
CSE-C3610
Software Engineering (5 cr)

Agile Software Development

Prof. Casper Lassenius

Slides © Sommerville
unless otherwise stated Casper Lassenius

SoberIT

Agile Development

T-76.3601
Prof. Casper Lassenius

History and Principles of
Agile Development

Agile methods

•  Dissatisfaction with the overheads involved in software
design methods of the 1980s and 1990s led to the
creation of agile methods. These methods:
–  Focus on the code rather than the design
–  Are based on an iterative approach to software development
–  Are intended to deliver working software quickly and evolve this

quickly to meet changing requirements.

•  The aim of agile methods is to reduce overheads in the
software process (e.g. by limiting documentation) and to
be able to respond quickly to changing requirements
without excessive rework.

4

T-76.3601

The Manifesto for
Agile Software Development

“We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have

come to value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation

• Customer collaboration over contract negotiation
• Responding to change over following a plan

• That is, while there is value in the items on the right, we
value the items on the left more.”

Kent Beck et allii

The principles of agile methods
Principle Description

C u s t o m e r
involvement

Customers should be closely involved throughout the development
process. Their role is provide and prioritize new system requirements
and to evaluate the iterations of the system.

I n c r e m e n t a l
development

The software is developed in increments with the customer specifying
the requirements to be included in each increment.

People not process The skills of the development team should be recognized and
exploited. Team members should be left to develop their own ways of
working without prescriptive processes.

Embrace change Expect the system requirements to change and so design the system
to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and in the
development process. Wherever possible, actively work to eliminate
complexity from the system.

Scrum

Scrum

The Sprint cycle

•  Sprints are fixed length, normally 2–4 weeks.

•  The starting point for planning is the product backlog, which is
the list of work to be done on the project.

•  The selection phase involves all of the project team who work
with the customer to select the features and functionality to be
developed during the sprint.

9

T-76.3601

The Sprint cycle

•  Once these are agreed, the team organize themselves to develop the
software.

•  The role of the Scrum master is to guard the process and protect the
development team from external distractions.

•  At the end of the sprint, the work done is reviewed and presented to
stakeholders. The next sprint cycle then begins.

10

T-76.3601

Teamwork in Scrum
•  The ‘Scrum master’ is a facilitator who arranges daily

meetings, tracks the backlog of work to be done, records
decisions, measures progress against the backlog and
communicates with customers and management outside of
the team.

•  The whole team attends short daily (stand-up) meetings
(Scrum meeting) where all team members share
information:
–  1) describe their progress since the last meeting,
–  2) problems that have arisen and
–  3) what is planned for the following day.
–  This means that everyone on the team knows what is going on

and, if problems arise, can re-plan short-term work to cope with
them.

T-76.3601

11

Scrum benefits

•  The product is broken down into a set of manageable
and understandable chunks.

•  Unstable requirements do not hold up progress.
•  The whole team have visibility of everything and

consequently team communication is improved.
•  Customers see on-time delivery of increments and gain

feedback on how the product works.
•  Trust between customers and developers is established

and a positive culture is created in which everyone
expects the project to succeed.

T-76.3601

12

Scrum problems

•  How can product backlog when different size work items
are in the same
–  Small task (individual bugs, simple features)
–  Very large tasks (complete renovation of the products user

interface)

•  Others, see problems with agile methods in general.

T-76.3601

13

eXtreme Programming
XP

Extreme programming

•  Perhaps the best-known and most widely used agile
method.

•  One of few methodologies that actual takes a stand on
software engineering “details”
–  Pair-programming, Test-driven development

•  Extreme Programming (XP) takes an ‘extreme’ approach
to iterative development.
–  New versions may be built several times per day;
–  Increments are delivered to customers every 2 weeks;
–  All tests must be run for every build and the build is only

accepted if tests run successfully.

15

T-76.3601

The Homeground of
Agile Development

Dimensions Affecting Process Model
Selection

Boehm, B. and Turner, R. (2003), IEEE Computer, 36(6), pp 64-69)

Agile method applicability

•  Product development where a software company is
developing a small or medium-sized product for sale.

•  Custom system development, where there is a clear
commitment from the customer to become involved in
the development process and where there are not a lot
of external rules and regulations that affect the software.

•  Because of their focus on small, tightly-integrated
teams, there are problems in scaling agile methods to
large systems
–  Scaling Agile is a hot research topic

19

Problems with agile methods
•  It can be difficult to keep the interest of customers who are

involved in the process.
•  Prioritising changes can be difficult where there are

multiple stakeholders.
•  Over-reliance on automated testing
•  No up-front planning / architectural design -> unsuitable to

complex / large systems
•  Team members may be unsuited to the intense

involvement that characterises agile methods.
•  Contracts may be a problem as with other approaches to

iterative development.

20

T-76.3601

Agility and the Cost of Change

These courseware materials are to be used in conjunction with Software Engineering: A
Practitioner’s Approach. 7/e.
Slides copyright 2009 by Roger Pressman .

Time-boxing
•  Fixing the iteration end date and not allowing it to change

–  1-6 weeks is normal length for a timeboxed iteration
–  3-6 month is usually too long and misses the point and value
–  Shorter steps have lower complexity and risk, better feedback, and

higher productivity and success rates

•  The scope is reduced, rather than slip the iteration end date
–  lower priority requests back on the wish list

•  Should not be used to pressure developers to work long hours to
meet the deadline -> If normal pace of work is insufficient, do less

T-76.3601

22

Impossible to fix all 4 dimensions

•  When plans do not work you have to one of the following
–  Time is extended

•  typical approach
–  Scope is reduced

•  time-boxing / agile approach
–  Quality is reduced

•  usually very bad idea, but still often practiced
–  Resources are added

•  Does not work very well in Software Engineering: “Adding more
people to a project that is late will only increase the delay (Brooks,
Mythical man-month)

•  Software engineering is snow shuffeling

T-76.3601

23

Scaling up to large systems

•  For large systems development, it is not possible to focus only
on the code of the system. You need to do more up-front
design and system documentation

•  Cross-team communication mechanisms have to be designed
and used. This should involve regular phone and video
conferences between team members and frequent, short
electronic meetings where teams update each other on
progress.

•  Continuous integration, where the system is built every time
any developer checks in a change, is practically difficult.
However, it is essential to maintain frequent system builds and
regular releases of the system.

24

T-76.3601

Scaling out to large companies

•  Project managers who do not have experience of agile methods
may be reluctant to accept the risk of a new approach.

•  Large organizations often have quality procedures and standards
that all projects are expected to follow and, because of their
bureaucratic nature, these are likely to be incompatible with agile
methods.

•  Agile methods seem to work best when team members have a
relatively high skill level. However, within large organizations,
there are likely to be a wide range of skills and abilities.

•  There may be cultural resistance to agile methods, especially in
those organizations that have a long history of using
conventional systems engineering processes.

25

T-76.3601

Key points

•  Agile methods are incremental development methods that focus on
rapid development, frequent releases of the software, reducing
process overheads and producing high-quality code. They involve
the customer directly in the development process.

•  The decision on whether to use an agile or a plan-driven approach
to development should depend on the type of software being
developed, the capabilities of the development team and the culture
of the company developing the system.

•  Extreme programming is a well-known agile method that integrates
a range of good programming practices such as frequent releases
of the software, continuous software improvement and customer
participation in the development team.

•  Scaling up to large systems and large organizations is difficult

T-76.3601

26

Questions?

