
MEC-E8001 Finite Element Analysis, week 2/2019

1. Determine the nodal displacements when force F is act-
ing on the structure as shown. The cross-sectional area of
bars 1,2,3 and 4 is A and the cross-sectional area of bars
5 and 6 is 2 2A . Young’s modulus of the material is E.
Use the principle of virtual work.
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2. Joint between the beams of the figure is frictionless.
Force F acting on the joint and displacement of the beam
are restricted to the XZ-plane. Determine the rotations
and displacement at the joint. Use two beam elements.
The second moment of area I and Young’s modulus of
the material E are constants.
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3. Determine the rotation 2Yπ  at node 2 of the structure loaded by
a point moment (magnitude M) acting on node 2. Use beam el-
ements (1) and (2) of equal length and a point moment element
(3). Assume that the beams are inextensible in the axial direc-
tions. Young’s modulus of material E and the second moment
of area I  are constants.
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4.   Frame  of  the  figure  consists  of  a  rigid  body  (2)  and
beam  elements  (1)  and  (3).  Determine  the  non-zero
displacements  and  rotations.  The  beams are  identical
and can be assumed rigid in the axial directions. Dis-
placements are confined to the XZ-plane. Young’s
modulus E, second moment of area I , and distributed
force f  acting on element 1 are constants.
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5. Consider a bar of length L loaded  by  its  own weight  (figure).  Determine
the displacement 2Xu  at the free end. Start with the virtual work density
expression ( / ) ( / ) xw d u dx EA du dx ufχ χ χς < , ∗  and approximation

1 2(1 / ) ( / )x xu x L u x L u< , ∗ . Cross-sectional area A, acceleration by
gravity g, and material properties E and θ are constants.
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6. The XZ-plane  structure  shown  consists  of  two mass-
less beams and a homogeneous disk considered as a
rigid body. Determine the displacement 2Zu  and rota-
tion 2Yπ  at node 2. Young’s modulus E of the beam
material and the second moment of area I   are  con-
stants.
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7.  A long dam of homogeneous, isotropic, linearly elastic ma-
terial, is subjected to water pressure on one side. Material
properties E  and µ  are constants. Determine the displace-
ment components 1Xu  and 1Yu  of node 1. Nodes 2 and 3 are
fixed. Use a three-node element and assume plane strain
conditions. Consider a slab of thickness t  in calculations.
The peak value of the linearly varying pressure is p .
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8. A thin slab (1) of square shape is loaded by a point force (2) as
shown in the figure. Derive the relationship between the force
F and the displacement 4Xu  of its point of action. Young’s
modulus E, Poisson’s ratio µ ,  and  thickness  of  the  slab t are
constants. The external distributed forces are zeros. Assume
plane-stress conditions and use bilinear approximation.
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9.  A  structure,  consisting  of  a  thin  slab  and  a  bar,  is  loaded  by  a
horizontal force F acting  on  node  1.   Material  properties  are E
and ν, thickness of the slab is t, and the cross-sectional area of
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the bar A are constants. Determine displacement components 1Xu  and 1Yu  of node 1 by using a
linear bar element and a linear plane-stress element.

Answer 1
(1 )4
4 (1 )X

L Fu
Lt A E

µ
µ

∗
< ,

∗ ∗
   and 1 0Yu <

10. A plate, loaded by point force F acting at the free
corner, is simply supported on two edges and free on
the other two edges as shown in the figure. Deter-
mine the parameter 0a  of approximation

0( , ) ( / )( / )w x y a x L y L<  and displacement at the
center point. Use the virtual work density of the
plate bending mode with constant E, µ , ρ and t.
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Determine the nodal displacements when force F is acting on
the structure as shown. The cross-sectional area of bars 1,2,3
and  4  is A and the cross-sectional area of bars 5 and 6 is
2 2A . Young’s modulus of the material is E. Use the prin-
ciple of virtual work.

Solution
Element and node tables contain the information needed in displacement and stress analysis of the
structure. In hand calculations, it is often enough to complete the figure by the material coordinate
systems and express the nodal displacements/rotations in terms symbols for the nodal displacements
and rotations and/or values known a priori. The components in the material coordinate systems can
also be deduced directly form the figure (in simple cases).  Virtual work expression of the bar ele-
ment is given by
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Nodal displacements/rotations of the structure are zeros except 2Xu  and 2Zu . Element contribu-
tions in their virtual work forms are (nodal displacements of the material coordinate system need to
be expressed in terms of the structural system components)
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Virtual work expression of the structure is sum of the element contributions
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Principle of virtual work 0Wχ χ< ! a  and the fundamental lemma of variation calculus in the form
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Joint between the beams of the figure is frictionless.  Force F
acting on the joint and displacement of the beam are restrict-
ed to the XZ-plane. Determine the rotations and displacement
at the joint. Use two beam elements. The second moment of
area I and Young’s modulus of the material E are constants.

Solution
Only the displacement in Z , direction and rotation in Y , direction matter in the planar beam bend-
ing problem. From the figure, the non-zero displacement component is 2Zu . Rotation may not be
continuous at node 2 and, therefore, a superscript is used in 1

2Yπ  and 2
2Yπ  to denote the rotations at

node 2 of element 1 and element 2.

For element 1, the non-zero displacement/rotation components of the material coordinate system are

2 2z Zu u<  and 1
2 2y Yπ π< . The element contribution of a xz , plane beam in bending (formulae col-

lection) is
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For element 2, the non-zero displacement/rotation components of the material coordinate system are

2 2z Zu u<  and 2
2 2y Yπ π< . The element contribution is
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Element 3 is a point force whose virtual work expression follows from the definition of work
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Virtual work expression of a structure is the sum of the element contributions
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Principle of virtual work 0Wχ < χ! a and the fundamental lemma of variation calculus imply the
linear equation system
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Solving a system of linear equations is one of the basic tasks in FEM (reduction to a triangular sys-
tem by row operations works in hand calculations). Multiply first row by 4 and third row by 3/L
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Then multiply second row by -6
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2
1

23
2

2

27 0 0 4
72 48 0 0 0

2 9 0 12 0

Z

Y

Y

u F
EI L
L L

π

π

    
    , , , <    
   ,      

.

After these steps, the matrix is lower diagonal one, and solution follows by considering the equa-
tions in a proper order one at a time:
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Determine the rotation 2Yπ  at  node  2  of  the  structure  loaded  by  a
point moment (magnitude M) acting on node 2. Use beam elements
(1) and (2) of equal length and a point moment element (3). Assume
that the beams are inextensible in the axial directions. Young’s
modulus of material E and the second moment of area I  are  con-
stants.

Solution
In  a  planar  problem,  torsion  and  out-plane  bending  deformation  modes  can  be  omitted.  As  beams
are assumed to be inextensible in the axial direction and there are no axial distributed forces, the bar
mode virtual work expression vanishes. Virtual work expressions of the beam xz , plane bending
element and point force/moment elements are given by
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Nodal displacements/rotations of the structure are clearly zeros except those for node 2. Displace-
ment at node 2 vanishes also as both beams are inextensible in the axial directions. Therefore, the
only non-zero displacement/rotation component of the structure is 2Yπ .
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Beam 2: 1 0zu < , 1 2y Yπ π< , 2 0zu < ,  and 2 0yπ <
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Virtual work expression of the structure is sum of the element contributions
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The  frame  of  the  figure  consists  of  a  rigid  body  (2)  and
beam elements (1) and (3). Determine the non-zero dis-
placements and rotations. The beams are identical and can
be assumed rigid in the axial directions. Displacements
are confined to the XZ , plane. Young’s modulus E, sec-
ond moment of area I , and distributed force f acting on
element 1 are constants.

Solution
As element 2 is a rigid body and the other beam are rigid in the axial directions, only the horizontal
displacement components 3 2Z Zu u<  are  non-zeros.  Element  contributions  to  the  virtual  work  ex-
pression are
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Virtual work expression of the structure is the sum of element contributions
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Consider a bar of length L loaded by its own weight (figure). Determine
the displacement 2Xu  at the free end. Start with the virtual work density
expression ( / ) ( / ) xw d u dx EA du dx ufχ χ χς < , ∗  and approximation

1 2(1 / ) ( / )x xu x L u x L u< , ∗ . Cross-sectional area A, acceleration by
gravity g, and material properties E and θ are constants.

Solution
The concise representation of the element contribution consists of a virtual work density expression
and approximations to the displacement and rotation components. Approximations are just substi-
tuted into the density expression followed by integration over the domain occupied by the element
(line segment, triangle etc.). Here the two building blocks are

x
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The quantities needed in the virtual work density are the axial displacement, variation of the axial
displacement, and variation of the derivative of the axial displacement

T
1

2

1 /
/

x

x

ux L
u

ux L
,   

<    
   

⇑
TT

1 1

2 2

1 / 1 /
/ /

x x

x x

u ux L x L
u

u ux L x L
, ,      

< <       
      

χ χ
χ

χ χ
,

T
1

2

11
1

x

x

udu
udx L

,   
<    

   
⇑

TT
1 1

2 2

1 11 1
1 1

x x

x x

u ud u
u udx L L

χ χχ
χ χ

, ,      
< <       

      
.

When the approximation is substituted there, virtual work density expression of the bar model takes
the form
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Finally, integration over the element gives the virtual work expression of the bar element
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Finding the displacement of the free end follows the usual lines. Here, xf gA< θ , 1 1 0x Xu u< < ,
and 2 2x Xu u<
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The XZ , plane structure shown consists of two massless
beams and a homogeneous disk of mass m considered as a
rigid body. Determine the displacement 2Zu  and rotation

2Yπ  at node 2. Young’s modulus E of the beam material
and the second moment of area I  are constants.

Solution
Only the displacement in the Z , direction and rotation in the Y , direction matter in the planar
beam bending problem. From the figure, the non-zero displacement and rotation components are

2Zu  and 2Yπ . For element 1, the non-zero displacement/rotation components of the material coor-
dinate system are 2 2z Zu u<  and 2 2y Yπ π< . The element contribution of a plane beam in bending
(formulae collection) is
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For element 2, the non-zero displacement/rotation components of the material coordinate system are

2 2z Zu u<  and 2 2y Yπ π< . The element contribution of a xz-plane beam in bending is
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Element 3 is a rigid body. In static displacement analysis, only the weight acting at the mass cen-
troid matters. Virtual work expression of the point force of magnitude mg  follows from the defini-
tion of work

T
23

2
2 0

Z
Z

Y

u mg
W mg u

χ
χ χ

χπ
   

< <    
  

.

Virtual work expression of a structure is the sum of the element contributions
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Principle of virtual work 0Wχ < χ! a and the fundamental lemma of variation calculus imply the
linear equation system
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A long dam of homogeneous, isotropic, linearly elastic material,
is subjected to water pressure on one side. Material properties E
and µ  are constants. Determine the displacement components

1Xu  and 1Yu  of  node  1.  Nodes  2  and  3  are  fixed.  Use  a  three-
node element and assume plane strain conditions. Consider a
slab of thickness t  in calculations. The peak value of the linearly
varying pressure is p .

Solution
Under the plane strain conditions, the virtual work densities of thin slab are
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The external forces xt  and yt  (force per unit length in this case) acting on the element edges can
be taken into account by a separate force element with the density expression (per unit length)
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although the expression is actually part of the thin slab model. The approximation on the boundary
is just the restriction of the element approximation to the boundary.

Only the shape function for node 1 is needed as the other nodes are fixed (displacement vanishes).
In terms of the displacement components 1Xu  and 1Yu  of node 1, element approximations of the
displacement components and their derivatives are
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When the approximation is substituted there, the virtual work densities simplify to

T

int
1 1

1 1

0 1 0 0
/ 1 0 /

(1 )(1 2 )
/ 0 0 (1 2 ) / 2 /

Y Y

X X

Etw u L u L
u L u L

µ µ
χ χ µ µ

µ µ
χ µ

ς

,     
    < , ,    ∗ ,    ,     

⇑

2 3

1

L

L

x,X

y,Y

p



T 2
1 1int

1 1
2

0
2(1 )

(1 )0
(1 )(1 2 )

X X

Y Y

Et
u uL

w
u uEt

L

χ µ
χ

χ µ
µ µ

ς

 
 ∗    < ,     ,    

∗ , 

,

T TT
1 1ext

1 1

/ (1 / ) (1 / ) /
/ 0 0

x X X

y Y Y

t u y L uu pt y L pt y L y L
w t u y L uv

χ χχ
χ

χ χχ∝ς
  , ,         < < <           
          

.

Integrations over the element and edge 2-1 give the virtual work expressions (notice that the virtual
work density of internal forces is constant)
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Principle of virtual work int ext 0W W Wχ χ χ< ∗ < χ! a  and the fundamental lemma of variation
calculus give
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A thin slab (1) of square shape is loaded by a point force (2) as
shown in the figure. Derive the relationship between the force F
and the displacement 4Xu  of its point of action. Young’s modulus
E, Poisson’s ratio µ , and thickness of the slab t are constants. The
external distributed forces are zeros. Assume plane stress condi-
tions and use bilinear approximation.

Solution
Let us start with the shape functions of element 1 and approximations. As nodes 1, 2, and 3 are
fixed, it is enough to deduce the shape function of node 4
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Approximations to the displacement components and their derivatives with respect to x and y are
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When the approximations are substituted there, the virtual work density of thin slab model simpli-
fies to (plane stress conditions, only the internal part is needed)
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Integration over the domain occupied by the element gives the element contribution
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Virtual work expression of the point force (element 2) follows from the definition of work
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Virtual work expression of a structure is the sum of element contributions
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Finally, principle of virtual work in the form 0Wχ < aχ! and the fundamental lemma of variation
calculus imply that
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A structure, consisting of a thin slab and a bar, is loaded by a hori-
zontal force F acting on node 1.  Material properties are E and ν,
thickness of the slab is t, and the cross-sectional area of the bar A
are constants. Determine displacement components 1Xu  and 1Yu  of
node 1 by using a linear bar element and a linear plane-stress ele-
ment.

Solution
Under the plane stress conditions, the virtual work densities (virtual works per unit area) of the thin
slab model
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take into account the internal forces (stress) and external forces acting on the element domain.
Notice that the components xf  and yf  are external forces per unit area. Forces acting on the
element edges can be taken into account by separate force elements.

Element contribution for the thin slab needs to be derived from approximation and virtual work
densities. Approximations to the displacement components depend only on the shape function asso-
ciated with node 1 as the other nodes are fixed (displacement vanishes). In terms of the displace-
ment components 1Xu  and 1Yu
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Virtual work density of the internal forces simplifies to (when the approximations are substituted
there)
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Virtual work expression is the integral of density over the domain occupied by the element (note
that the virtual work density is constant in this case). Therefore
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Virtual  work  expression  of  the  bar  element  is  given  in  the  formula  collection  with 1 1x Xu u<  and
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Virtual work expression of the point force follows e.g. directly from the definition (force multiplied
by the virtual displacement in its direction)
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Virtual work expression of the structure is the sum of element contributions
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Principle of virtual work 0Wχ < χ! a and the fundamental lemma of variation calculus give
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A plate, loaded by point force F acting at the free corner, is
simply supported on two edges and free on the other two
edges as shown in the figure. Determine the parameter 0a  of
approximation 0( , ) ( / )( / )w x y a x L y L<  and displacement at
the center point. Use the virtual work density of the Kirch-
hoff plate model with constant E, µ , ρ and t.

Solution
Assuming that the material coordinate system is chosen so that the plate bending and thin slab
modes decouple, it is enough to consider the virtual work densities of the bending mode only
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in which the elasticity matrix of plane stress
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In the present case, distributed force vanishes i.e. 0zf <  and the point force is taken into account
by a point force element.

Approximation to the transverse displacement is chosen to be ( 0a  is not associated with any point
but it just a parameter of the approximation)
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When the approximation is substituted there, virtual work density of internal forces simplifies to
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Virtual work expression of the plate bending element (element 1 here) is integral of the virtual work
density over the domain occupied by the element
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Virtual work expression of the point force (element 2 here) follows from the definition of work (no-
tice the use of virtual displacement of the point of action x y L< < )
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Principle of virtual work and the fundamental lemma of variation calculus give

3
2

0 02
1 1( ) 0

6(1 )
EtW W W a a F

L
χ χ χ χ

µ
< ∗ < , , <

∗
⇑

2

0 36(1 ) Fa
Et

Lµ< ∗ .

Displacement at the center point

0 3

21 3( , ) (1 )
2 2 4 2
L L Fw a

Et
Lµ< < ∗ . 


