 5.11365 0.0003 0.0005 0.00032 1.5178 0

3 10 14.32567 82.25481 0 0.0003 0.0005 100.0003 1.5178 0

3 2 24.2044 94.45305 16.7829 0.0003 0.0005 0.00032 1.5178 1.3814
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B-matrix

𝐵𝑖 =

𝑔11
𝑔21
𝑔31

𝑔12
𝑔22
𝑔32

𝑔13
𝑔23
𝑔33

−𝑔11
−𝑔21
−𝑔31

−𝑔12
−𝑔22
−𝑔32

−𝑔13
−𝑔23
−𝑔33

−1
0
0

0
−1
0

0
0

−1

Observation from one
station point

centering
Angle and 
distance obs.

Number of rows equals to 
number of all angle and 
distance measurement in 
network

Number of columns equals
to number of all centerings
elements plus angle and 
distance measurement in 
network

Observations to one
target

Least Squares Methods in Geoscience



Cofactor matrix of observationsQ

𝑄𝑜𝑏𝑠 = 𝐵Σ𝑐𝑥,𝑐𝑦,𝑐𝑧,𝛼,𝛽,𝑠𝐵
𝑇

Observations from one
station point are correlating

𝑷 = 𝑸𝒐𝒃𝒔
−𝟏

𝜎0𝑎𝑝𝑟𝑖
2 = 1

Number of rows and 
columns equal to 
number of angle and 
distance observations
in network
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A-matrix

𝐴𝑖 =

𝑔11 𝑔12 𝑔13 −𝑔11 −𝑔12 −𝑔13 𝑔14
𝑔21 𝑔22 𝑔23 −𝑔21 −𝑔22 −𝑔23 0
𝑔31 𝑔32 𝑔33 −𝑔31 −𝑔32 −𝑔33 0

Number of rows equals to
Number of angle and 
distance observations
(equations in network)

Number of columns
equals to number of 
coordinates and 
orientation unknowns in 
network

Observatons to 
one target points

Observations
from one
station point
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y-vector

𝑦𝛼0𝑖𝑗 = 𝛼0𝑜𝑏𝑠 − 𝛼0(𝑢𝑖 + 𝑐𝑢𝑖 , 𝑣𝑖 + 𝑐,𝑤𝑖 + 𝑐𝑤𝑖 , 𝑢𝑗 + 𝑐𝑢𝑗 , 𝑣𝑗 , 𝑤𝑗 + 𝑐𝑤𝑗 , 𝑡0𝑖)

𝑦𝛽0𝑖𝑗 = 𝛽𝑜𝑏𝑠 − 𝛽(𝑢𝑖+𝑐𝑢𝑖 , 𝑣𝑖 + 𝑐,𝑤𝑖 + 𝑐𝑤𝑖 , 𝑢𝑗 + 𝑐𝑢𝑗 , 𝑣𝑗 , 𝑤𝑗 + 𝑐𝑤𝑗)

𝑦𝑠0𝑖𝑗 = 𝑠𝑜𝑏𝑠 − 𝑠 (𝑢𝑖 + 𝑐𝑢𝑖 , 𝑣𝑖 + 𝑐,𝑤𝑖 + 𝑐𝑤𝑖 , 𝑢𝑗 + 𝑐𝑢𝑗 , 𝑣𝑗, 𝑤𝑗 + 𝑐𝑤𝑗)

Observed minus calculated for all observations. Size of y-vector is number of 
angle and distance measurement in network times one. The centering
elements (in global system) are added to approximative coordinates

Least Squares Methods in Geoscience



N-matrix without constraints

Orientation
unknowns

Coordinates

We have as many
rows and colums as 
there are unknown
parameters, here
number of 
coordinates plus 
number of 
orientation
unknowns

Least Squares Methods in Geoscience



3D model for network with tilted polar
instruments

• Instruments are not levelled, they can be in arbitary attitude. 
• 𝑅𝑖 is rotation from object coordinate system to instrument coordinate system 
• 𝑅𝑎 is rotation around the primary axis.
• 𝑅𝑧 is rotation around the secondary axis.
• dR1, dR2,dR3 are 3x3 matrices with partials of three rotation angles (Partial

derivates are taken element by element of Ri.)
• k is distance and 𝑅𝑎 ∗ 𝑅𝑧 include the angle observations, E0 and E are eccentric 

vector of the instrument in instrument system and p is unit vector of aiming in 
zero angle position

• The observations of one station are correlated
• Suitable for industrial measurements

Least Squares Methods in Geoscience



y-vector
𝑦𝑖 = (𝑘 ∗ 𝑅𝑎 ∗ 𝑅𝑧 ∗ 𝑝) − 𝑅𝑖 ∗ (𝑋 − 𝑋0) + 𝐸0 − 𝐸;
A-matrix
#X0
𝐴11 = −𝑅𝑖;

#X
𝐴12 = 𝑅𝑖;

#Ri
𝐴13 = [𝑑𝑅1 ∗ (𝑋 − 𝑋0), 𝑑𝑅2 ∗ (𝑋 − 𝑋0), 𝑑𝑅3 ∗ (𝑋 − 𝑋0)];

#
𝐴𝑖 = [𝐴11, 𝐴12, 𝐴13];

B-matrix
#alfa
𝐵13 = −𝑘 ∗ 𝑑𝑅𝑎 ∗ 𝑅𝑧 ∗ 𝑝;

#zen
𝐵14 = −𝑘 ∗ 𝑅𝑎 ∗ 𝑑𝑅𝑧 ∗ 𝑝;

#k
𝐵15 = −𝑅𝑎 ∗ 𝑅𝑧 ∗ 𝑝;

#E0
𝐵11 = −𝑒𝑦𝑒(3);

#E
𝐵12 = 𝑒𝑦𝑒(3);

# 
𝐵𝑖 = [𝐵11,𝐵12, 𝐵13,𝐵14, 𝐵15];

𝑸𝒐𝒃𝒔𝒊 = 𝑸𝒐𝒃𝒔 = 𝑩𝜮𝒄𝒙,𝒄𝒚,𝒄𝒛,𝒂𝒍𝒇𝒂,𝒛𝒆𝒏,𝒌𝑩
𝑻

3D model for network with tilted polar
instruments

• Instruments are not levelled, they can be in arbitary attitude. 
• 𝑅𝑖 is rotation from object coordinate system to instrument coordinate system 
• 𝑅𝑎 is rotation around the primary axis.
• 𝑅𝑧 is rotation around the secondary axis.
• dR1, dR2,dR3 are 3x3 matrices with partials of three rotation angles (Partial derivates are taken element by

element of Ri.)
• k is distance and 𝑅𝑎 ∗ 𝑅𝑧 include the angle observations, E0 and E are eccentric vector of the instrument in 

instrument system and p is unit vector of aiming in zero angle position
• The observations of one station are correlated



A-matrix (an example)

𝐴𝑖 = [𝐴11, 𝐴12, 𝐴13];

Observations from
one station point

Observations to 
one target point

Orientation: three
angles per each
instrument set up

Coordinates

This target point is not
participating the 
estimation of 
orientation

Least Squares Methods in Geoscience



Structure of N with constraint equations

Constraints: in this case 
we have 6 (3 rotations
and 3 translations)

orientations

coordinates

One point in this network is not a datum point
Least Squares Methods in Geoscience



Algorithm

1. Read initial coordinates

2. Read datum points

3. Read observations, centering and precision of observations and centering
elements

4. Form A, B, Qobs, P, y

5. Calculate normal matrix 𝑁 = 𝐴𝑇𝑃𝐴 and normal equation vector 𝑡 = 𝐴𝑇𝑃𝑦

6. Add datum information (3 translations and 1 rotation) to normal equations. 
Constraints or fixed points.

7. Solve for the corrections to initial values and add them to initial values

8. Iterate (back to 3) with new approximative values until corrections practically
zeros

9. Precision, reliability, residuals, outliers

Least Squares Methods in Geoscience
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Double difference observations
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Observations, unknowns, model constants

• Observations: double differences of phase
observations

• Constants ?: Coordinates of satellites from
pre calculated orbits

• Unknown parameters: Coordinates of the 
points

1

2

3
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Double differences are linear combinations of phase
observation

• We can form T(S-1)(R-1) linearily indipendent double
differences per frequency

• S is number of satellites, R is number of receivers, T 
number of epochs

• Here double differences are formed for three receivers
one epoch and four satellites (one frequency) )()(
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Functional model
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Design matrix and y-vector for epoch t
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Session solution

  PyAPAA

NN

NN

NN

NN

NN

NN

ZZ

YY

XX

ZZ

YY

XX

TT 1

0
14
13

14
13

0
14
12

14
12

0
13
13

13
13

0
13
12

13
12

0
12
13

12
13

0
12
12

12
12

33

33

33

22

22

22

0

0

0

0

0

0








































































Corrections to initial values

Ambiguities are still floating

points

Iteration needed (non-linear

model)
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Floating point ambiguites to fixed integer ambiguites

• Ambiguites are tried to  fix to integer values

• There might be more than one possible set 
of integers. The best set gives minimum
variance (For short vectors up to 30km 
ambiguites should be found depending on 
the session length

• For long vectors it is not always possible to 
fix ambiguites

• New adjustment with fixed ambiguites

minPvvT

Fixed-solution gives the 

coordinates (coordinate

differences) and their

covariances to GPS-

vector network

adjustment. 

2 1

0 ( )T

X Y Z A PA 

   

Covariance matrix of the  
session solution:
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Variance propagation

2 1

0 ( )T

XYZ A PA  

Variances of phase

observations

Covariance matrix of double

differences

Covariance matrix of 

vectors

LSQ:

Covariance matrix

from network

adjustment

Network adjustment

TJ J
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GNSS-vector network

ZYX  ,,

ZYX  ,,

Unknown: Coordinates of 

the points

Observations: Coordinate

differences from vector

processing

Weighting: inverse of 

covariance matrix of 

vector components

Malli:















0

0

0

ijij

ijij

ijij

ZZZ

YYY

XXX
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Number of vectors in adjustment

• In one session we get
𝑅(𝑅−1)

2
vectors to networkadjustment but

• Only R-1 are linearly indipendent

• The rest of vectors
𝑅(𝑅−1)

2
− 𝑅 − 1 =

𝑅

2
− 1 are so called trivial vectors

• The network should be measured (sessions should be planned) so that none of the vectors in network is trivial 
(see JHS184) 

• We still take all possible vectors (also trivial ones), to network adjustment, because usual
commercial vector processing softwares are not able to solve for covariances between vectors. 
(Scientific softwares can)

• If we choose vectors, we will lose information

• When we take all vectors we get false redundance and perhaps over optimistic variances. 
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Non trivial vectors in example network

From to session

1-3 A

1-2 A

2-3 B

2-5 B

1-4 C

1-5 C

4-5 D
1

2

3

4

5

Observations : ZYX  ,,

Number of observations

with trivial vectors: 21

Number of all

observations: 36
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Simple combination models for GPS network

• Functional model for GPS-vectors in 
observation epoch: each epoch has own
rotation and scale

• Assumptions: between observation
sessions rotation and scale difference but
no deformation

• For small densification networks it is 
sufficient to assume no rotation or scale 
difference between epochs

• Rotation matrix is unit matrix and scale 1

2 1 12

2 1 12

2 1 12

1

1 0

1

L L GPS

t L L GPS

L L GPSt t

X X X

s Y Y Y

Z Z Z

 

 

 

       
     
         
            

2 1 12

2 1 12

2 1 12

1

1 0

1

L L GPS

L L GPS

L L GPS

X X X

s Y Y Y

Z Z Z

 

 

 

      
    
        
          

• Functional model for GPS-vectors in 
observation epoch: each epoch has same
rotation and scale which differ from
reference L

• Assumptions: between observation sessions
no rotation and scale difference nor
deformation, but there is rotation between
GPS vectors and the reference system, but
no deformation



SINEX-file
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sinex

../../octavekoodeja/antennitesti/L1_2016/esim.txt


Combination model
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Altamimi, catref-man-Oct_2010.pdf

TRF combination


