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O Decisions are often made under uncertainty

d “How many metro drivers should be recruited = trained, when future traffic is
uncertain?”

O Probability theory dominates the modeling of uncertainty in
decision analysis
— Well established rules for computations
— Understandable
— Other models (e.g., evidence theory, fuzzy sets) are not covered here

O Learning objective: refresh memory about probability theory and
calculations
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The sample space

0 Sample space S = set of all possible outcomes

0 Examples:
— Acointoss: S={H,T}
— Twocointosses: S={HH, TT, TH, HT}
— Number of rainy days in Helsinki in 2018: S={1,...,366}
— Grades from four courses: S=G < G < G < G=G*4, where G={0,...,5}
— Average m?-price for apartments in Helsinki area next year S = [0,x) euros
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Simple events and events

O Simple event: an individual outcome from S

— Acointoss: T

— Twocoin tosses: TT

— Number of rainy days in Helsinki in 2018: 180

— Grades from four courses: (4, 5, 3, 4)

— Average m?-price for apartments in Helsinki in 2019: 4000 €

O Event: a collection of one or more outcomes (i.e., a subset of the
sample space: EES)
— Two coin tosses: First toss tails, E={TT, TH}
— Number of rainy days in Helsinki in 2018: Less than 100, E={0,...,99}

— Grades from four courses: Average at least 4.0, E = {z € G4| %Z?:l Zi = 4.0}
— Average m?-price for apartments in Helsinki in 2019: Above 4000€, E=(4000, )
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Events derived from events:
Complement, union, and intersection

0 Complement A° of A = all outcomes in S that are
not in A

0 Union A U B of two events A and B = all
outcomes that are in A or B (or both)

S
1 Intersection A N B = all outcomes that are in both .
events

0 Aand B with no common outcomes are mutually
exclusive

O Aand B are collectively exhaustiveif AUB =S
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Events derived from events: Laws of
set algebra

Commutative laws: AUB = B U 4, ANB=BNA

Associative laws: (AUB)UC =AU (B U~C(C), (ANB)NC=An(BnC),
Distributive laws: (AUB)NC=(ANnC)uU(BnC), (AnB)uC=(AuC)n(BUC)
DeMorgan’s laws: (AU B)¢ = A n B¢, (AN B)¢ = A UB¢

@
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Probability measure

O Definition: Probability P is a function that maps all events A onto
real numbers and satisfies the following three axioms:
1. P(S)=1
2. 0<PA)=<1

3. If Aand B are mutually exclusive (i.e., AN B = @) then P(AUB) =
P(A) + P(B)
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Properties of probability (measures)

O From the three axioms it follows that
I. P(®)=0
Il If A € B, then P(4) < P(B)
Il.  P(A%) =1-P(A)
IV. P(AUB)=P(4)+P(B)—P(ANB)

O In a given population, 30% of people are young, 15% are restless, and 7%
are both young and restless. A person is randomly selected from this
population. What is the chance that this person is

— Not young? 1. 30% 2.55% 3. 70%
— Young but not restless? 1. 7% 2.15% 3.23%
— Young, restless or both? 1. 38% 2. 45% 3.62%
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Definition: Two events A and B are independent if
P(AnB) =P(A)P(B)

O A person is randomly selected
from the population on the right.
ana | Restless
0 Are events "the person is
young” and "the person is

restless” independent?
O No: 0.07 #0.3 x 0.15
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Conditional probability

Definition: Conditional probability P(A|B) of A
given that B has occurred is

P(A|B) & %

Note: If A and B are independent, the probability
of A does not depend on whether B has
occurred or not:
P(ANnB P(A)P(B
pialp) = FANE) _ PAPB) _
P(B) P(B)

P(A).

Source: Wikipedia
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Joint probability vs. conditional
prObabIIIty Joint probability

Exam ple Wheat demand

. . . . Rye demand Low High Sum
Q Afarmer is trying to decide on a farming strategy for Y J
next year. Experts have made the following forecasts Low 005 | 04 | 045
about the demand for the farmer’s products. High 03 | 025 | 055
D Questlons Sum 0.35 0.65 1
—  What s the probability of high wheat demand?
1. 40% 2.65% 3.134% Conditional probability
—  What is the probability of low rye demand? Wheat d J
1. 11% 2. 35% 3. 45% eat deman
—  What is the (conditional) probability of high wheat demand, if rye Ryedemand | Low | High | Sum
demand is low? Low 0.11 0.89 1
1. 40% 2.55% 3.89% .
. High 055 | 0.45 1
—  Are the demands independent?
1. Yes 2. No Sum 0.66 1.34
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Law of total probability

4 If E,,...,E, are mutually exclusive and A = U; E;, then
P(A)=P(AIE))P(E))+...+P(A[E,)P(E,)

O Most frequent use of this law:
— Probabilities P(A|B), P(A|B¢), and P(B) are known
— These can be used to compute P(A)=P(A|B)P(B)+P(A|B°)P(B®)
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Bayes’ rule

d Bayes'rule: P(A|B) =

P(B|A)P(A)
P(B)

L Follows from

1.

2.

The definition of conditional probabilty: P(A|B) =

Commutative laws: P(B N A) = P(AN B).

P(ANB)
P(B)

, P(B|A) =

P(BNA)
P(4) '

A!
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Example:
O The probability of a fire in a certain building is 1/10000 any given day.

O An alarm goes off whenever there is an actual fire, but also once in every 200 days for
no reason.

O Suppose the alarm goes off. What is the probability that there is a fire?

Solution:
O F=Fire, Fc=No fire, A=Alarm, Ac=No alarm
Q P(F)=0.0001 P(F°)=0.9999, P(A|F)=1, P(A|F°®)=0.005

Law of total probability: P(A)=P(A|F)P(F)+P(A|F°) P(F¢)=0.0051

P(A|F)P(F) _ 10.0001 _ 204

Bayes: P(F|A) = P(A) 0.0051
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O Arandom variable is a mapping from sample space S to real
numbers (discrete or continuous scale)

O The probability measure P on the sample space defines a
probability distribution for these real numbers

O Probability distribution can be represented by
— Probability mass (discrete) / density (continuous) function
— Cumulative distribution function
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Probability mass/densﬂy functlon (PI\/IF
& PDF)

O PMF of a discrete random variable is fy(t) o X-Bin(s.0.3)
SUCh that :_sz 02
— f(©)=P({s € S|X(s)=t}) = probability 1
Yte(an) fx(£) = P(X € (a,b]) = probability ‘ |
O PDF of a continuous random variable is fy(t)
such that
— fy(t) is NOT a probability i o
~ [} fx(®)dt = P(X € (a, b]) is a probability T

04r

0.2 J
0 \

-1 -05a b 0 05 1
t
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Cumulative distribution function (CDF)

1 The CDF of random variable X is
Fx(t) = P({s € S|X(s) = t})
(often F(t) = P(X < t))

O Properties

— Fy1s non-decreasing

— Fy(t) approaches O (1) when t decreases
(increases)

—  P(X>t)=1-Fy (1)
— P(a<X<b)=Fy(b)- Fy(a)

F, (0

F,0
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 The expected value of a random variable is the weighted average of all possible
values, where the weights represent probability mass / density at these values

Discrete X Continuous X

BIXI= ) tf(®) E[X] = f T (0t

« Afunction g(X) of random varibale X is itself a random variable, whereby

ELg00] = ) g(0f(® Flg01 = [ g(foat
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Expected value: Properties

Q IfX;, .., X,and Y =Y, X; are random variables, then
n

ElY]= ) 1E[Xi]
1=
O If random variable Y=aX+b where a and b are constants, then
ElY]=aE[X]+ D

O NB! In general, E[g(X)]=g(E[X]) does NOT hold:
— Let X € {0,1} with P(X=1)=0.7. Then,
E[X]=03-0+0.7-1=07,
E[X?]=03-02+0.7-12=0.7 # 049 = (E[X])?.
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Random variables vs. sample space

L Models are often built by directly defining distributions (PDF/PMF or CDF)
rather than starting with the sample space
— Cf. alternative models for coin toss:
1.  Sample space is S={H, T} and its probability measure P(s)=0.5forall s € §
2. PMFisgiven by f,(t)=0.5, t €{0,1} and f,(t)=0 elsewhere
O Computational rules that apply to event probabilities also apply when these
probabilities are represented by distributions
U Detailed descriptions about the properties and common uses of different
kinds of discrete and continuous distributions are widely documented
— Elementary statistics books
— Wikipedia
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Binomial distribution

U nindependent binary (0/1, no/yes) trials,
each with success probability p=P(X=1)

U The number X ~ Bin(n,p) of successful
trials is a random variable that follows the
binomial distribution with parameters n
and p

PMF: P(X = 1) = () = () p'(1 — p)"*
U Expected value E[X]=np
O Variance Var[X]=np(1-p)

U

0.00 0.05 0.10

4 sesslonciene” tesss
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Source: Wikipedia
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Other common discrete dist

L Bernoulli distribution

— If X €{0,1} is the result of a single binary trial with
success probability p, then X~Bernoulli(p).

- fKO=p'A-p)"

O Geometric distribution

— If X €{1,2,3,...} is the number of Bernoulli trials needed to
get the first success, then X~Geom(p).

- fx®O=p1-p

L Poisson distribution

— Let X €{1,2,3,...} be the number of times that an event
occurs during a fixed time interval such that (i) the
average occurence rate A is known and (ii) events occur
independently of the last event time. Then, X~Poisson(A).

ributions

f(kip) = (P*K) [(1-p)*(1-K)]

0.40—

0.35

030} |
T 0.25}
% 0.20f

o
0.15
0.10

0.05f /

0.00

b § e A=1
e \=4 |
‘.‘ o A=10 |
o
Vv \
s °
/\ o P
¢ | o
q Sa -
/ \ ™ o
® o P aannaa Seen
0 5 10 15 20

Source: Wikipedia

15.1.2019
22



Uniform distribution

U Let X €[a,b] such that each real value
within the interval has equal probability.

Then, X~Uni(a,b)

1
Q fx(0) ={p-a’

Q EX] =—

fora<t<b
0, otherwise

a+b
2

Q Var[X] == (b — a)?

f(x)
R PO . .
b-a | ‘
0 a b
1
F(x)
0 a b

Source: Wikipedia
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Normal distribution N(u, a2)

t—p)?
1 _(
202

Q fx() = ovan €
Q E[X] = Var[X] = o?

O The most common distribution for
continuous random variables

O Central limit theorem: Let X,...,X,, be
independent and identically distributed
random variables with E[X]]= ¢ and
Var[X]=02. Then,
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Other common continuous
distributions

Q Log-normal distribution: if X~N(u, 02), then
eX~LogN(u, o2)

O Exponential distribution Exp(A): describes
the time between events in a Poisson
process with event occurrence rate 4

0 Beta distribution Beta(a,[3): distribution for
X€[0,1] that can take various forms

PDF
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Why Monte Carlo simulation?

d When probabilitistic models are used to support decision making, alternative
decisions often need to be described by performance indices such as

— Expected values — e.g., expected revenue from launching a new product to the
market

— Probabilities of events — e.g., the probability that the revenue is below 100k€

O It may be difficult, time-consuming or impossible to calculate such measures
analytically

J Monte Carlo simulation:

— Use of a computer program to generate samples from the probability model
— Estimation of expected values and event probabilites from these samples
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Monte Carlo simulation of a probability
model

Probability model Monte Carlo simulation
Random variable X~f, e Sample (Xq,...,X,) from fy
E[X] Yi=1Xi
n
Elg(X)] Yi=19(xi)
n

|{l € {11 1n}|xi € (Cl, b)}l
n

P(a<X <Db)
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Uni(0,1) distribution in MC —discrete
random variables

0 Some softwares only generate random numbers from Uni(0,1)-distribution

O Samples from Uni(0,1) can, however, be transformed into samples from many
other distributions

U~Uni(0,1) X~y
O Discrete distribution: YT xes
_ u; = 04565 g x1=1 Demand x  Prob. fy of
o LetX € {xq, ..,x,}suchthat fy = u, = 0.8910 T—XZZ Xy =2 | week demand
P(X =x)=p us = 03254 (7|~ x3=1 . o3
« Divide interval [0,1] into n segments = :
of lengths p4, ..., pn- - X=1 ! 04
¢ Sample values u; from Uni(0,1). 2 0.2
«  Transform the sample: If u; € 0.3 17 3 o1
[Xk=0 P Zk=0 Pi) Where py =0, —X=0
then X; = x;. -
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Uni(0,1) distribution in MC — continuous
random variables

O Assume that the CDF of random variable X has an inverse function Fy*. Then,
the random variable Y = Fy 1(U) where U~Uni(0,1) follows the same distribution
as X:

Fy(©) =P <t) =P(Fy'(U) <t) = P(U < Fx(t)) = Fx(t)

O Continuous distribution: U-Uni0,1)  X~f,
Let X~Fy (CDF) w = 04565 X, = 9454 20007 £ =N(1000,5007)
Sample values u; from Uni(0,1). ui — 08910 X, =16159 1m0l

(u)

5 1000F

F

Transform the sample: X; = Fy 1(uj) u; =03254 X3= 773.7

5001

o 0.2 0.4 0.6 0.8 1
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Monte Carlo simulation in Excel

fe | =NORM.INV(ES;1000;500)
VLOOKUP looks for the cell —

value in the 1st column of the | =viookur(e7;5857:50$10;3;TRUE)| [STDEV.S(E8:E207)— . = S
table. The value in the 3rd [ F |
column of the table is ¢ [ o | e | F .G H o5 1000
returned to the current cell. .
5 IAVERAGE(H7:H206) | 0.518524 1020.184
3 | True mean 05 11 0.288675 500
4 Sample mean = 0.498714 1.085 Sampe stdev 0.296019 503.2426
5 11
6 i Sum p0:p(i-1)  Probability pi Demand xi Sample u X Sample u X
B 0 0.3 0 1 0.009979]3;TRUE) | 1 0_049975| 177.4551 .|
g 2 0.3 04 1 ] 0.423969 1 N 0.205365 | 582,695
9| 3 0.7 0.2 2 0.931674 3 3 0.874753 | 1574.575
10 4 0.9 01 3 a 0.963706 3
- a 0.970594 1944.799
1 1 5 0.500698 1
| . —— = 5 0.968038 1926.357
i > o e o 6 0.643137 1183.428
14 | 3 0.762916 2 7 0.26185 681.174
15 RAND() generates a random 9 0.401607 1 8 0.404865 879.6124
16 number from Uni(0,1) 10 0.937021 3 9 0.642356 1182.382
17 1 0.862141 2 10 0.200953 580.339
18 i 0.890572 2 11 0.297499 734.1966
12 0.858584 1536.989
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Monte Carlo simulation in Matlab

5=200; FMumber of simmlation rounds
=[0.3 0.4 0.2 0.1]; %FMF for x
P=[0.3 0.7 0.9 1]; %CDF for x
X=[0 1 2 3]:; %Possikble walues of =
Sample=zeraos (5,1); %Initialize the =Sample vector
—|for k=1:5;
r=rand; 3%Random number from Uni(0,1)
counter=1; %S5tart looking from the first wvalue of X
=l while (r>P(counter)) %While r iz greater than the CDF at current wvalue of X...
counter=counter+l; %IWe go to the next value of X.
= end EiWhen r is lower than the CDF at the current walue of X...
Sample (k)=X (counter); %We have found the wvalue of X corresponding to T

-end
TrueMean=p+~X"'
SanpleMean=mean (Sample)

,, Aalto University
School of Science 15.1.2019
31



Monte Carlo simulation in Matlab

O Statistics and Machine Learning Toolbox makes it easy to
generate numbers from various distributions

4 E.g.,
— Y=normrnd(mu,sigma,m,n): mxn-array of X~N(mu,sigma)
— Y=betarnd(A,B,m,n): mxn-array of X~Beta(A,B)
— Y=lognrnd(mu,sigma,m,n) : mxn-array of X~LogN(mu,sigma)
— Y=binornd(N,P,m,n): mxn-array of X~Bin(N,P)
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U Probability is the dominant way of capturing uncertainty in decision models

U Well-established computational rules provide means to derive probabilities of
events from those of other events

— Conditional probability, law of total probability, Bayes’ rule

L To support decision making, probabilistic models are often used to compute
performance indices (expected values, probabilities of events, etc.)

U Such indices can easily be computed through Monte Carlo simulation
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