
GIS-E3010 Least-Squares Methods in Geosciences

Photogrammetric assignment

In this assignment we practice least squares method with several photogrammetric tasks. We have two
simulated aerial images with image observations and ground control points. With these observations, your
task is to compute (programming with Matlab) the exterior orientation of one of the images, the relative
orientation of two images and the coordinates of object points with space intersection. The simulated images
(size 23 x 23 cm) have ca. 80 % forward overlap and there are 18 image measurements per image (distributed
almost like Von Gruber point positions, 3 observations per point). All observations are ideal and no image
corrections are needed. All initial values of unknown parameters are given. In reality, these approximate
values should be computed by utilizing direct solution methods.

In addition, the principle of bundle block adjustment is practiced with a pen and paper. This part doesn’t
include any programming.

Evaluation

The assignment is evaluated. The weight of the photogrammetric assignments to the final grade is 1/3 of all
assignments. You can have 90 points which is scaled to the same scale with other assignments of the
course. Include in your report also feedback about this assignment and estimate how much you needed
time to complete it.

Deadline is 15.2.2019.

Requirements

Programming parts require Matlab with Symbolic Math Toolbox, which is available in Aalto computers.

Help

There are two exercise support meetings in which the programming parts of the assignment are assisted
(Wed 30.1. 14-16 and Wed 6.2. 14-16).

If you have any further questions: petri.ronnholm@aalto.fi

Solving exterior orientation (27 p)

In this assignment we assume that object points are constants i.e. extremely accurate points.

The aim is to find unknown parameters of collinearity equations (ω, ϕ, κ, X0, Y0, Z0). The upper equation is
referred with fx and the lower one with fy.

The 3D rotation matrix in this equation is

The structure of equations and trigonometric functions makes it non-linear, and therefore it should be
linearized. We are trying to solve improvements (=corrections) to initial values of parameters (or to values
from the previous iteration round) with least squares method. The values of unknown parameters are
corrected (by summing corrections to current values) for the next iteration round. Iteration can be ended if
there are no more significant improvements to unknown parameters.

Let’s move to the details

Answer also to the questions that are given

Q: What are the correspondence observations in this case? (1 p)

Q: How many equations one corresponding observation establish? (1 p)

Q: How many equations six corresponding observations establish? (1 p)

Q: How many unknown parameters you have? (1 p)

Q: How many equations you need to establish (minimum) in order to solve unknowns and how many
corresponding observations you need then? (1 p)

Note: it is advantageous to have more corresponding observations than minimum.

Q: What is the redundancy of the system if we have 4 corresponding observations? (1 p)

The next phase is to create the error equation










==
−+−+−
−+−+−

−=

==
−+−+−
−+−+−

−=

y

x

f
W
V

ZZrYYrXXr
ZZrYYrXXrcy

f
W
U

ZZrYYrXXr
ZZrYYrXXrcx

)()()(
)()()(
)()()(
)()()(

033032031

023022021

033032031

013012011

















−
+−−
−+

=

















−













 −
















−==
















=

ϕωϕωϕ
κϕωκωκϕωκωκϕ
κϕωκωκϕωκωκϕ

ωω
ωω

ϕϕ

ϕϕ
κκ
κκ

ωϕκ

coscoscossinsin
sinsincoscossinsinsinsincoscossincos
cossincossinsincossinsinsincoscoscos

cossin0
sincos0

001

cos0sin
010

sin0cos

100
0cossin
0sincos

333231

232221

131211

RRR
rrr
rrr
rrr

R

yAxv −=

For one corresponding point measurement this looks like

We are going to solve the correction vector of unknown parameters x. For that we need to establish
everything else (A and y).

Q: Write this equation for 4 corresponding points using general symbols (add sub-index to x and y indicating
the number of corresponding observation), e.g. for the first corresponding point (1 p)

In practice, only vectors v and y, and matrix A grow (they get more rows).

The design matrix A is a Jacobian matrix in which the equations are partially derivated with respect to all
unknown parameters. Each column is reserved for one unknown parameter.

Matlab task: create partial derivatives of the design matrix A. Add you code to the report. (10 p)

Even if these partial derivatives can be found from literature (and can be done by pen and paper), use the
symbolic library of Matlab to create your version of them. Instructions are given in Appendix 1.

The next step is to understand a vector y, which includes the difference between observed image coordinates
(x,y) and estimated image observations (). Estimated image observations are computed with initial
values of parameters i.e. you use collinearity equations for each ground control points to compute their
projection to the image plane (estimated location) with approximate orientation parameters. You can check
if your partial derivatives are correct by copying the result into function check_partial_derivatives.m, and by
running it.

Matlab task: Complete given Matlab function, establish the A matrix and the y vector, and compute the
exterior orientation parameters. Add your code and results in your report. (10 p)

















−

−
−















































∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
















0

0

0

0

0

000

000

y

x

yyyyyy

xxxxxx

y

x

fy

fx

dZ
dY
dX
d
d
d

Z
f

Y
f

X
ffff

Z
f

Y
f

X
ffff

v

v
κ
ϕ
ω

κϕω

κϕω

















−

−
−















































∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
















0
11

0
11

0

0

0

0

1

0

1

0

1111

0

1

0

1

0

1111

1

1

y

x

yyyyyy

xxxxxx

y

x

fy

fx

dZ
dY
dX
d
d
d

Z
f

Y
f

X
ffff

Z
f

Y
f

X
ffff

v

v
κ
ϕ
ω

κϕω

κϕω

yAxv −=

00 , yx ff

















−

−
−















































∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
















0

0

0

0

0

000

000

y

x

yyyyyy

xxxxxx

y

x

fy

fx

dZ
dY
dX
d
d
d

Z
f

Y
f

X
ffff

Z
f

Y
f

X
ffff

v

v
κ
ϕ
ω

κϕω

κϕω

Solving relative orientation (26 p)

In this case the mathematical model is the coplanarity equation and we want to solve the relative orientation
of successive images (i.e. one image remains stable and the other one is moved and rotated).

in which

The interpretation of rotation matrix is the same than previously (in the case of exterior orientation). Because
of the presence of trigonometric functions, the equation is non-linear and needs to be linearized. As usually,
we need to have some initial values for all unknown parameters that are relatively close to the correct ones
(initial values are given in this assignment). We use mixed model and general least squares adjustment. The
structure is

i.e.

Q: What are the correspondence observations in this case? (1 p)

Q: How many equations one corresponding observation establish? (1 p)

Q: For how many parameters we solve corrections? (2 p)

Q: What is the redundancy of the system if we have 9 corresponding observations? (1 p)

Q: How can you define the scale of the resulting 3D model? (1 p)

Matlab task: create partial derivatives of the matrices C and D (template
make_all_partial_derivates_C_and_D_matrices_RO.m). (notice that this part is already solved in order to
reduce the workload i.e. you get free 10 points. However, check the code and try to understand what has
been done. If you have too much free time, you may try to solve this by yourself). (10 p)

Copy the results (they will be saved in the file partial_derivatives_RO.m) to the Matlab template
solve_RO_ls.m

Matlab task: Complete the template solve_RO_ls.m. Add you code and results to the report. (10 p)

0)()()(122112211221

222

111 =−+−−−== YXYXbZXZXbZYZYb
ZYX
ZYX
bbb

G ZYX

ZYX

















−
=

















c
y
x

R
Z
Y
X

T
1

1

1

1

1

1

















−
=

















c
y
x

R
Z
Y
X

T
2

2

2

2

2

2
















=

Z

Y

X

b
b
b

b

















−
=
















=

c
y
x

R
Z
Y
X

a T
1

1

11

1

1

1

1 λ

















−
=
















=

c
y
x

R
Z
Y
X

a T
2

2

22

2

2

2

2 λ

Xb
Yb

Zb

Y X
Z

),(11 yx
),(22 yx

00

2

2

2
2

0

2

0

2

000

2

2

1

1

2

0

2

0

1

0

1

0

=+































∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

+



























∂
∂

∂
∂

∂
∂

∂
∂ G

d
d
d
db
db

GGG
b
G

b
G

dy
dx
dy
dx

y
G

x
G

y
G

x
G Z

Y

ZY

κ
ϕ
ω

κϕω

00 =++ GDdpdlCT

Solve spatial intersection (12 p)

In this case we know exterior orientations of two images. According to image observation we aim to make
space intersection of observation vectors and get 3D object coordinates. For this task, we use collinearity
equations.

If these equations are developed a bit we get

In this equation, all unknown parameters are on the left side of the “=” sign and all scalars are on
the right side of “=” sign. Because we know rotations, this equation is linear and we get a direct
solution (no initial values are needed, nor iteration).

Q: What are the unknown parameters? (1 p)

The design matrix (A) is a Jacobian matrix (as in the two previous cases) and y contains the
observations (the right side of the equation).

Q: Write the contents of A matrix with symbols like in the case of exterior orientation for one
corresponding observation pair (one point from the left image and one from the right image)

(use 1xf , 1yf , 2xf , 2yf to separate left (1) and right (2) image observations)) (1 p)

Reminder: Example from the case of exterior orientation:

Q: What is the redundancy of the system? (1 p)

Matlab task: Complete the Matlab template space_intersection.m. Add you code and results to the report.
(9 p)










=
−+−+−
−+−+−

−=

=
−+−+−
−+−+−

−=

y

x

f
ZZrYYrXXr
ZZrYYrXXr

cy

f
ZZrYYrXXr
ZZrYYrXXr

cx

)()()(
)()()(
)()()(
)()()(

033032031

023022021

033032031

013012011





+++++=+++++
+++++=+++++

023330223202131233322322131

013330123201131133312321131

)()()()()()(
)()()()()()(

ZcryrYcryrXcryrZcryrYcryrXcryr
ZcrxrYcrxrXcrxrZcrxrYcrxrXcrxr

yAxv −=





















∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

000

000

Z
f

Y
f

X
ffff

Z
f

Y
f

X
ffff

A
yyyyyy

xxxxxx

κϕω

κϕω

Bundle block adjustment (25 p)

In this case we examine bundle block adjustment when

• The camera is 1-dimensional (a line camera) and
• The object space is 2-dimensional (an XY plane)

In this case (1D image and 2D object space), the collinearity equations become as:









−
−

=







−
−









−

=







− 0

0

0

0

cossin
sincos

YY
XX

kR
YY
XX

k
c

x
αα
αα

 i.e.

W
Uc

YYXX
YYXX

cx −=
−+−−
−+−

−=
αα
αα

cos)(sin)(
sin)(cos)(

00

00

Q: In this case, for which transformation (of the object space) the image observations are invariants? (1 p)

Task: Make linearization (partial derivatives with respect to all unknown parameters) of this collinearity
equation using 1st order Taylor series (either with a pen and paper of with the Matlab symbolic library) (5 p)

dY
Y
xdX

X
xdY

Y
xdX

X
xdxxx

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+=
00

0
0

0

0
0

00
0 α

α

(Calculate all partial derivatives, such as α
0

/ Xx ∂∂ etc.). When using a pen and paper approach, use the rule

of partial derivation of quotient equation: 







∂
∂

−
∂
∂−

=







∂
∂

−
∂
∂

−=
∂
∂

kkkkk p
W

W
U

p
U

W
cWU

p
WW

p
Uc

p
x 2/

Q: How many parameters we need in order to define the exterior orientation of a single image (in this special
case)? (1 p)

Figure 2 Figure 1

Object point

Projection centre
Image point

Q: How many object points we need to know in order to solve exterior orientation parameters? (1 p)

Q: What is (a) the number of observations, (b) the number of unknown parameters and (c) redundancy if we
have a bundle block adjustment that includes four images and nine object points (see Figure 2). We assume
that all object points are unknown but visible in all images. (3 p)

Q: What is the amount of datum defect in the case that was described in the previous question? And what is
the rank of design matrix? (2 p)

Q: The simplest method how to remove datum defect is to ”fix” some of the object points. How many
points/coordinates we have to “fix” in this case? Write out the required additional error equations (outer
constraints) of object coordinates ETx=0. (4 p)

Q. Datum defect can be removed also by using inner constraints. Write out the additional error equations
ETx=0 in this case. (For the simplicity, we take account only object coordinates – not exterior orientations).
Use the following equation to derive the result: (3 p)









+
















−

+







=








Y
X

d
Y
X

d
d

dY
dX

dY
dX

λ
α

α
0

0

0

0

Task. Write out the structure of (free network) bundle block adjustment (a matrix A and vectors ∆ and f)
using symbols in the case that includes two images and four object points. A free network adjustment
requires either inner or outer constraints in order to remove datum defect, and you already solved those in
questions 8 and 9. Now you don’t have to make a solution of equations, but we would get it from (5 p)

 in which









=







∆








00
u

kE
EN

T
PAAN T= PfAu T=

Appendix 1. Creating symbolic partial derivatives with respect to unknown
parameters in Matlab

You have been given a template to create symbolic partial derivatives:
make_all_partial_derivates_A_matrix.m

This file includes several functions. The first function make_all_partial_derivates_A_matrix runs all other
functions and writes the results in a new file partial_derivatives.m. Your task is to complete all sub
functions, e.g.
function [fx_d_o] = derive_fx_d_o()
function [fy_d_o] = derive_fy_d_o()

etc.

Even if there are 12 sub-functions to complete the two first ones are the most important. In practice, when
you have succeeded to make these two functions the rest can be mostly copy-pasted from them and just
change some symbols.

In Matlab, symbolic variables are initialized with “syms”. You need to do this in each function. If for
example we use o=omega, p=phi and k=kappa, we could initialize these symbols

syms o p k;

Initialize symbols omega, phi, kappa, X0, Y0, Z0, c, X, Y, Z, r11, r21, r31, r21, r22, r23, r31, r32, r33, which are
needed for collinearity equations. Start with establishing the elements of 3D rotation matrix, because then it
is easier to create collinearity equation. For example, the first element is

r11=cos(p)*cos(k);

The next step is to write collinearity equation. In derive_fx_d_o (and all with fx) you need to create only the
upper equation of the collinearity equations.

fx=-c*(r11*…

This equation is partially derivated with respect to current unknown. For example, in derive_fx_d_o this
variable is omega. Use Matlab function diff() to make this derivation and place the result in the outgoing
parameter of the function, e.g. in

function [fx_d_o] = derive_fx_d_o()
%fx_d_o is the outgoing parameter and therefore

fx_d_o=diff(…

After you have managed to complete all functions run make_all_partial_derivates_A_matrix . If you
open the resulting file “partial_derivatives.m”, you can see several functions in which the results from the
previous step are collected as Matlab-functions. You may check if everything is in condition. Copy all
functions from “partial_derivatives.m” and copy them in to the file “check_partial_derivatives.m”. When
you run this function, it tells if you have everything in condition or if you have problems in some sub-
functions (only for the case of exterior orientation).

