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WHY FINITE ELEMENTS AND ITS THEORY?

Design of machines and structures: Solution to stress or displacement by analytical
method is often impossible due to complex geometry, heterogeneous material etc. Lack of

the “exact solution” to an “approximate problem” is not an issue in engineering work.

Finite element method is the standard of solid mechanics: Commercial codes in
common use are based on the finite element method. A graphical user interface may make
living easier, but a user should always understand what the problem is and in what sense it

1s solved!

Finite element method has a strong theory: Although approximate solution is

acceptable, knowing nothing about the error is not acceptable.
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STRUCTURE ANALYSIS

Stress analysis according to the linear elasticity theory may not entirely explain behavior

of a structure! ‘{iSPlnwmgntz

vibration?
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PROGRAMMER’S VIEWPOINT
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LINEAR ELASTICITY

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. €

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular
momentum within a material volume equals the external moment resultant acting on the

material volume. €
Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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BOUNDARY VALUE PROBLEM

Assuming an equilibrium of a solid body (a set of particles) inside domain €2, the aim is to
find displacement u# of the particles, when external forces or boundary conditions are

changed in some manner:
tdA

Equilibrium equations V-o + f =0 1 Q,

E - o
Hooke’s law & = ( e IV-u+&) 1nQ,
l+v 1-2v

Boundary conditions 7-6=¢ or ii=g on 0Q.

The balance of angular momentum is satisfied ‘a priori’ by the symmetric form of the

Hooke’s law.
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EQUILIBRIUM EQUATIONS

The left-hand side of the equilibrium equation is the sum of the volume and surface forces

acting on a material element of the body. The component forms are

oo
X anx+ yx+anx +fx209
Ox oy 0z

The first index of a stress component refers to the direction of the surface normal and the

second that of the force component.
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The generalized Hooke’s law of an isotropic homogeneous material and be expressed in

the component forms

e

N

&y 1
. 1
Strain-stress: <&.., p=—| —V
Yy E
\EZZ J __V
gxx
Strain-displacement: <&, =
\gZZ J

in which E is the Young’s modulus, v the Poisson’s ratio, and G =FE/(2+2v) the shear

modulus.

HOO
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] N O 7/xy 2‘c"xy ny
I v o, rand <y, r=42¢), r=—10y,
v 1 (O zz ) VETRR Y (O zx )
(a“x / Ox Kny\ ”aux /8y+8uy / Ox |
10uy, /Qy and <y, r=q0u,/0z+0u,/dy,
| Ou, / 0z V2] | Ou,/Ox+0u, /0z|

KE’S LAW
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MATERIAL PARAMETERS

Material p [kg/m’] E [GN/m?] v [1]
Steel 7800 210 0.3
Aluminum 2700 70 0.33
Copper 8900 120 0.34
Glass 2500 60 0.23
Granite 2700 65 0.23
Birch 600 16 -
Rubber 900 102 0.5
Concrete 2300 25 0.1
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PRINCIPLE OF VIRTUAL WORK

Principle of virtual work SW = W™ + SW! =0 V&ii is just one form of the equilibrium

equations.
oQ -
; T . - T ¢ —TTTT
O xx 5‘9xx Oxy 57/30’
Syt :_J'Q (1O 5gyy 10y ¢ <5yyz dV \
(Y zz kégzz Y zx ké‘yzx
- T ¢ 3 - T
S Ol Iy ou, i /
5W€>“=jQ Q Syt 16u, >)dV+jaQ Qtyp {0u, DdA  s5-0 S<=---7"
ku \51/!2 J \tZ \5uz J

The details of the expressions vary case by case, but the principle itself does not!
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VIRTUAL WORK DENSITIES

Virtual work densities of the internal forces, external volume forces, and external surface

forces are (subscripts €2 and 0€2 denote virtual work per unit volume and area,

respectively)

s 3\ T s ) s 3\ T f5 )

O xx 5gxx ny ny
. int _ _

Internal forces: Swg =—10,, ¢ 106y, =90y 107y ¢

(0zz) 98] (Oz) |97z,

( 3 T ' ) ( N T 4 N

Iy ou, t, ou,
External forces: dwS' =< f, b+ 48u, } and Swis =4t ¢+ 10u,, ;

Q y y 0Q y y(
\fZ) k5uZ) \tZ) \5MZ)

Virtual work densities consist of terms containing kinematic quantities and their “work

conjugates” !
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1 LINEAR DISPLACEMENT ANALYSIS

1.1 NOTATIONS AND CONVENTIONS .coouuuuuimnnennnnnnnnnenennnnnnnneessnssesssssesssssssssssssssss

1.2 DISPLACEMENT ANALYSIS.

1.3 ELEMENT CONTRIBUTIONS
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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on the topics of week 2:

O Engineer paradigm in FEM, elements and nodes, nodal quantities and sign

conventions.

O Displacement analysis of simple structures by using the virtual work expressions of the

elements.

O Calculations of the element constributions of force, solid, beam, and plate elements out

of virtual work density of the model and element approximation.
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1.1 NOTATIONS AND CONVENTIONS

288 842
26 A —=
I
= oo ._._._;;;;5;5;5;5;5;5;5;5;5;5;5;5;5;555555555555555555555555555555555555555555:555555555555555

. 103 A —=!

$80 I K E=206GN/m* _L_
m, =4.150 kg P= g
my =1.024 kg s20 | V=03
M=1416kg || | e :
A-A :40x20x1.5 B-B :40x20x2
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ENGINEERING PARADIGM

A complex structure is represented as a collection of structural parts (or elements) which

can be modelled as beams, plates etc.

pAg 18 pAg

| HmmmuééééééHHHHHHHHHHHH
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STRUCTURAL AND MATERIAL SYSTEMS

Element contributions are represented in elementwise (x,y,z)—coordinate systems.

Transformation into (X,Y,Z)—structural system is required for the structural integrity.

Week 2-16



SIGN CONVENTIONS AND NOTATIONS

Displacements, rotations, forces and moments are vector quantities whose components are
positive in the directions of the chosen coordinate axes. The convention may differ from

that used in mechanics of materials courses (be careful with that).

Displacement Force Rotation Moment
Material Uy, Uy, U, Fx,Fy,FZ Hx,Hy,HZ Mx,My,MZ
Structural Uy Uy Uz FX9FY9FZ 9X99Y9HZ MX9MY9MZ

The basis vectors of the material and structural systems are (17,],/;) and (1,J,K),
respectively!
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1.2 DISPLACEMENT ANALYSIS

Model the structure as a collection of beam, plate, etc. elements.

Derive the element contributions SW° and express the nodal displacement and rotation
components of the material coordinate system in terms of those in the structural

coordinate system.

Sum up the element contributions to end up with the virtual work expression of the

structure oW = Zee P OW €. Re-arrange to get the standard form oW = -6 al (Ka—-F).

Use the principle of virtual work 6/ =0 Voda, fundamental lemma of variation
calculus for daeR”, and solve for the unknown nodal displacement and rotation

components from the system equations Ka—F =0.

Week 2-18



BAR ELEMENT

Assuming a linear interpolation for the axial displacement at the endpoints for u, =u(x),

virtual work expressions of the internal and external forces take the forms

T
5Wint:_{5uxl} E_A{1 —1}{%1}
Ouyy | h|=1 1 |luyp

Above, f., E, and A are assumed to be constants. The relationship between the axial

displacement component and the displacement components in the structural coordinate

System is u, =i il =iyuy +iyly +iguy and Su, =i -5ii =iy Ouy +iyOuy +i,Ouy .
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BEAM BENDING ELEMENT

Assuming a cubic interpolation for u, = w(x) in terms of the nodal displacements u_{, u_»

and rotations 0

e 9y2, virtual work expressions take the forms
e N T — -
Ol 12 —6h|{-12 —6h|(u,
2 2
S nt :_<.§€X.1._> £l | —6h  4h 6h 2h <8y1 >
Sup | B3 |-12 6k 12 6k
90y2 6h 242 | 6n  4h?||
e N T ;
51421 6
00 _
5W6Xt:< y1> th< h>
5U22 12 6 9
100y .

Above, f,, 1 y and £ are assumed to be constants.
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EXAMPLE 1.1. A bar truss is loaded by a point force having magnitude F' as shown in

the figure. Determine the nodal displacements. Cross-sectional area of bar 1-2 is 4 and

that for bar 3-2 /8 4. Young’s modulus is £ and weight is omitted.

u
Answer {Xl}:
Uzl
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e For element 1, the relationships between the nodal displacement components in the
material and structural systems are u,; =0 and u,, =uy,. Element contribution 0 w!

to the virtual work expression of the structure is

T
0 | | 0 0
swl=_ (E—A - )= —E—AMX25”X2-
514)(2 L —1 1 qu O L

e For element 2, u 3=0 and wu,y =(uy,+uy,)/ V2. Element contribution takes the

form

5W2——L 0 T(E\/gA 1 _IL 0 _O) -
\/5 5MX2+5M22 \/EL —1 1 2 MX2+MZZ 0
EA

SW? = —7(5’4)(2 +0uzy Nuyy +zs).
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Virtual work expression of the point force follows from the definition of work

SW?3 =Su,,F.

Virtual work expression of the structure is obtained as the sum of the element

contributions

EA EA
5W:—75MX2MX2—T(5MX2 +5M22)(MX2 +u22)+5u22F =

T
5“)(2 EA 2 1 Uxo 0 9 9
oW =— — — .
{5“22} ( L L 1}{“22} {F }) SEARAATR f o

Using the principle of virtual work oW =0 Voda and the fundamental lemma of

variation calculus
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o YO - 20

The Mathematica description of the problem is given by

type properties geometry

1 | BAR [{E}, {A}, {@}) Line[ {1, 2}]

2 | BAR [z}, [2/2 A}, (8)]  Line[(3, 2}]
FORCE {0, 0, F} Point[ {2} ]
{XJYJZ} {UXJUYJUZ} {@X.J@YJ@Z}

1 | {(e,e,L} {0,0,0) {0, 0, 0)

2 | {L,@e,L}  {uX[2],e,uZ[2]} {e,8,8)

3 {0, 0, 0} {0, 0, 0} {0, 0, 0}

F L 2F L
{uxm S e—,uZ[2] > —}
AE AE
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EXAMPLE 1.2. Consider the beam truss shown. Determine the displacements and
rotations of nodes 2 and 4. Assume that the beams are rigid in the axial directions so that
the axial strain vanishes. Cross-sections and lengths are the same and Young’s modulus £

1S constant.

1:5:5:E:E:E:E:E151515151515151515151515+!+!+!+!+!-515151515151::§ : X t
@' ‘=
D z

3t 19 /1 5
Answer Uy, =Uyy =————, By, = and Oy, =
X2 70X 1 Br Y2 T 1008 ELC Y4 71008 EI
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Only the bending in XZ-plane needs to be accounted for. The displacement and rotation
components of the structure are uy,, Oy,, and Oy,. As the axial strain of beam 2

vanishes, axial displacements satisfy v y4 =y, .

o0 T 12 —6L|-12 —6L|( ¢ )
- 0 (EI —6L 4I* | 6L 2I% || 0 - 0 =)
= —q e < > u =Uu , =
Suyx,| B|-12 6L [ 12 6L ||uy, 22 T2 Py Y
[ 00y2 6L 217 | 6L 417 |[Or2]
01T [12 -6L{-12 —6L]|( o)
56 EI|-6L 4I* | 6L 2I*||0
2 Y2 Y2
W === G e T e (o) (@2 = 02 00 = 0ra)
(064, 6L 207 | 6L 4I* |(Or4.
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Couy,|T [12 —6L | -12 —6LT(_y, )} 6 )
50 EI|-6L 4I* | 6L 2I* || 6ys | fL|-L
SW?3 =~/ ra | 3 b — e Qe >) (U4 =—u
0 (L3 12 6L | 12 6L || 0 2176 [ (et =7tr2)
.0 6L 207 | 6L 47|l O L)
e Virtual work expression of the structure is
(5UX2\T . (24 6L 6L_”MX2\ —6)
SW =W +6W? +5W> == 80y, ¢ (=|6L 8L* 2I7 || by, >—%< 0 b
L
| 00y 4 | 6L 20* 8% ||Or4] L)

e Principle of virtual work oW =0 Voa and the fundamental lemma of variation

calculus give
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24 6L

Eller 812
L3

2

6L 2L

In the Mathematica code calculation, horizontal displacements of nodes 2 and 4 are

6L rqu\ (_6\
217 <@Q>—{§<o =0 <
817 | L Ora ) (L)

forced to be same (uy 4 =uy,)

quz\ fL3
By b=

Y2 (T 008E]
| Oy4 |

type properties geometry
1 BEAM {{E, G}, {A, I, I}, {0,0,0}} Line[ {1, 2}]
2 BEAM {{E, G}, {A, I, I}, {0,0,0}} Line[ {2, 4} ]
3 BEAM {{E, G}, {A, I, I}, {0,0,f}} Line|[ {4, 3}]
{X,Y,Z} {Ux,Uy,Uz} {Ex>6v,07}
1 {0, 0, L} {0, 0, 9} {0, 0, 9}
2 {0, 0, 0} {uX[2], 9, 0} {0, 6Y[2], 0}
3 {L, @, L} {0, 0, 9} {0, 0, 9}
4 {L, @, 0} {uX[2], 9, 0} [0, 6Y[4], 0}
3fL4 19 f L3 5fL3
{uX[ZJ—:—— , 8Y[2] - , 8Y[4] }
112 E T 1008 E T 1008 E T

Week 2-28

(27
19

3

.




1.3 ELEMENT CONTRIBUTIONS

Virtual work expressions for the solid, beam, plate elements combine virtual work
densities representing the model and a case dependent approximation. To derive the

expression for an element:

O Start with the virtual work densities 5w51t and Swgy ' of the formulae collection (if not

available there, derive the expression in the manner discussed in MEC-E1050).

O Represent the unknown functions by interpolation of the nodal displacement and
rotations (see formulae collection). Substitute the approximations into the density

expressions.

O Integrate the virtual work density over the domain occupied by the element to get oW .
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ELEMENT APPROXIMATION

In MEC-E8001, element approximation is a polynomial interpolant of the nodal
displacement and rotations in terms of shape functions. In displacement analysis, shape

functions depend on (x, y,z) and the nodal values are parameters to be evaluated by FEM.

Approximation u=N'a nlu/MyS Vf the snmefarm!
Shape functions N ={N;(x,y,z) Ny(x,y,z) ... N, (x, v,

Parameters a={a; a, ... an}T

Nodal parameters ae€{u,,u,,u,,0,,0,,0,; may be just displacement or rotation

components or a mixture of them (as with the Bernoulli beam model).
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ELEMENT GEOMETRY
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QUADRATIC SHAPE FUNCTIONS

Piecewise quadratic approximation is continuous in €2 and second order polynomial inside

the elements. In a typical element Q° U
F ~— - _ u2
. . T \~\\\ Us
Approximation: ©=N"a .
T ® @ 9
Nodal values: a= {ul Uy u3} 5
N
(N [1-36+287
. X )’\ Nl N3 /‘/\
Shape functions: N=JN, =< 4£(1-&) ;, &= 7 EORNY N
// \\\ /// \\
kN3 J L 5(25 - 1) ) ‘:\~ ’\’\’*\/\,\ ”\.

More nodes can be used to generate higher order approximations!
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LINEAR SHAPE FUNCTIONS

A piecewise linear approximation is continuous in €2 and linear inside each element of

triangle shape. In a typical element

Approximation: u = Nla

Nodal values: a={u1 Uy ”3}T

Shape functions: N=| x; x, x3| <{x;

V1 V2 V3| )

Triangle element is the simplest element in two dimensions. Division of any 2D domain

into triangles 1s always possible, which makes the element quite useful.
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CUBIC SHAPE FUNCTIONS

Piecewise cubic approximation has continuous derivatives up to the first order in €2 and is

a third order polynomial inside the elements.

Approximation: u=N'a U u e y
S~ 20
| ‘“21
Nodal values: a:{ul (du/dx);iuy (du/ dx)z} .
1 2
( , e Mo Nao
(Ny)  |(1-97+28)
N \/v\/
N h(1-&)? s,
Shape functions: N =< - L S S LTt T
N (3-28)&7 . e
N 20 o | TTTTeT
(£V21 ) | hé (5_1)

In xz —plane bending u =u_, du/dx=-0, and in xy —plane bending u =u,,, du /dx=0,.
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FORCE ELEMENT

External point forces and moments are assumed to act on the joints. They are treated as

elements associated with one node only. Virtual work expression is usually simplest in the
structural coordinate system:

\Tf 3\ ( \Tf A

OW =3 0uy ¢ Fy ¢+700y v S My ¢ /‘ X o/uX,uy,uZ
5142 FZ 592 MZ Y Z >§

& J L J L J L QX:QY:QZ

Above, Fy,Fy,F; and My ,My,M, are the given components. A rigid body can be

modeled as a particle at the center of mass connected to the other joints of the body by

rigid links!
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SOLID MODEL

The model does not contain assumptions in addition to those of linear elasticity theory.

5Wint - _

o wszt

=

e

\

o w)

(O6u / ox )
0ov /Oy
06w/ 0z |

.

e p

T

N

ou
oV

Jx
Jy

R

\fZ)

> and Owsn =14

(Ou / ox )
ov /oy
ow/ 0z

ext

'

e

"

T

(06u /0y +06v/ox) (Ou /0y +0v/ox)
—<00v/0z+00w/0yy G{0v/0Oz+0w/0dy ¢
|0ow/Ox+0du/ oz | Ow/ Ox+0u/ 0z |
5u\T(tx\ 1 v v
Ov e qt,pinwhich [E]=E-v 1 -v
ow 7, | v v 1

The solution domain can be represented, e.g, by tetrahedron elements with linear

interpolation of the displacement components u(x, y,z), v(x,v,z), and w(x, y,z)
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EXAMPLE 1.3. A tetrahedron of edge length L, density p, and elastic properties £ and
v 1s subjected to its own weight on a horizontal floor. Calculate the displacement u,3 of

node 3 with one tetrahedron element and linear approximation. Assume that

u 3 =uys =0, and that the bottom surface 1s fixed.

| pgl? 1-v —2v?
Answer: uZ3:——pg oAy

4 F 1-v

T
! e
atTnn
N ekt
o i
R e )
S

g
B i
g

T

TR

e e

ke
e
e e
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Linear shape functions can be deduced directly from the figure Ny =x/L, N, =y/L,
Ny=z/L,and Ny=1-x/L—-y/L—-z/L. However, only the shape function of node
3 1s needed as the other nodes are fixed. Approximations to the displacement

components are

z . Oow  Oow

u=0, v=0, and w=—u, -, giving —
123 gving Py

ow 1
=—=0 and — =—u,.
oz L Z3

When the approximation is substituted there, the virtual work densities of the internal

and external forces simplify to

(0" 1-v v v [ 0] | s
5W1i}lt:—< 0 ¢ 5 £ 1% l-v v K0 >:(1_E§(1_V2) )uZ3 2”23
— +v)(1-2v
53] L (1+v)( 2v)_ y voo1-v||ugs) L
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NT ) - NT

(Su) | 1, 0 (0 |
5W§Xt =<0V <fy =< 0 ¢ %< 0 >:—%pg5uz3.
\5W) \fZ) \5MZ3) \_pg)

e Virtual work expressions are obtained as integrals of densities over the volume:

. . 3 _
S = [ swiidv =iy g1 1w
Q 6  6(1+v)(1-2v)

ELM235M23 )

3
SW = jQ SwStay = —% pgdiiy;.

e Finally, principle of virtual work W =0 VSa with SW =5W™ +SW™' and the

fundamental lemma of variation calculus imply
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lngz -y —2v?

€

Uzz =

4 E

1-v

In Mathematica code of the course, the problem description is given by

type properties geometry

1 SOLID {{E, v}, {©0,0, -gp}} Tetrahedron| {1, 2, 3, 4} |
{X,Y,Z} {Ux,Uy,Uz} {Ox»5v,07}

1 {L, 9, 0} {0, 9, 9} (@, 0, 0}

2 {0, L, 0} {0, 90, 9} {0, 0, 0}

3 {0, 0, L} fuX[3],uY[3],uZ[3]} (@, 0, 0}

4 {0, 0, 0} {0, 90, 9} {0, 0, 0}

{uxm 58, uY[3] -0, uZ[3] - -

gL? (—1+v+2v2j fo
4E (-1+v) }
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BEAM MODEL

The bar, torsion bar, and bending modes of a beam are connected unless the first and cross

moments (off-diagonal terms of the matrix) of the cross-section vanish:

(douldy | [ 4 =S, =S, |[ duldx )
switt =L asvia b\ E|-s, 1. 1, {dPvia?-9Pcr 99
z zZ zy dx pdx
d*swidxt| | =S, I, 1, ||d*w/dx*]
] ] traction on the end su rfnces
f5u\T (fx\ s 5¢ \T (mx\ / f5uX\T fFX\ fgeX\T KMX\

W' =1 0v i \ Sy t+—dowidxy imy, ¢ (WX ={Suy  {Fy 14180y ¢ < My )
56,

ow 1. | dov/dx | |

L J Lz ) L

5142

J " J " J "

In FEM the solution domain (a line segment) is represented by line elements and the
displacement and rotation components u(x), v(x), w(x), and @¢(x) by their interpolants.
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BAR MODE

Assuming that v=0, w=0, ¢ =0 and a linear approximation to u#(x) in terms of the end
point displacements u,, u,,, virtual work expressions of the internal and external forces

take the forms

T
5Wint:_{5uxl} EA{1 —1}{%1}
Ouyy | h|=1 1 |luyp

Above, f., E, and A are assumed to be constants. The relationship between the axial

displacement component and the displacement components in the structural coordinate

System is u, =1 il =iyUy +iyly +igliy.
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TORSION MODE

Assuming that =0, v=0, w=0, and a linear approximation to @¢(x) in terms of the end

point rotations 6,4,0,,, virtual work expressions of the internal and external forces take

the forms

T
5Wint:_ 59}61 G]rr -l 9351 ’ Hxl
50, n |-1 116,

T
5Wext: 59x1 mxh 1 .
50, 2 |1

Above, m,, E, and [,, are assumed to be constants. The relationship between the axial

rotation component and the rotation components in the structural coordinate system is

Hx =i ﬁ:lXHX +iY6’Y +iZez.
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BENDING MODE (xz-plane)

Assuming that u =0, v=0, ¢ =0, and a cubic approximation to w(x) in terms of the end

point displacements w1, u, and rotations 6,,1,6,:

(Su )" (12 —6h |12 —6h|(u,
st __ |90 | EL, | —6h 4n? | 6h 2k’ ]9 |

Sur| n3|-12 6n |12 6h ||u,

160, | ~6h 2h* | 6h 4h* |92

- B fz

m
— 59y1> foh|7h|

ou,| 12 | 6

50, 7|

Above, f,, 1 y and £ are assumed to be constants.
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BENDING MODE (xy-plane)

Assuming that u =0, w=0, ¢ =0, and a cubic approximation to v(x) in terms of point

displacements u,, u,, and rotations 6,1, 6.,

e A T [~ 1 r 3
5uy1 12 6h —12 6h l/lyl
2 2
Syt _ | 00, > EI, | 6h 4h” | —6h 2h J 0,1 >
5uy2 B -12 —6h i 12 —6h Uy
150, | 6k 2k | —6h 4h* |0,

Jy
St _ | 00, | fyh| h

Above, f , I, and E are assumed to be constants.
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EXAMPLE 1.4. The Bernoulli beam of the figure 1s loaded by its own weight and a point
force acting on the right end. Determine the displacement and rotation of the right end
starting with the virtual density of the Bernoulli beam model. The x-axis of the material
coordinate system is placed at the geometric centroid of the rectangle cross-section. Beam

properties A, [, =1, and E are constants.

pgA

VL F
A

Ly

FL | pgdAl’
Answer: uy, =—— and Oy, =
X2 7 EYg Y2748 EI
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Bernoulli beam element of the Mathematica code requires the orientation of the
y—axis unless y—axis and Y —axis are aligned. Orientation 1s given by additional

parameter defining the components of ; in the structural coordinate system:

type properties geometry
1 BEAM {{E, G}, {A, Iyy, 1zz, {0,0,1}}, {0, f, ©0}} Line[ {1, 2} ]
2 FORCE {-F, 0, 0} Point|[ {2} ]
{X,Y,Z} {Ux,Uy,Uz} {Ex,6v,67}
1 {0, 0, 9} {0, 0, 9} {0, 0, 9}
2 {L, @, 9} {uX[2], 9, 0} [0, 6Y[2], 0}

FL £1°
{uxme_—,@ﬂu_} }
AE A48E 127
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PLATE MODEL

Virtual work densities combine the plane-stress and plate bending modes. Assuming that

the material coordinate system is placed at the geometric centroid

f \T , [ o%swia |
0du / Ox Ou / Ox wiox ;
swit =1 asvidy b (ElLL  oviey ) d%widP | %[E]Gx
| 0ou /Oy +0ov/ox| Ou/dy+ov/iox| |25%5w/ OxOy
- Pw/ox | (su)' (£, (Su)" (1]
x{ OPwiloy? b, Swel={6v ¢ 1y > and SWaS =4 Ov ¢ e
282w/8x8y k5w, \fz, \5w} 7z

Approximation to the displacement components u(x,y), v(x,y), w(x,y) should be

continuous and w(x,y) should also have continuous derivatives at the element interfaces.
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EXAMPLE 1.5. Consider the thin triangular structure shown. Young’s modulus E,
Poisson’s ratio Vv, and thickness ¢ are constants. Distributed external force vanishes.
Assume plane-stress conditions, XY —plane deformation and determine the displacement

of node 1 when the force components acting on the node are as shown in the figure.

Answer: {MXI} __Fad+v)d-2v) {1}

Uyq Et 1-v 1
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e Nodes 2 are 3 are fixed and the non-zero displacement components are uy; and uy;.

Linear shape functions Ny =(L—-x-y)/L, N,=x/L and Ny=y/L are easy to

deduce from the figure. Therefore

u| L-—x-y|ux
\% L Uyq

|

ou / Ox
ov/ Ox

|

e Virtual work density of internal forces is given by

-

5MX1
514)71

N

Vo

\5%}(1 + 5”)’1 )

T

1 tE

L2 l—v2

1

|4

_O 0 (1—v)/2_ \MXl-l‘llel)

1%
1

0
0

1 |uxg
L qu

Ou / Oy 1 [y
and =—— :
ov / Oy L | uy

e Integration over the triangular domain gives (integrand is constant)
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\T [ = A

(

5MX1 1 v 0 Ux
1 1 tE
5W = —X 5”)’1 e 5 5 | % 1 0 < qu > =
k5“X1+5“Y1, I-v _O 0 (1—V)/2_ \”X1+”Y1,

sl OU yq Tl tE |3—v 1+v ||uy;
5”Y1 41-\/2 l+v 3-v Uy .

e Virtual work expression for the point forces follows from the definition of work

e Principle of virtual work in the form oW = SW'+8W? =0 VSa and the fundamental

lemma of variation calculus give
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T
o 3-v 1+ 1 ou
sw——omxtl L jomve imviiuxa L gl g w0
Suy; | 41-v2|1+v 3—v||uy 1 Suy
3-v 1+ 1
L [ 1 ifunl 1],
41-\/2 I+v 3-v Uy 1

{“Xl}:_ﬂa_vz){l}. e
Uyq tE 1

The point forces acting on a thin slab should be considered as “equivalent nodal forces”

1.e. just representations of tractions acting on some part of the boundary. Under the action
of an actual point force, displacement becomes non-bounded. In practice, numerical

solution to the displacement at the point of action increases when the mesh is refined.

e In Mathematica code of the course, the problem description is given by
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type properties geometry
1 PLANE {{E, v}, {t}, {9,0,0}} Triangle[ {1, 2, 3}]
2 FORCE {-F, -F, @} Point[ {1} ]

{X,Y,Z} {Ux,Uy,Uz} {6x>6v,02}
1 {0, 0, 0} fuX[1], uY[1l], @} {0, 0, 9}
2 {L, @, 0} {0, 0, 0} {0, 0, 9}
3 {0, L, 9} {0, 0, 0} {0, 0, 9}

F(-1+v) (1+V) F-Fv?
{uX[lJe LuY[1] > - }
tE tE
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EXAMPLE 1.6. Consider a plate strip loaded by its own weight. Determine the deflection
w according to the Kirchhoff model. Thickness, length and width of the plate are 7, L,
and A, respectively. Density p, Young’s modulus £, and Poisson’s ratio v are constants.

Use the one parameter approximation w(x) =ay(l—x/ L)2 (x/ L)2.

|

4

L

Answer: w=-L2 (1—V2)(1—£)2(£)2
DEL? L L
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Approximation satisfies the boundary conditions ‘a priori’ and contains a free
parameter aq, (not associated with any node) to be solved by using the principle of

virtual work:

2
a—;”: aoiz[l—6i+6(i)2] and
Ox L L L

07w B 0w B
ayz OxOy

X\ 2, X\2
w=ag(l- 2 (5)? =
L
When the approximation is substituted there, virtual work densities simplify to

- Ef 1
Swey' = —agday

1- 6=+ 6(>)% T
3(1—v2)L4[ 7t (L) I,

ow' =~8ay(1-")2 () pt.

Integrations over the domain €2 =]0,L[x]0,4[ give the virtual works of internal and

external forces
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1 hE?
15 3 1-v?)

swit = jQ 5w8td§2 =—apoay

1
SWEt [ swE'dQ =—-8a,— potLh.
IQ @) 030 PE

e Principle of virtual work oW = SW™ 4+ SW™ =0 VSa and the fundamental lemma of

variation calculus give finally Vdaq,

1 hES 1 4
3h d 5 ag+—pgtlh)=0 < aO:_lpgtL (l—vz). €
15 7 (1-v?)

5W:—5Clo( ) Etz

Week 2-56



