
T-76.3601 Introduction to Software
Engineering (5 cr) –
System Modeling (chap 5.)

ESPA
SoberIT

Topics covered

² Context models

²  Interaction models

² Structural models

² Behavioral models

² Model-driven engineering

2

Chapter 5 System modeling

System modeling

² System modeling is the process of developing abstract
models of a system, with each model presenting a
different view or perspective of that system.

² System modeling has now come to mean representing a
system using some kind of graphical notation, which is
now almost always based on notations in the Unified
Modeling Language (UML).

² Different models can be overlapping
§  Different diagrams can be used to represent similar behavior

3

Chapter 5 System modeling

Existing and planned system models

² Models of the existing system are used during requirements
engineering.
§  They help clarify what the existing system does and can be used as a

basis for discussing its strengths and weaknesses. These then lead to
requirements for the new system.

² Models of the new system are used during requirements
engineering to help explain the proposed requirements to
other system stakeholders. Engineers use these models to
discuss design proposals and to document the system for
implementation.

²  In a model-driven engineering process, it is possible to
generate a complete or partial system implementation from
the system model.

4

Chapter 5 System modeling

System perspectives

² An external perspective, where you model the context or
environment of the system.

² An interaction perspective, where you model the
interactions between a system and its environment, or
between the components of a system.

² A structural perspective, where you model the
organization of a system or the structure of the data that is
processed by the system.

² A behavioral perspective, where you model the dynamic
behavior of the system and how it responds to events.

5

Chapter 5 System modeling

UML diagram types

² Activity diagrams, which show the activities involved in a
process or in data processing .

² Use case diagrams, which show the interactions between
a system and its environment.

² Sequence diagrams, which show interactions between
actors and the system and between system components.

² Class diagrams, which show the object classes in the
system and the associations between these classes.

² State diagrams, which show how the system reacts to
internal and external events.

6

Chapter 5 System modeling

Use of graphical models

² As a means of facilitating discussion about an existing or
proposed system
§  Incomplete and incorrect models are OK as their role is to support

discussion.

² As a way of documenting an existing system
§  Models should be an correct representation of the system but

need not be complete.

² As a detailed system description that can be used to
generate a system implementation
§  Models have to be both correct and complete.

7

Chapter 5 System modeling

Context models are used to illustrate the
operational context of a system
The context of the MHC-PMS (page 122)

8

Chapter 5 System modeling

System boundaries

² System boundaries are established to define what is
inside and what is outside the system.
§  They show other systems that are used or depend on the system

being developed.

² The position of the system boundary has a profound effect
on the system requirements.

² Social and organisational concerns may affect the
decision on where to position system boundaries.

² Defining a system boundary is a political judgment
§  There may be pressures to develop system boundaries that

increase / decrease the influence or workload of different parts of
an organization.

9

Chapter 5 System modeling

Process perspective
² Context models simply show the other systems in the

environment, not how the system being developed is used
in that environment.

² Process models reveal how the system being developed
is used in broader business processes.

² UML activity diagrams may be used to define business
process models.

² Business process models describe both human and
automated processes

10

Chapter 5 System modeling

Process model of involuntary detention (page
123)

11

Chapter 5 System modeling

Interaction models

² Modeling user interaction is important as it helps to
identify user requirements.

² Modeling system-to-system interaction highlights the
communication problems that may arise.

² Modeling component interaction helps us understand if a
proposed system structure is likely to deliver the required
system performance and dependability.

² Use case diagrams and sequence diagrams may be used
for interaction modelling.

12

Chapter 5 System modeling

Use case modeling

² Use cases were developed originally to support
requirements elicitation and now incorporated into the
UML.

² Each use case represents a discrete task that involves
external interaction with a system.

² Actors in a use case may be people or other systems.

² Represented graphically to provide an overview of the use
case and in a more detailed textual form.

13

Chapter 5 System modeling

Transfer-data use case

² A use case in the MHC-PMS

14

Chapter 5 System modeling

Tabular description of the ‘Transfer data’
use-case

MHC-PMS: Transfer data

Actors Medical receptionist, patient records system (PRS)

Description A receptionist may transfer data from the MHC-PMS to
a general patient record database that is maintained by
a health authority. The information transferred may
either be updated personal information (address, phone
number, etc.) or a summary of the patient’s diagnosis
and treatment.

Data Patient’s personal information, treatment summary

Stimulus User command issued by medical receptionist

Response Confirmation that PRS has been updated

Comments The receptionist must have appropriate security
permissions to access the patient information and the
PRS.

15

Use cases in the MHC-PMS involving the
role ‘Medical Receptionist’ (page 126)

16

Chapter 5 System modeling

Sequence diagrams

² Sequence diagrams are part of the UML and are used to
model the interactions between the actors and the objects
within a system.

² A sequence diagram shows the sequence of interactions
that take place during a particular use case or use case
instance.

² The objects and actors involved are listed along the top of
the diagram, with a dotted line drawn vertically from these.

²  Interactions between objects are indicated by annotated
arrows.

17

Chapter 5 System modeling

Sequence diagram for View patient
information (page 127)

18

Chapter 5 System modeling

Sequence diagram for Transfer Data (page 128)

19

Chapter 5 System modeling

Bugs, ambiguities, questions (pair-up 5min)?

20

Chapter 5 System modeling

Structural models of software display the
organization of a system in terms of the
components that make up that system and
their relationships.

21

Chapter 5 System modeling

Class diagrams
² Class diagrams are used when developing an object-

oriented system model to show the classes in a system
and the associations between these classes.

² An association is a link between classes that indicates
that there is some relationship between these classes.

² An object class can be thought of as a general definition
of one kind of system object.

² When you are developing models during the early stages
of the software engineering process, objects represent
something in the real world, such as a patient, a
prescription, doctor, etc.

22

Chapter 5 System modeling

UML classes and association

23

Chapter 5 System modeling

Classes and associations in the MHC-
PMS (page 130)

24

Chapter 5 System modeling

Bugs, questions, bad design (pair-up 5min)?

25

Chapter 5 System modeling

The Consultation class in more detail (page
131)

26

Chapter 5 System modeling

Key points
²  A model is an abstract view of a system that ignores system details.

Complementary system models can be developed to show the
system’s context, interactions, structure and behavior.

²  Context models show how a system that is being modeled is
positioned in an environment with other systems and processes.

²  Use case diagrams and sequence diagrams are used to describe the
interactions between users and systems in the system being
designed. Use cases describe interactions between a system and
external actors; sequence diagrams add more information to these by
showing interactions between system objects.

²  Structural models show the organization and architecture of a system.
Class diagrams are used to define the static structure of classes in a
system and their associations.

Chapter 5 System modeling

27

Chapter 5 – System Modeling

Lecture 2

28

Chapter 5 System modeling

Generalization >= Inheritance

² Covered in T-106.1240/3, Ohjelmoinnin jatkokurssi T/L1

² Generalization is an everyday technique that we use to
manage complexity.

² Rather than learn the detailed characteristics of every
entity that we experience, we place these entities in more
general classes (animals, cars, houses, etc.) and learn the
characteristics of these classes.

² This allows us to infer that different members of these
classes have some common characteristics e.g.
mammals, plants, “carbon-based systems”

Chapter 5 System modeling

29

A generalization hierarchy (page 132)

30

Chapter 5 System modeling

Generalization

²  In modeling systems, it is often useful to examine the classes in a
system to see if there is scope for generalization. If changes are
proposed, then you do not have to look at all classes in the system
to see if they are affected by the change.

²  In object-oriented languages, such as Java, generalization is
implemented using the class inheritance mechanisms built into the
language.

²  In a generalization, the attributes and operations associated with
higher-level classes are also associated with the lower-level
classes.

²  The lower-level classes are subclasses inherit the attributes and
operations from their superclasses. These lower-level classes then
add more specific attributes and operations.

Chapter 5 System modeling

31

A generalization hierarchy with added
detail

32

Chapter 5 System modeling

Object class aggregation models

² An aggregation model shows how classes that are
collections are composed of other classes.

² Aggregation models are similar to the part-of relationship
in semantic data models.

33

Chapter 5 System modeling

The aggregation association

34

Chapter 5 System modeling

Behavioral models
² Behavioral models are models of the dynamic

behavior of a system as it is executing. They
show what happens or what is supposed to
happen when a system responds to a stimulus
from its environment.
§  Like interaction models, but more details of the system

internals

² You can think of these stimuli as being of two
types:
§  Data Some data arrives that has to be processed by the

system.
§  Events Some event happens that triggers system

processing. Events may have associated data, although
this is not always the case.

35

Chapter 5 System modeling

Data-driven modeling

² Many business systems are data-processing
systems that are primarily driven by data. They
are controlled by the data input to the system,
with relatively little external event processing.

² Data-driven models show the sequence of
actions involved in processing input data and
generating an associated output.

36

Chapter 5 System modeling

An activity model of the insulin pump’s
operation

37

Chapter 5 System modeling

Order processing

38

Chapter 5 System modeling

State machine models

² Course T-79.1001 covers ”state automata” in more detail
² These model the behaviour of the system in response to

external and internal events.
² They show the system’s responses to stimuli so are often

used for modelling real-time / embeded systems.
§  Machine to sell train tickets, Automatic Teller Machine (ATM)

² State machine models show system states as nodes and
events as arcs between these nodes. When an event
occurs, the system moves from one state to another.

² Statecharts are an integral part of the UML and are used
to represent state machine models.

39

Chapter 5 System modeling

State diagram of a microwave oven

40

Chapter 5 System modeling

States and stimuli for the microwave
oven (a)

State Description
Waiting The oven is waiting for input. The display shows the current time.

Half power The oven power is set to 300 watts. The display shows ‘Half power’.

Full power The oven power is set to 600 watts. The display shows ‘Full power’.

Set time The cooking time is set to the user’s input value. The display shows
the cooking time selected and is updated as the time is set.

Disabled Oven operation is disabled for safety. Interior oven light is on.
Display shows ‘Not ready’.

Enabled Oven operation is enabled. Interior oven light is off. Display shows
‘Ready to cook’.

Operation Oven in operation. Interior oven light is on. Display shows the timer
countdown. On completion of cooking, the buzzer is sounded for five
seconds. Oven light is on. Display shows ‘Cooking complete’ while
buzzer is sounding.

41

Chapter 5 System modeling

States and stimuli for the microwave
oven (b)

Stimulus Description
Half power The user has pressed the half-power button.

Full power The user has pressed the full-power button.

Timer The user has pressed one of the timer buttons.

Number The user has pressed a numeric key.

Door open The oven door switch is not closed.

Door closed The oven door switch is closed.

Start The user has pressed the Start button.

Cancel The user has pressed the Cancel button.

42

Chapter 5 System modeling

Operation state’s sub state machine

43

Chapter 5 System modeling

Model-driven engineering
(MDE)

² Model-driven engineering (MDE) is an approach to
software development where models rather than
programs are the principal outputs of the development
process.

² The programs that execute on a hardware/software
platform are then generated automatically from the
models.

² Proponents of MDE argue that this raises the level of
abstraction in software engineering so that engineers no
longer have to be concerned with programming language
details or the specifics of execution platforms.

Chapter 5 System modeling

44

Usage of model-driven engineering
² Model-driven engineering is still at an early stage of

development, and it is unclear whether or not it will have a
significant effect on software engineering practice.

² Pros
§  Allows systems to be considered at higher levels of abstraction
§  Generating code automatically means that it is cheaper to adapt

systems to new platforms.
§  Less trivial programming mistakes

² Cons
§  Models for abstraction and not necessarily right for implementation.
§  Savings from generating code may be outweighed by the costs of

developing translators for new platforms.
§  Models need to be very detailed

Chapter 5 System modeling

45

Types of models needed in MDE

² A computation independent model (CIM)
§  These model the important domain abstractions used in a system.

CIMs are sometimes called domain models.

² A platform independent model (PIM)
§  These model the operation of the system without reference to its

implementation. The PIM is usually described using UML models
that show the static system structure and how it responds to
external and internal events.

² Platform specific models (PSM)
§  These are transformations of the platform-independent model with

a separate PSM for each application platform. In principle, there
may be layers of PSM, with each layer adding some platform-
specific detail.

Chapter 5 System modeling

46

MDA transformations

47

Chapter 5 System modeling

Multiple platform-specific models

48

Chapter 5 System modeling

Executable UML

² The fundamental notion behind model-driven engineering
is that completely automated transformation of models to
code should be possible.

² This is possible using a subset of UML 2, called
Executable UML or xUML.

Chapter 5 System modeling

49

Features of executable UML

² To create an executable subset of UML, the number of
model types has therefore been dramatically reduced to
these 3 key types:
§  Domain models that identify the principal concerns in a system.

They are defined using UML class diagrams and include objects,
attributes and associations.

§  Class models in which classes are defined, along with their
attributes and operations.

§  State models in which a state diagram is associated with each
class and is used to describe the life cycle of the class.

² The dynamic behavior of the system may be specified
declaratively using the object constraint language (OCL),
or may be expressed using UML’s action language.

Chapter 5 System modeling

50

Key points
² Behavioral models are used to describe the dynamic behavior

of an executing system. This behavior can be modeled from the
perspective of the data processed by the system, or by the
events that stimulate responses from a system.

² Activity diagrams may be used to model the processing of data,
where each activity represents one process step.

² State diagrams are used to model a system’s behavior in
response to internal or external events.

² Model-driven engineering is an approach to software
development in which a system is represented as a set of
models that can be automatically transformed to executable
code.

Chapter 5 System modeling

51

Chapter 7 – Design and Implementation

Lecture 1

52

Chapter 7 Design and
implementation

Topics covered

² Object-oriented design using the UML

² Design patterns

²  Implementation issues

² Open source development

53

Chapter 7 Design and
implementation

Design and implementation

² Software design and implementation is the stage in the
software engineering process at which an executable
software system is developed.

² Software design and implementation activities are
invariably inter-leaved.
§  Software design is a creative activity in which you identify software

components and their relationships, based on a customer’s
requirements.

§  Implementation is the process of realizing the design as a
program.

54

Chapter 7 Design and
implementation

Build or buy

²  In a wide range of domains, it is now possible to buy off-
the-shelf systems (COTS) that can be adapted and
tailored to the users’ requirements.
§  For example, if you want to implement a medical records system,

you can buy a package that is already used in hospitals. It can be
cheaper and faster to use this approach rather than developing a
system in a conventional programming language.

² When you develop an application in this way, the design
process becomes concerned with how to use the
configuration features of that system to deliver the system
requirements.

55

Chapter 7 Design and
implementation

An object-oriented design process

² Structured object-oriented design processes involve
developing a number of different system models.

² They require a lot of effort for development and
maintenance of these models and, for small systems, this
may not be cost-effective.

² However, for large systems developed by different groups
design models are an important communication
mechanism.

56

Chapter 7 Design and
implementation

Process stages

² There are a variety of different object-oriented design
processes that depend on the organization using the
process.

² Common activities in these processes include:
§  Define the context and modes of use of the system;
§  Design the system architecture;
§  Identify the principal system objects;
§  Develop design models;
§  Specify object interfaces.

² Process illustrated here using a design for a wilderness
weather station.

57

Chapter 7 Design and
implementation

System context and interactions

² Understanding the relationships between the software
that is being designed and its external environment is
essential for deciding how to provide the required system
functionality and how to structure the system to
communicate with its environment.

² Understanding of the context also lets you establish the
boundaries of the system. Setting the system boundaries
helps you decide what features are implemented in the
system being designed and what features are in other
associated systems.

58

Chapter 7 Design and
implementation

Context and interaction models

² A system context model is a structural model that
demonstrates the other systems in the environment of the
system being developed.

² An interaction model is a dynamic model that shows how
the system interacts with its environment as it is used.

59

Chapter 7 Design and
implementation

60

Chapter 7 Design and
implementation

Shutdown

Report
weather

Restart

Report status

Reconfigure

Weather
information

system

Control
system Powersave

Remote
control

61

Chapter 7 Design and
implementation

Use case description—Report weather

System Weather station

Use case Report weather

Actors Weather information system, Weather station

Description The weather station sends a summary of the weather data that has
been collected from the instruments in the collection period to the
weather information system. The data sent are the maximum, minimum,
and average ground and air temperatures; the maximum, minimum, and
average air pressures; the maximum, minimum, and average wind
speeds; the total rainfall; and the wind direction as sampled at five-
minute intervals.

Stimulus The weather information system establishes a satellite communication
link with the weather station and requests transmission of the data.

Response The summarized data is sent to the weather information system.

Comments Weather stations are usually asked to report once per hour but this
frequency may differ from one station to another and may be modified in
the future.

62

Chapter 7 Design and
implementation

Architectural design

² Once interactions between the system and its
environment have been understood, you use this
information for designing the system architecture.

² You identify the major components that make up the
system and their interactions, and then may organize the
components using an architectural pattern such as a
layered or client-server model.

² The weather station is composed of independent
subsystems that communicate by broadcasting messages
on a common infrastructure.

63

Chapter 7 Design and
implementation

High-level architecture of the weather
station

64

Chapter 7 Design and
implementation

Architecture of data collection system

65

Chapter 7 Design and
implementation

Object class identification

²  Identifying object classes is toften a difficult part of object
oriented design.

² There is no 'magic formula' for object identification. It
relies on the skill, experience
and domain knowledge of system designers.

² Object identification is an iterative process. You are
unlikely to get it right first time.

66

Chapter 7 Design and
implementation

Approaches to identification

² Use a grammatical approach based on a natural
language description of the system (used in Hood OOD
method).

² Base the identification on tangible things in the
application domain.

² Use a behavioural approach and identify objects based
on what participates in what behaviour.

² Use a scenario-based analysis. The objects, attributes
and methods in each scenario are identified.

67

Chapter 7 Design and
implementation

Weather station description

A weather station is a package of software controlled
instruments which collects data, performs some data
processing and transmits this data for further processing.
The instruments include air and ground thermometers, an
anemometer, a wind vane, a barometer and a rain gauge.
Data is collected periodically.

When a command is issued to transmit the weather data,
the weather station processes and summarises the collected
data. The summarised data is transmitted to the mapping
computer when a request is received.

68

Chapter 7 Design and
implementation

Weather station object classes

² Object class identification in the weather station system
may be based on the tangible hardware and data in the
system:
§  Ground thermometer, Anemometer, Barometer

•  Application domain objects that are ‘hardware’ objects related to the
instruments in the system.

§  Weather station
•  The basic interface of the weather station to its environment. It

therefore reflects the interactions identified in the use-case model.
§  Weather data

•  Encapsulates the summarized data from the instruments.

69

Chapter 7 Design and
implementation

Weather station object classes

70

Chapter 7 Design and
implementation

Design models

² Design models show the objects and object classes and
relationships between these entities.

² Static models describe the static structure of the system in
terms of object classes and relationships.

² Dynamic models describe the dynamic interactions
between objects.

71

Chapter 7 Design and
implementation

Examples of design models

² Subsystem models that show logical groupings of
objects into coherent subsystems.

² Sequence models that show the sequence of object
interactions.

² State machine models that show how individual objects
change their state in response to events.

² Other models include use-case models, aggregation
models, generalisation models, etc.

72

Chapter 7 Design and
implementation

Subsystem models

² Shows how the design is organised into logically related
groups of objects.

²  In the UML, these are shown using packages - an
encapsulation construct. This is a logical model. The
actual organisation of objects in the system may be
different.

73

Chapter 7 Design and
implementation

Sequence models

² Sequence models show the sequence of object
interactions that take place
§  Objects are arranged horizontally across the top;
§  Time is represented vertically so models are read top to bottom;
§  Interactions are represented by labelled arrows, Different styles of

arrow represent different types of interaction;
§  A thin rectangle in an object lifeline represents the time when the

object is the controlling object in the system.

74

Chapter 7 Design and
implementation

Sequence diagram describing data
collection

75

Chapter 7 Design and
implementation

State diagrams

² State diagrams are used to show how objects respond to
different service requests and the state transitions
triggered by these requests.

² State diagrams are useful high-level models of a system
or an object’s run-time behavior.

² You don’t usually need a state diagram for all of the
objects in the system. Many of the objects in a system are
relatively simple and a state model adds unnecessary
detail to the design.

76

Chapter 7 Design and
implementation

Weather station state diagram

77

Chapter 7 Design and
implementation

Interface specification

² Object interfaces have to be specified so that the objects
and other components can be designed in parallel.

² Designers should avoid designing the interface
representation but should hide this in the object itself.

² Objects may have several interfaces which are viewpoints
on the methods provided.

² The UML uses class diagrams for interface specification
but Java may also be used.

78

Chapter 7 Design and
implementation

Weather station interfaces

79

Chapter 7 Design and
implementation

Key points

²  Software design and implementation are inter-leaved activities. The
level of detail in the design depends on the type of system and
whether you are using a plan-driven or agile approach.

²  The process of object-oriented design includes activities to design the
system architecture, identify objects in the system, describe the
design using different object models and document the component
interfaces.

²  A range of different models may be produced during an object-
oriented design process. These include static models (class models,
generalization models, association models) and dynamic models
(sequence models, state machine models).

²  Component interfaces must be defined precisely so that other objects
can use them. A UML interface stereotype may be used to define
interfaces.

80

Chapter 7 Design and
implementation

Chapter 7 – Design and Implementation

Lecture 2

81

Chapter 7 Design and
implementation

Design patterns

² A design pattern is a way of reusing abstract knowledge
about a problem and its solution.

² A pattern is a description of the problem and the essence
of its solution.

²  It should be sufficiently abstract to be reused in different
settings.

² Pattern descriptions usually make use of object-oriented
characteristics such as inheritance and polymorphism.

82

Chapter 7 Design and
implementation

Pattern elements

² Name
§  A meaningful pattern identifier.

² Problem description.

² Solution description.
§  Not a concrete design but a template for a design solution that

can be instantiated in different ways.

² Consequences
§  The results and trade-offs of applying the pattern.

83

Chapter 7 Design and
implementation

The Observer pattern

²  Name
§  Observer.

²  Description
§  Separates the display of object state from the object itself.

²  Problem description
§  Used when multiple displays of state are needed.

²  Solution description
§  See slide with UML description.

²  Consequences
§  Optimisations to enhance display performance are impractical.

84

Chapter 7 Design and
implementation

The Observer pattern (1)

Pattern
name

Observer

Description Separates the display of the state of an object from the object itself and
allows alternative displays to be provided. When the object state
changes, all displays are automatically notified and updated to reflect the
change.

Problem
description

In many situations, you have to provide multiple displays of state
information, such as a graphical display and a tabular display. Not all of
these may be known when the information is specified. All alternative
presentations should support interaction and, when the state is changed,
all displays must be updated.

 This pattern may be used in all situations where more than one
display format for state information is required and where it is not
necessary for the object that maintains the state information to know
about the specific display formats used.

85

Chapter 7 Design and
implementation

The Observer pattern (2)

Pattern name Observer

Solution
description

This involves two abstract objects, Subject and Observer, and two concrete
objects, ConcreteSubject and ConcreteObject, which inherit the attributes of the
related abstract objects. The abstract objects include general operations that are
applicable in all situations. The state to be displayed is maintained in
ConcreteSubject, which inherits operations from Subject allowing it to add and
remove Observers (each observer corresponds to a display) and to issue a
notification when the state has changed.

The ConcreteObserver maintains a copy of the state of ConcreteSubject and
implements the Update() interface of Observer that allows these copies to be kept
in step. The ConcreteObserver automatically displays the state and reflects
changes whenever the state is updated.

Consequences The subject only knows the abstract Observer and does not know details of the
concrete class. Therefore there is minimal coupling between these objects.
Because of this lack of knowledge, optimizations that enhance display
performance are impractical. Changes to the subject may cause a set of linked
updates to observers to be generated, some of which may not be necessary.

86

Chapter 7 Design and
implementation

Multiple displays using the Observer
pattern

87

Chapter 7 Design and
implementation

A UML model of the Observer pattern

88

Chapter 7 Design and
implementation

Design problems

² To use patterns in your design, you need to recognize that
any design problem you are facing may have an
associated pattern that can be applied.
§  Tell several objects that the state of some other object has

changed (Observer pattern).
§  Tidy up the interfaces to a number of related objects that have

often been developed incrementally (Façade pattern).
§  Provide a standard way of accessing the elements in a collection,

irrespective of how that collection is implemented (Iterator
pattern).

§  Allow for the possibility of extending the functionality of an existing
class at run-time (Decorator pattern).

89

Chapter 7 Design and
implementation

Implementation issues

² Focus here is not on programming, although this is
obviously important, but on other implementation issues
that are often not covered in programming texts:
§  Reuse Most modern software is constructed by reusing existing

components or systems. When you are developing software, you
should make as much use as possible of existing code.

§  Configuration management During the development process, you
have to keep track of the many different versions of each software
component in a configuration management system.

§  Host-target development Production software does not usually
execute on the same computer as the software development
environment. Rather, you develop it on one computer (the host
system) and execute it on a separate computer (the target
system).

90

Chapter 7 Design and
implementation

Reuse

² From the 1960s to the 1990s, most new software was
developed from scratch, by writing all code in a high-level
programming language.
§  The only significant reuse or software was the reuse of functions

and objects in programming language libraries.

² Costs and schedule pressure mean that this approach
became increasingly unviable, especially for commercial
and Internet-based systems.

² An approach to development based around the reuse of
existing software emerged and is now generally used for
business and scientific software.

91

Chapter 7 Design and
implementation

Reuse levels

² The abstraction level
§  At this level, you don’t reuse software directly but use knowledge

of successful abstractions in the design of your software.

² The object level
§  At this level, you directly reuse objects from a library rather than

writing the code yourself.

² The component level
§  Components are collections of objects and object classes that you

reuse in application systems.

² The system level
§  At this level, you reuse entire application systems.

92

Chapter 7 Design and
implementation

Reuse costs

² The costs of the time spent in looking for software to
reuse and assessing whether or not it meets your needs.

² Where applicable, the costs of buying the reusable
software. For large off-the-shelf systems, these costs can
be very high.

² The costs of adapting and configuring the reusable
software components or systems to reflect the
requirements of the system that you are developing.

² The costs of integrating reusable software elements with
each other (if you are using software from different
sources) and with the new code that you have developed.

93

Chapter 7 Design and
implementation

Configuration management

² Configuration management is the name given to the
general process of managing a changing software system.

² The aim of configuration management is to support the
system integration process so that all developers can
access the project code and documents in a controlled
way, find out what changes have been made, and compile
and link components to create a system.

² See also Chapter 25.

94

Chapter 7 Design and
implementation

Configuration management activities

² Version management, where support is provided to keep track
of the different versions of software components. Version
management systems include facilities to coordinate
development by several programmers.

² System integration, where support is provided to help
developers define what versions of components are used to
create each version of a system. This description is then used
to build a system automatically by compiling and linking the
required components.

² Problem tracking, where support is provided to allow users to
report bugs and other problems, and to allow all developers to
see who is working on these problems and when they are fixed.

95

Chapter 7 Design and
implementation

Host-target development

² Most software is developed on one computer (the host),
but runs on a separate machine (the target).

² More generally, we can talk about a development platform
and an execution platform.
§  A platform is more than just hardware.
§  It includes the installed operating system plus other supporting

software such as a database management system or, for
development platforms, an interactive development environment.

² Development platform usually has different installed
software than execution platform; these platforms may
have different architectures.

96

Chapter 7 Design and
implementation

Development platform tools

² An integrated compiler and syntax-directed editing system
that allows you to create, edit and compile code.

² A language debugging system.

² Graphical editing tools, such as tools to edit UML models.

² Testing tools, such as Junit that can automatically run a
set of tests on a new version of a program.

² Project support tools that help you organize the code for
different development projects.

97

Chapter 7 Design and
implementation

Integrated development environments
(IDEs)
² Software development tools are often grouped to create

an integrated development environment (IDE).

² An IDE is a set of software tools that supports different
aspects of software development, within some common
framework and user interface.

²  IDEs are created to support development in a specific
programming language such as Java. The language IDE
may be developed specially, or may be an instantiation of
a general-purpose IDE, with specific language-support
tools.

98

Chapter 7 Design and
implementation

Component/system deployment factors

²  If a component is designed for a specific hardware architecture, or
relies on some other software system, it must obviously be deployed
on a platform that provides the required hardware and software
support.

²  High availability systems may require components to be deployed on
more than one platform. This means that, in the event of platform
failure, an alternative implementation of the component is available.

²  If there is a high level of communications traffic between components,
it usually makes sense to deploy them on the same platform or on
platforms that are physically close to one other. This reduces the
delay between the time a message is sent by one component and
received by another.

99

Chapter 7 Design and
implementation

Open source development

² Open source development is an approach to software
development in which the source code of a software
system is published and volunteers are invited to
participate in the development process

²  Its roots are in the Free Software Foundation
(www.fsf.org), which advocates that source code should
not be proprietary but rather should always be available
for users to examine and modify as they wish.

² Open source software extended this idea by using the
Internet to recruit a much larger population of volunteer
developers. Many of them are also users of the code.

100

Chapter 7 Design and
implementation

Open source systems

² The best-known open source product is, of course, the
Linux operating system which is widely used as a server
system and, increasingly, as a desktop environment.

² Other important open source products are Java, the
Apache web server and the mySQL database
management system.

101

Chapter 7 Design and
implementation

Open source issues

² Should the product that is being developed make use of
open source components?

² Should an open source approach be used for the
software’s development?

102

Chapter 7 Design and
implementation

Open source business

² More and more product companies are using an open
source approach to development.

² Their business model is not reliant on selling a software
product but on selling support for that product.

² They believe that involving the open source community
will allow software to be developed more cheaply, more
quickly and will create a community of users for the
software.

103

Chapter 7 Design and
implementation

Open source licensing

² Afundamental principle of open-source development is
that source code should be freely available, this does not
mean that anyone can do as they wish with that code.
§  Legally, the developer of the code (either a company or an

individual) still owns the code. They can place restrictions on how
it is used by including legally binding conditions in an open source
software license.

§  Some open source developers believe that if an open source
component is used to develop a new system, then that system
should also be open source.

§  Others are willing to allow their code to be used without this
restriction. The developed systems may be proprietary and sold as
closed source systems.

104

Chapter 7 Design and
implementation

License models

²  The GNU General Public License (GPL). This is a so-called
‘reciprocal’ license that means that if you use open source
software that is licensed under the GPL license, then you must
make that software open source.

²  The GNU Lesser General Public License (LGPL) is a variant of
the GPL license where you can write components that link to
open source code without having to publish the source of these
components.

²  The Berkley Standard Distribution (BSD) License. This is a non-
reciprocal license, which means you are not obliged to re-
publish any changes or modifications made to open source
code. You can include the code in proprietary systems that are
sold.

105

Chapter 7 Design and
implementation

License management

² Establish a system for maintaining information about
open-source components that are downloaded and used.

² Be aware of the different types of licenses and understand
how a component is licensed before it is used.

² Be aware of evolution pathways for components.

² Educate people about open source.

² Have auditing systems in place.

² Participate in the open source community.

106

Chapter 7 Design and
implementation

Key points

²  When developing software, you should always consider the possibility
of reusing existing software, either as components, services or
complete systems.

²  Configuration management is the process of managing changes to an
evolving software system. It is essential when a team of people are
cooperating to develop software.

²  Most software development is host-target development. You use an
IDE on a host machine to develop the software, which is transferred to
a target machine for execution.

²  Open source development involves making the source code of a
system publicly available. This means that many people can propose
changes and improvements to the software.

107

Chapter 7 Design and
implementation

