
16	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

focus

telecommunications, finance, and medical de-
vices. Companies where architectural practices
are well developed often tend to see agile prac-

tices as amateurish, unproven, and limited
to very small Web-based sociotechnical

systems.1

Conversely, proponents of agile
approaches usually see little value
for a system’s customers in the
upfront design and evaluation of
architecture. They perceive soft-
ware architecture as something
from the past, equating it with big
design up-front (BDUF)—a bad

thing—leading to massive documen-
tation and implementation of YAGNI
(you ain’t gonna need it) features.
They believe that architectural de-
sign has little value, that a metaphor
should suffice in most cases,2 and
that the architecture should emerge

gradually sprint after sprint, as a re-
sult of successive small refactoring.

A gile development has significantly impacted industrial software de-
velopment practices. However, despite its wide popularity, there’s
an increasing perplexity about software architecture’s role and
importance in agile approaches. Advocates of architecture’s vi-

tal role in achieving quality goals for large software-intensive systems doubt
the scalability of any development approach that doesn’t pay sufficient atten-
tion to architecture. This especially applies to domains such as automobiles,

Pekka Abrahamsson, University of Helsinki

Muhammad Ali Babar, IT University of Copenhagen

Philippe Kruchten, University of British Columbia

Agility and Architecture:
Can They Coexist?

gue s t e d i t or s ’ i n t r o duc t i on

	 March/April 2010 I E E E S O F T W A R E � 17

Interest is growing in separating the facts
from myths about the necessity, importance, ad-
vantages, and disadvantages of having agile and
architectural approaches coexist, and that’s the
theme of this special issue.

Any debate, discussion, or effort to assess
the necessity of combining agile and architec-
ture should start with questions such as: Are
these views contradictory, opposing, or comple-
mentary? Do the proclaimed dichotomies be-
tween agile and architecture have any truth?
What steps will let project teams benefit from the
best of both by ignoring unnecessary values or
requirements?

Paradox, Oxymoron,
Incompatibility?
Jim Highsmith defines agility as “the ability of
an organization to both create and respond to
change in order to profit in a turbulent business
environment.”3 Sanjiv Augustine notes that ag-
ile development methods such as Extreme Pro-
gramming (XP), scrum, feature-driven develop-
ment, lean, Crystal, and so on have common
characteristics, such as

■■ iterative and incremental life cycles,
■■ focus on small releases,
■■ collocated teams, and
■■ a planning strategy based on a release plan
driven by a feature or product backlog and an
iteration plan handling a task backlog.4

They all also more or less adhere to the values
of the Agile Manifesto (www.agilemanifesto.
org).

The Rational Unified Process (RUP) defines
software architecture as the

set of significant decisions about the organi-
zation of a software system, the selection of
the structural elements and their interfaces
by which the system is composed together
with their behavior as specified in the col-
laboration among those elements, the com-
position of these elements into progressively
larger subsystems, the architectural style that
guides this organization, these elements and
their interfaces, their collaborations, and
their composition. Software architecture is
concerned with not only structure and be-
havior but also usage, functionality, perfor-
mance, resilience, reuse, comprehensibility,
economic and technological constraints and
trade-offs, and aesthetics.5

The tension seems to lie on the axis of adap-
tation versus anticipation. Agile methods want
to be resolutely adaptive: deciding at the “last
responsible moment” or when changes occur.
Agile methods perceive software architecture as
pushing too hard on the anticipation side: plan-
ning too much in advance. Perhaps we can find a
balance between these two extreme approaches
and mind-sets.

False Dichotomies?
When discussing the direction of this special is-
sue, Craig Larman asserted that this tension be-
tween agility and architecture might be a false
dichotomy. Indeed, there are plenty of such ar-
tificial splits. Some are inadvertent; some are
intentional, to prop up a certain message: agile
versus waterfall or agile versus disciplined. Like
many others in software development research
and practice, we strongly believe that a healthy
focus on architecture isn’t antithetic to any ag-
ile process. The tenors of various agile methods
also seem to agree. Along these lines, Satoshi
Basaki noted, “It seems that many agile method
users misunderstand what agile methods are,
just ignore architecture, and jump onto refac-
toring” as the one and only panacea.

There’s also the drive to “deliver value to the
stakeholders” right from the first sprint or itera-
tion. But what if the developers, not just the end
users, are a key class of stakeholders? Alistair
Cockburn developed strategies for starting with
a walking skeleton, then evolving it iteratively.6
Mary and Tom Poppendieck came up with the
notion of “divisible system architecture.”7 And
finally, Kent Beck’s advises that “architecture is
just as important in XP projects as it is in any
software project. Part of the architecture is cap-
tured by the system metaphor [one of the XP
practices].”2

So what issues must we address to begin
reconciliation?

Discovering the Real Issues
There are multiple levels to understanding the ap-
parent conflict between agile development and
architecture: semantics, scope, life cycle, role,
documentation, methods, value, and cost.

Clarifying the Semantics
What does a particular project or organization
mean by architecture? The concept often has
fuzzy boundaries. In particular, not all design is
architecture. Agreeing on a definition is a useful
exercise and a good starting point.

This tension
between

agility and
architecture

might be
a false

dichotomy.

18	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

If the yellow circle in Figure 1a represents all
decisions made for a software system, design de-
cisions (purple) will be a subset, leaving many de-
cisions at the programming level. In turn, a small
subset of these design decisions will be architectur-
ally significant (red). Some decisions are made “up-
stream” in the form of requirements constraints
(green).

Unfortunately, the decision landscape is begin-
ning to look more like Figure 1b, where not much
distinction is left between design and architecture
(purple equals red). Mary Shaw warned us a long
time ago: “Do not dilute the meaning of the term
architecture by applying it to everything in sight.”8
Not all design decisions are architectural. Few are,
actually, and in many projects, they’re already
made on day one.

Context Is Key
How much architectural activity will a project
need? It usually fluctuates widely depending on
the project’s context. By context we mean the
project’s environment—the organization, the

domain, and so on—as well as specific factors
such as project size, stable architecture, business
model, team distribution, rate of change, the sys-
tem’s age, criticality, and governance (see Figure
2). Other influences can include the market situa-
tion, the company’s power and politics, the prod-
uct’s expected life span, product type, organiza-
tional culture, and history.

In an agile project’s “sweet spot,” few archi-
tectural activities might be needed. However,
many large, complicated projects require signifi-
cant architectural effort. For these projects, agile
methods must suit the specific circumstances in-
herent in the development’s context.

Architecture: When in the Life Cycle?
When should we focus on architecture? Well, early
enough, because “architecture encompasses the set
of significant decisions about the structure and be-
havior of the system.”5 These decisions will prove
the hardest to undo, change, and refactor, which
means to not only focus on architecture but also in-
terleave architectural “stories” and functional “sto-
ries” in early iterations.

What’s the Architect’s Role?
Who are the architects? On a large, challeng-
ing, novel system, you might need a good mix of
experience:

■■ architectus reloadus, the maker and keeper of
big decisions, focusing on external coordina-
tion, and

■■ architectus oryzus, mentor, prototyper, and
troubleshooter, concentrating more on code-
facing and focusing on internal coordination,

to follow Martin Fowler’s metaphors.8

Not All Documentation Is Bad
How much of an explicit description of the archi-
tecture does the project need? In most cases, an
architectural prototype will suffice, starting with
a walking skeleton along with a small number of
solid metaphors to convey the message. But some
circumstances require more explicit software archi-
tecture documentation—for example, to communi-
cate to a large audience or to comply with external
regulations.

There’s a Method to It
How do we identify and resolve architectural
issues? Although we’ve shown that some agile
methods aren’t opposed to the concept of archi-
tecture, they’re all rather silent on how to identify

Software
architecture Software

design

Code,
and so on

Requirements

Decisions

Design decisions

Architectural
decisions

Requirements
constraints

(a)

(b)

Figure 1. Reality
vs. perception.
(a) While programmers
make a great deal
of design decisions
when developing a
software system, only
few are architecturally
significant. (b) Most
design decisions,
even minor ones, are
perceived as having an
impact on the software
architecture.

	 March/April 2010 I E E E S O F T W A R E � 19

architecturally significant requirements, perform
incremental architectural design, validate archi-
tectural features, and so on. Architectural meth-
ods exist (see the “Related Work” sidebar for a
quick inventory) but aren’t well known.

Architecture Has Value
What’s the cost of architecture anyhow? All agile
approaches strive to deliver business value early
and often. The problem often seems that whereas
the architecture’s cost is somewhat visible, its
value is hard to grasp, because it remains invis-
ible. An approach such as incremental funding2
might let us find the right compromise between
architecture and functionality, without falling
into the trap of BDUF.

Bridging the Gap—
Leaders and Supporters
On the basis of our observations, experiences,
ongoing field studies, and the articles in this
special issue, we conclude that emphasis has
increased on software architects’ vital role and
responsibilities in successfully combining agile
and architectural methodologies. Software ar-
chitects are expected to facilitate software devel-
opment projects as well as represent the overall
system’s quality attributes. How should software
architects’ roles change? Or what new responsi-
bilities should they take? We already know that
architects can be quite satisfied with agile devel-
opment. Kati Vilkki surveyed more than 2,400
developers, testers, architects, and managers at
Nokia Siemens Networks. She concluded that
more than 70 percent of the architects were ei-
ther satisfied or very satisfied when considering
agile development’s impact on their work.9 One
reason might be the improved feedback cycle and
their new role closer to the actual development.

It’s also becoming clear that software de-
velopers are equally important in successfully
combining agile and architecture approaches
because it’s up to the development team how
to use various architectural artifacts and docu-
ments. So, we need to know agile software de-
velopers’ perceptions of software architecture’s
relevance and usefulness in their daily activities.
It’s also important to understand what agile de-
velopers think about combining architectural
principles and agile approaches in development
projects. One way is to find out how agile teams
use software architecture. If agile developers
don’t consider software architecture relevant to
their day-to-day activities, it would be difficult,
even impossible, to convince them to use archi-

tectural principles and integrate artifacts in agile
development.

The Articles in This Issue
Contrary to the perception that architecture
is less relevant to agile developers, Davide Fa-
lessi, Giovanni Cantone, and Salvatore Alessan-
dro Sarcia’ found that agile developers perceive
software architecture as relevant on the basis
of aspects such as communication among team
members, inputs to subsequent design decisions,
documenting design assumptions, and evaluating
design alternatives. These findings are consistent
with other reports that agile teams tend to have
some sort of architectural documentation.10

Falessi’s results also suggest that agile develop-
ers usually focus on software architecture while
working on complex software systems that can be
characterized by geographical distributed develop-
ment, many stakeholders, or many requirements
or LOC. This is in line with the common observa-
tion that as software complexities increase, so too
does the relevance and importance of software ar-
chitecture and its related documents.

Each development approach is usually based
on some fundamental requirements. From the
outset, agile values appear to contradict good
architectural practices. Any attempt to combine
agile and architecture approaches must consider
the potential value clash that development teams
might perceive. Falessi and his colleagues con-
cluded that the respondents in their study found
that agile values and architectural principles sup-
port each other.

Timeliness is vital for architectural deci-
sions because they can prove difficult or costly
to change. So, architects working with agile or
nonagile teams must know the most appropriate
time for key architectural decisions. Making such

Size

Context
Rate of
change

Age of
system

Governance

Criticality

Stable
architecture

Business
model

Team
distribution

Figure 2. Some factors
making up a project’s
context. Like other
software design
and implementation
activities, the project’s
context, including
the customer, needs
to drive the project’s
architectural activities.

20	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

decisions too early can constrain development
teams in general and agile development teams in
particular. Waiting too long to take care of archi-
tecturally significant decisions can put the whole
project in chaos. To help stakeholders make timely
decisions, Stuart Blair, Tim Cull, and Richard
Watt present an approach called responsibility-
driven architecture that exploits concepts of the
real options theory. A simple spreadsheet-based
tool and a responsible, accountable, consulted,
and informed (RACI) matrix support their ap-
proach to track stakeholders’ decision-making
and responsibilities.

User stories in agile development relate pri-
marily to functional requirements; this means
that nonfunctional requirements can sometimes
get completely ignored. Unfulfilled nonfunctional
requirements can make an otherwise fully func-
tioning system useless or risky. A main objective
of integrating architectural approaches in ag-
ile processes is to enable software development

teams to pay attention to both functional and
nonfunctional requirements. Roland Faber, in
“Architects as Service Providers,” proposes that
architecture should represent nonfunctional re-
quirements. He presents an architectural process
in the context of agile projects that exploits well-
known architectural concepts and principles. He
also provides advice on tailoring scrum to incor-
porate the concept of architecture as a service
and facilitating communication between archi-
tecture and development teams.

This special issue closes with an article by
James Madison, who advocates the coexistence
of agile and architecture as complementary ap-
proaches and principles. He emphasizes the
software architect’s vital role as a linchpin for
combining the two. Madison’s approach, called
agile architecture, advocates using agile to get
to a good architecture by appropriately applying
suitable combinations of architectural functions
(such as communication, quality attributes, and

Related Work on Software Architecture
Agile followers and critics are familiar with the literature
on the Agile Manifesto, its principles, and its approaches.
We assume that readers of this special issue might want to
know about the sources of literature on software architec-
ture methods, approaches, and tools that they can access
or customize to integrate into agile processes and practices.
We have space to describe only a few sources of literature
on software architecture design, documentation, and review
phases, but these sources can direct readers to more books
and papers on the topic.

The software architecture community has developed vari-
ous methods and techniques to design software architecture.
For example, Jan Bosch proposes a method that explicitly
considers nonfunctional requirements during design.1 Chris-
tine Hofmeister and her colleagues propose a framework
and global analysis to identify, accommodate, and describe
architecturally significant factors including quality attributes
early during design.2 Lawrence Chung and his colleagues
provide a framework to systematically deal with nonfunc-
tional requirements during design.3 The Software Engineer-
ing Institute’s software architecture group has developed
methods to support architectural design including attribute-
driven design4 and attribute-based architecture styles.5
Some quality attribute communities have developed different
methods to support systematic reasoning about their respec-
tive quality attributes—for example, real time,6 reliability,7
and performance8—during software architecture design and
review.

Architecture is a vehicle for communication among stake-
holders, so it should be described unambiguously and in

sufficient detail to provide relevant information to each type
of stakeholder.9 An important issue is to choose a suitable
approach that can serve the main goals of documenting
architectures, such as communication, analysis, implemen-
tation, and maintenance. One recommended practice is to
use various architectural views.10–12 A suitable architectural
description language (ADL) is also required to describe the
architectural decisions. There are many ADLs,13 including the
Unified Modeling Language,14 that can describe software
architecture. ADLs are usually supported by a proprietary
or research tool that practitioners can evaluate for suitability
and customization for use with agile approaches.

Architecture reviews are an effective way to identify po-
tential risks and questionable design decisions early in the
software development life cycle. Some well-known architec-
ture review methods include the Scenario-based Architecture
Analysis Method (SAAM),15 Architecture-Level Modifiability
Analysis (ALMA),16 Architecture trade-off analysis,15 and the
performance analysis of software architecture.17 Apart from
technical decisions, architecture reviews also involve several
kinds of nontechnical decisions such as whom to involve,
how to select evaluators, how to fund a review, and other
organizational and managerial factors. Some researchers
and practitioners have provided guidelines and heuristics for
dealing with these aspects of the reviews.18–20

There’s an increasing body of knowledge on software ar-
chitecture research and practice published in books, journal
articles, and conference papers. As an additional source,
IEEE Software published two special issues on software ar-
chitecture, one in November 1995, which offers traditional

	 March/April 2010 I E E E S O F T W A R E � 21

design patterns) and architectural skills at four
points (up-front planning, storyboarding, sprint,
and working software) in the development life
cycle. Madison provides several examples from
successful applications of agile architecture to 14
projects in various domains.

S o, what does this special issue offer for
those interested in designing and deploy-
ing agile processes engrained with sound

architectural principles and practices?

■■ Understand the context. There’s a vast array
of software development situations, and al-
though “out of the box” agile practices ad-
dress many of these, there are outliers that we
need to understand. What’s the system’s size,
domain, and age? What’s the business model
and the degree of novelty and hence of risk?
How critical is the system? How many par-

ties will be involved?
■■ Clearly define the architecture: its scope and
the architect’s role and responsibility. Don’t
assume a tacit, implicit understanding.11

■■ Define an architecture owner, just as you de-
fine a product owner and project leader. But
don’t let the architects lock themselves in an
ivory tower, polishing the ultimate architec-
ture for an improbable future system. Archi-
tects are part of the development group.

■■ Exploit architecture to better communicate
and coordinate among various parties, par-
ticularly multiple distributed teams, if any.
Define how to represent the architecture, on
the basis of various parties’ need to know.

■■ Use important, critical, and valuable func-
tionality to identify and assess architectural
issues. Understand interdependencies be-
tween technical architectural issues and vis-
ible user functionality to weave them appro-
priately over time (the zipper metaphor).

perspectives on aspects of software architecture, and an-
other in March/April 2006, which includes key references to
software architecture literature. Other special issues of IEEE
Software have included references to more specialized top-
ics in software architecture—for example, the special issue
on design patterns (July/August 2007) and the special sec-
tion on capturing design knowledge (March/April 2009). To
bridge the community and build up cumulative learning, we
maintain a Wikipedia site for agile- and architecture-related
resources at www.acube-community.org/wikis/index.php/
Architecture-Centric_Methods_and_Agile_Approaches.

IEEE Software recently cosponsored the Software Archi-
tecture Challenges in the 21st Century workshop (http://
computingnow.computer.org/sac21). Hakan Erdogmus
briefed us on its outcomes and proposed that “every
software-intensive system has an architecture at its soul, re-
gardless of the process used to develop the system.”21 His
forecast, based on workshop presentations, was to “give
the software architecture a pivotal role in the development
process, at least a role that’s much more essential than is or-
dinarily granted in the mainstream agile [software develop-
ment approaches].”21

References
	 1.	 J. Bosch, Design and Use of Software Architectures: Adopting and Evolv-

ing a Product-Line Approach, Addison-Wesley, 2000.
	 2.	 C. Hofmeister, R.L. Nord, and D. Soni, Applied Software Architecture,

Addison-Wesley, 2000.
	 3.	 L. Chung et al., Non-functional Requirements in Software Engineering,

Kluwer Academic Publishers, 1999.
	 4.	 L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,

2nd ed., Addison-Wesley, 2003.
	 5.	 M.H. Klein and R. Kazman, Attribute-Based Architectural Styles, tech.

report CMU/SEI-99-TR-022, Software Eng. Inst., Carnegie Mellon Univ.,
1999.

	 6.	 M.H. Klein et al., A Practitioner’s Handbook for Real-Time Analysis: Guide
to Rate Monotonic Analysis for Real-Time Systems, Kluwer Academic
Publishers, 1993.

	 7.	 M.R. Lyu, Handbook of Software Reliability Engineering, McGraw-Hill
and IEEE CS Press, 1996.

	 8.	 C.U. Smith and L.G. Williams, “Software Performance Engineering: A
Case Study Including Performance Comparison with Design Alterna-
tives,” IEEE Trans. Software Eng., vol. 19, no. 7, 1993, pp. 720–741.

	 9.	 P. Clements et al., Documenting Software Architectures: Views and
Beyond, Addison-Wesley, 2002.

	10.	 IEEE Std. 1471-2000, Recommended Practices for Architecture Description
of Software-Intensive Systems, IEEE, 2000.

	11.	 P. Kruchten, “Architectural Blueprints—the ‘4+1’ View Model of Software
Architecture,” IEEE Software, vol. 12, no. 6, 1995, pp. 42–50.

	12.	 N. Rozanski and E. Woods, Software Systems Architecture, Addison-
Wesley, 2005.

	13.	 N. Medvidovic and R.N. Taylor, “A Classification and Comparison
Framework for Software Architecture Description Languages,” IEEE
Trans. Software Eng., vol. 26, no. 1, 2000, pp. 70–93.

	14.	 M. Fowler, UML Distilled, 3rd ed., Addison-Wesley, 2004.
	15.	 P. Clements, R. Kazman, and M. Klein, Evaluating Software Architectures:

Methods and Case Studies, Addison-Wesley, 2002.
	16.	 P. Bengtsson et al., “Architecture-Level Modifiability Analysis (ALMA),” J.

Systems and Software, vol. 69, nos. 1–2, 2004, pp. 129–147.
	17.	 L.G. Williams and C.U. Smith, “PASA: A Method for the Performance

Assessment of Software Architecture,” Proc. 3rd Int’l Workshop Software
and Performance, ACM Press, 2002, pp. 179–189.

	18.	 M. Ali-Babar and I. Gorton, “Software Architecture Reviews: The State of
the Practice,” Computer, vol. 42, no. 7, 2009, pp. 26–32.

	19.	 R. Kazman and L. Bass, “Making Architecture Reviews Work in the Real
World,” IEEE Software, vol. 19, no. 1, 2002, pp. 67–73.

	20.	 J.F. Maranzano et al., “Architecture Reviews: Practice and Experience,”
IEEE Software, vol. 22, no. 2, 2005, pp. 34–43.

	21.	 H. Erdogmus, “Architecture Meets Agility,” IEEE Software, vol. 26, no. 5,
2009, pp. 2–4.

22	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

■■ Understand when it’s appropriate to freeze
the architecture to provide developers the
necessary stability to finish a product release,
and what amount of technical debt will then
accumulate.

■■ Keep track of unresolved architectural issues,
either in the backlog or in the risks. Defer-
ring decisions to the last responsible moment
doesn’t mean ignoring them but can add risks
that must be managed like other risks in the
project.

In a large software organization, implement-
ing agile approaches isn’t a straightforward adop-
tion problem. Most likely, it will take several
years to shorten the feedback cycles to benefit
from the adaptability and earlier value-creation
opportunities. Failure is a natural part of process
improvement. We believe that stories and studies
of failure often shed more light than those of suc-
cess. We encourage practitioners and researchers
to publish these more actively to stimulate discus-
sion and increase learning in the community.

References
	 1.	 P. Kruchten, “Voyage in the Agile Memeplex: Agility,

Agilese, Agilitis, Agilology,” ACM Queue, vol. 5, no. 5,
2007, pp. 38–44.

	 2.	 K. Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, 2000.

	 3.	 J.A. Highsmith, Agile Software Development Ecosys-
tems, Addison-Wesley, 2002.

	 4.	 S. Augustine, Managing Agile Projects, Prentice Hall,
2005.

	 5.	 P. Kruchten, The Rational Unified Process—an Intro-
duction, 1st ed., Addison-Wesley, 1998.

	 6.	 A. Cockburn, Crystal Clear: A Human-Powered Meth-
odology for Small Teams, Addison-Wesley, 2004.

	 7.	 M. Poppendieck and T. Poppendieck, Implementing
Lean Software Development: From Concept to Cash,
Addison-Wesley, 2007

	 8.	 D. Garlan, “1st Int’l Workshop on Architectures for
Software Systems Workshop Summary,” Software Eng.
Notes, vol. 20, no. 3, 1995, pp. 84–89.

	 9.	 K. Vilkki, “Impact of Agile Transformation,” Flexi
Newsletter, vol. 2, no. 1, 2008, pp. 5–6.

	10.	 M. Ali-Babar, T. Iheme, and M. Pikkarainen, “An
Industrial Case of Exploiting Product Line Architec-
tures in Agile Software Development,” Proc. 13th Int’l
Software Product Line Conf. (SPLC 09), Carnegie Mel-
lon Univ., 2009, pp. 171-180.

	11.	 P. Kruchten, “The Software Architect, and the Soft-
ware Architecture Team,” Software Architecture, P.
Donohue, ed., Kluwer Academic Publishers, 1999, pp.
565–583.

About the Authors
Pekka Abrahamsson is a professor of computer science at the University of
Helsinki. He’s been an active member of the agile community since 2002. His current
responsibilities include managing a Flexi-ITEA2 research project, which involves 35
organizations from seven European countries. The project aims to develop agile approaches
in the domain of global, large, and complex embedded-systems development. Abrahamsson
has a PhD in software engineering from the University of Oulu. He is a member of the IEEE
Software Advisory Board. Contact him at pekka.abrahamsson@cs.helsinki.fi.

Muhammad Ali Babar is an associate professor at the IT University of Copenha-
gen. His research interests include software architecture, agile approaches, and global soft-
ware development. Ali has a PhD in computer science and engineering from the University of
New South Wales. Contact him at malibaba@itu.dk.

Philippe Kruchten is a professor of software engineering at the University of
British Columbia. He’s a founding member of the International Federation for Information
Processing Working Group 2.10 on Software Architecture, and the cofounder and chair of
Agile Vancouver. In a previous life he led the development of the Rational Unified Process,
which was more agile in its intent than practitioners have made of it, and which embodied
an architectural method. Kruchten has a PhD in information systems from Ecole Nationale
Superieure des Télécommunications. He is a member of the IEEE Software Editorial Board.
Contact him at pbk@ece.ubc.ca.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

LISTEN TO GRADY BOOCH
“On Architecture”

podcast available at http://computingnow.computer.org

