MEC-E8001 Finite Element Analysis, week 2/2019

1. Determine the nodal displacements when force F is act-

ing on the structure as shown. The cross-sectional area of
bars 1,2,3 and 4 is 4 and the cross-sectional area of bars
5and 6 is 24/24. Young’s modulus of the material is E.
Use the principle of virtual work.

1 FL 2 FL
Answer Uyor = —ga s Uzy = _Ea

2. Joint between the beams of the figure is frictionless.
Force F acting on the joint and displacement of the beam

are restricted to the XZ-plane. Determine the rotations

and displacement at the joint. Use two beam elements.

The second moment of area / and Young’s modulus of

the material £ are constants.

3 2 2
8 FL Oy, __4re (short), and 6Oy, :g% (long).

Answer uy, =———,
27 EI 9 EI

3. Determine the rotation 6y, at node 2 of the structure loaded by

a point moment (magnitude M) acting on node 2. Use beam el- |
ements (1) and (2) of equal length and a point moment element

(3). Assume that the beams are inextensible in the axial direc-

tions. Young’s modulus of material £ and the second moment

of area [ are constants.

1 LM
Answer Oy, =————

8 EI |X

® 3
4. Frame of the figure consists of a rigid body (2) and rrx """"" L """"""""" o

beam elements (1) and (3). Determine the non-zero i ,'I
displacements and rotations. The beams are identical I-—Z /
and can be assumed rigid in the axial directions. Dis- f I

placements are confined to the XZ-plane. Young’s

modulus £, second moment of area / , and distributed

force f* acting on element 1 are constants.

MARRRRERREN

1 7
Answer uy, :4_8%



Consider a bar of length L loaded by its own weight (figure). Determine
the displacement uy, at the free end. Start with the virtual work density
expression Owq =—(dou/dx)EA(du/dx)+o6uf, and approximation
u=(1-x/Lyu,+(x/L)u,,. Cross-sectional area A4, acceleration by

gravity g, and material properties £ and p are constants.

pgl’

2F

Answer uy, =

The XZ-plane structure shown consists of two mass-

less beams and a homogeneous disk considered as a

A R

rigid body. Determine the displacement u,, and rota-
tion Oy, at node 2. Young’s modulus £ of the beam

material and the second moment of area / are con-

stants.

3
1 mgL
Answer uy, = e mgl

and HYZ =0

A long dam of homogeneous, isotropic, linearly elastic ma-
terial, is subjected to water pressure on one side. Material
properties £ and v are constants. Determine the displace-
ment components uy; and uy; of node 1. Nodes 2 and 3 are

fixed. Use a three-node element and assume plane strain

conditions. Consider a slab of thickness ¢ in calculations.

The peak value of the linearly varying pressure is p .

Answer uy =§%L(l+v), uy; =0

A thin slab (1) of square shape is loaded by a point force (2) as

shown in the figure. Derive the relationship between the force
F and the displacement uy, of its point of action. Young’s
modulus E, Poisson’s ratio v, and thickness of the slab ¢ are

constants. The external distributed forces are zeros. Assume

plane-stress conditions and use bilinear approximation.

Answer u —6—F1_V2
X487 B 3y

Y

A structure, consisting of a thin slab and a bar, is loaded by a

horizontal force F acting on node 1. Material properties are E I

and v, thickness of the slab is 7, and the cross-sectional area of




10.

the bar 4 are constants. Determine displacement components uy and uy; of node 1 by using a

linear bar element and a linear plane-stress element.

1 F
Answer uy; = —4L(—+V)— and uy; =0
Lt+4A(1+v) E

A plate, loaded by point force F acting at the free
corner, is simply supported on two edges and free on
the other two edges as shown in the figure. Deter-
mine the parameter q; of approximation
w(x,y)=ag(x/L)(y/L) and displacement at the
center point. Use the virtual work density of the

plate bending mode with constant £, v , p and ¢.

FI? FI?
Answer a0:6—3(1+v), w(£,£):§—3(l+v)
Et 2°2° 2Ft

y :

»Y




Determine the nodal displacements when force F'is acting on
the structure as shown. The cross-sectional area of bars 1,2,3
and 4 is 4 and the cross-sectional area of bars 5 and 6 is
2\24. Young’s modulus of the material is £. Use the prin-

ciple of virtual work.

|

|
1

Solution
Element and node tables contain the information needed in displacement and stress analysis of the
structure. In hand calculations, it is often enough to complete the figure by the material coordinate
systems and express the nodal displacements/rotations in terms symbols for the nodal displacements
and rotations and/or values known a priori. The components in the material coordinate systems can
also be deduced directly form the figure (in simple cases). Virtual work expression of the bar ele-

ment is given by

T
. o 1 -1 1
SW = 5W1nt +5Wext __ 5”)(1 (% Uy _M )
7N h =1 1 ||uyp 2 |1

Nodal displacements/rotations of the structure are zeros except uy, and u,,. Element contribu-
tions in their virtual work forms are (nodal displacements of the material coordinate system need to

be expressed in terms of the structural system components)

EA
Bar 1: Mx1=0, Uy =UxD: 5W1=_5MXZTMX2’

EA
Bar 2: Uy =Ugzy, Uys =0: 5W2 =—5MZZ Tuzz,

Bar3: u,4=0 and u,3=0: sw3=0,

Bar4: u,;=0 and u4=0: sw* =0,

Bar5: u,y=0 and u,3=0: W3 =0,
1

EA
Bar 6: u,4 =0, uyy = N (uxz—tiz): SW°=—(Suy, —Ouzy) =~ (tyr —uuz2)

Force 7: W’ =—Ouy, F .
Virtual work expression of the structure is sum of the element contributions

W=y oWe=oW+ow*+5w>+W*+W>+W+ W’ =



oW = —51/1)(2 E—;qu — 51/122 ETAaz +0+ 0+0—(5UX2 —SUZz)ETA(qu —uZz)— SUZzF =

T
o 2 -1 0
s —_1oUx2 (E_A uxa| ).
5M22 L |-1 2 Uzo -F
Principle of virtual work 6W =0V da and the fundamental lemma of variation calculus in the form
SaR=0 Véa < R=0 imply

2 -1 2 1110 1/3
EA4 uxa| JOL_o o Jux2|_FL1 S S
L -1 2 Uzo -F Uzo EA3|1 2 -1 EA 2/3



Joint between the beams of the figure is frictionless. Force F'

acting on the joint and displacement of the beam are restrict-

ed to the XZ-plane. Determine the rotations and displacement

at the joint. Use two beam elements. The second moment of :

area / and Young’s modulus of the material £ are constants.

Solution

Only the displacement in Z — direction and rotation in Y —direction matter in the planar beam bend-
ing problem. From the figure, the non-zero displacement component is u,, . Rotation may not be
continuous at node 2 and, therefore, a superscript is used in 9}2 and 9)%2 to denote the rotations at

node 2 of element 1 and element 2.

For element 1, the non-zero displacement/rotation components of the material coordinate system are
U,y =uyy and 60y) = 6’)1/2 . The element contribution of a xz —plane beam in bending (formulae col-

lection) is

0 ' 12 —6L -12 —6L7( 0 T
) ) 51/!22 24 12L 0 MZZ
! 0 | Er|-eL 47 6L 2L7|| 0 1| EI 2 1
5W = — 5 —3 = — 50Y2 —3 12L 8L 0 HYZ
Uz | 21 -12 6L 12 6L ||uzp 5 2L 0 0 0 5
50 0
565, 6L 21> 6L 412 |62 r2 r2

For element 2, the non-zero displacement/rotation components of the material coordinate system are

U,y =uzy and 0), = 9%2. The element contribution is

T _ _
ouz) St 122 Ouz, ! 3 0 -3L||Uz2
2 2 2 2 B
EI| 3L 4L 3 2L
sw? =02 L U2l lso,t 2Ll o 0 o |{ah
0 2’ -3 3L 3 3L 0 ) 2L 5 )
0 3L 2 3L 4 0 06y, -3L 0 4L || 6y,

Element 3 is a point force whose virtual work expression follows from the definition of work

T
Suzy | (F
SW3 =FSuy, =661, 10
562,

Virtual work expression of a structure is the sum of the element contributions

Suzy )| 27 120 -3L](ug) (F
SW =W+ W2+ 6W> = -1 56y, (% 12L 8% 0 |S6y(—107).
563, 3L 0 47 ]|6f,) |0

Principle of virtual work 6W =0 Vda and the fundamental lemma of variation calculus imply the

linear equation system



27 12L -3L Uzo F
EI
—<|12L 8> 0 {6y, (-0 (=0.
2L 5 5
3L 0 4I*||67,] 0
Solving a system of linear equations is one of the basic tasks in FEM (reduction to a triangular sys-

tem by row operations works in hand calculations). Multiply first row by 4 and third row by 3/L

108 48L —12L1(uzs) (4aF

EI
=120 8> 0 [6},+—4 0 +=0.

9 2

Add last row to the first row to get

EI
=120 8> 0 |{6,t-10 !=0.

9 2

Then multiply second row by -6

. 99  48L 0 ||Uz2 4F
5—72 —48L 0 |{64,—-1 0 \=0.
_ 2
9 0 12L 07,

Add the second row to the first row

. 27 0 0 ||Uz2 4F
5—72 —48L 0 |16y, 0 \=0.
_ 2
9 0 12L 07,

After these steps, the matrix is lower diagonal one, and solution follows by considering the equa-

tions in a proper order one at a time:

L _8FC 721 0 AFZ oo 9 2FL
22707k Y27 481 42T 9 EI Y2711 7% "9 EI



Determine the rotation 6y, at node 2 of the structure loaded by a

point moment (magnitude M) acting on node 2. Use beam elements

(1) and (2) of equal length and a point moment element (3). Assume
that the beams are inextensible in the axial directions. Young’s
modulus of material £ and the second moment of area / are con-

stants.

Solution

In a planar problem, torsion and out-plane bending deformation modes can be omitted. As beams
are assumed to be inextensible in the axial direction and there are no axial distributed forces, the bar
mode virtual work expression vanishes. Virtual work expressions of the beam xz —plane bending

element and point force/moment elements are given by

Su )’ (12 —6h -12 —6h](u, 6
s ) 5 (EL | 6k an* 6h 20 |0 | fih )
C |Suy,| R |12 6k 12 6k |Ju,| 12 |67
60, —6h 2h* 6h  4h* ||O)2 h
T T

Suyy| |Fxi 00x1| |Mx
oW = Squ FYl + 59)’1 MYI
Suzy | |Fz 007 ) (Mg

Nodal displacements/rotations of the structure are clearly zeros except those for node 2. Displace-
ment at node 2 vanishes also as both beams are inextensible in the axial directions. Therefore, the

only non-zero displacement/rotation component of the structure is 8y, .

Beam I: u, =0, 9y1 =0, u,» =0, and 9y2 =by>

01T [12 —6L -12 —6L]( ¢
0 | Er|-6L 41> 6L 2I?
o [ Bl-12 6L 12 6L
60y 6L 2I* 6L 4I* |9

swl=— = —59“4%9Y2 :

Beam 2: MZIZO, 9y1=eyz, u22=0, and 9}/2:0

0 \T [12 -6L -12 —6L]( ¢
|86y, | Er|-6L 4r* 6L 2o’
o [ Bl-12 6L 12 6L
0 —6L 217 6L 4*|L 0

Oy EI
_ _56,,45 0,
0 y24=—0p>

Point moment 3:



T T
Suyy| |Fx2 00y, | [My,

SW3 =4 GSuyy b 4 Fyy t 4180y, b < My, b =—86y,M .
Suzy | | Fz2 607, (Mz;

Virtual work expression of the structure is sum of the element contributions

W=y oWe=oW+oWw>+sw> =

oW = —5eyz4%eyz - 5eyz4%eyz +0- 5esz = —5eyz(8%eyz +M).

Principle of virtual work 6W =0V da and the fundamental lemma of variation calculus in the form

SaR=0 Véa < R=0 imply

EI 1 ML
82 Oyr + M =0 & Oyy=——n.
I Y2 Y2 8 EI



|

The frame of the figure consists of a rigid body (2) and

beam elements (1) and (3). Determine the non-zero dis-

placements and rotations. The beams are identical and can
be assumed rigid in the axial directions. Displacements
are confined to the XZ — plane. Young’s modulus E, sec-

ond moment of area 7, and distributed force f acting on

\
AREEEREEREN

element 1 are constants.

Solution
As element 2 is a rigid body and the other beam are rigid in the axial directions, only the horizontal
displacement components u,3 =uy, are non-zeros. Element contributions to the virtual work ex-

pression are

o VT [12 —6L —-12 -6L]( 5
0 EIl—6L 41> 6L 2I2|| 0 L|-L EI L
SWh=- 5 — _JL )=—5U22(12—3U22—f—),
uzo [ 3| -12 6L 12 6L |lugy| 126 I 2
0 6L 217 6L 4r* |l 0 L
SW? =0,
o VT [12 -6L -12 —6L](
0 6L 4I* 6L 2I*|]| 0
5W3 = — ﬂ = —51/1221221/122 .
51/122 L3 -12 6L 12 6L Uzo L3
0 6L 2r* 6L 4*|L 0

Virtual work expression of the structure is the sum of element contributions

SW =W+ W2+ 5W3 = —5u22(24%u22 —%),

Principle of virtual work 6W =0 Vda and the fundamental lemma of variation calculus imply

st

u =
22748 EI



Consider a bar of length L loaded by its own weight (figure). Determine
the displacement uy, at the free end. Start with the virtual work density L @
expression Owgq =—(dou/dx)EA(du/dx)+ouf, and approximation

u=(1-x/Lyu, +(x/L)u,,. Cross-sectional area A4, acceleration by

gravity g, and material properties £ and p are constants. v 2

— )

X

Solution
The concise representation of the element contribution consists of a virtual work density expression
and approximations to the displacement and rotation components. Approximations are just substi-
tuted into the density expression followed by integration over the domain occupied by the element

(line segment, triangle etc.). Here the two building blocks are

dou _, du x x
oWo :—EEAawL&tfx and u =(1—z)ux1 +Zux2.

The quantities needed in the virtual work density are the axial displacement, variation of the axial

displacement, and variation of the derivative of the axial displacement
1-x/L)" Uy 1-x/L)" Oy Oy T-x/L
u= = Oou= = ,
x/L Uy x/L Ou,y Ou .y x/L
%_l -1 T U1 N dau _l -1 T 5I/lx1 _l 5I/lx1 T -1
de L|1 7N de L|[1 Ouyy | L |Ouy 1)

When the approximation is substituted there, virtual work density expression of the bar model takes
the form

T T T
o -1 -1 o 1-x/L

5WQ:—@EA@+5U]FX:—1 U1 EAl Uxy N Uy X /o

dx dx L |ouyy 1 L1 Uy Ouyp x/L

T T

o -1 -1 1-x/L
sy =—1 0l (T gL Bl TR

Sty L2771 up x/L

Sug )" EA[ 1 —-17[u 1-x/L

up | 211 | uy x/L

Finally, integration over the element gives the virtual work expression of the bar element

T
5 1 -1 1
5W=jL Swods =—{ L (4 ISP e
0 5ux2 L —1 1 lez 2 1



Finding the displacement of the free end follows the usual lines. Here, f, =pg4, u, =uy; =0,
and u,p) =uy,

T
0 1 -1 0 1
SW = — (% _pgAL ):_&,Xz(%u)(z_pg—ﬂ):O Vouy, <
5”X2 L -1 1 Uyxo 2 1 L 2

2
EA AL L

€
L 2 2F



The XZ —plane structure shown consists of two massless

beams and a homogeneous disk of mass m considered as a
rigid body. Determine the displacement u,, and rotation

Oy, at node 2. Young’s modulus E of the beam material

and the second moment of area / are constants.

Solution

Only the displacement in the Z —direction and rotation in the Y —direction matter in the planar
beam bending problem. From the figure, the non-zero displacement and rotation components are
uzy, and Oy, . For element 1, the non-zero displacement/rotation components of the material coor-
dinate system are u,, =uy, and 6y, =0y, . The element contribution of a plane beam in bending

(formulae collection) is

0o 1T [12 -6L -12 —6L]( o

splo_) 0 | Er|-6L 41> 6L 2I*|| 0 :_{&,zz}Tﬂ{lz 6LHMZ2}
Suzy| [|-12 6L 12 6L ||luy, 5y, | PleL 417 ||6y,)’
60y 6L 2I* 6L 47 |Or2

For element 2, the non-zero displacement/rotation components of the material coordinate system are

Uz =uzy and 6, =0y, . The element contribution of a xz-plane beam in bending is

. [P
S 12 -6L -12 —6L](y,,

30y, | EI|-6L 4I* 6L 2I*||6y,|  ([Suz)|' Ef[ 12 ~6L)(uy,
0 [ 2|-12 6L 12 6L || 0| |86y2] 1P|-6L 4I* '
0 —6L 21* 6L 47|l 0

W = -
Oy

Element 3 is a rigid body. In static displacement analysis, only the weight acting at the mass cen-
troid matters. Virtual work expression of the point force of magnitude mg follows from the defini-

tion of work

T
)
sw? =mgouy, = Hz2 "eL
06y, 0

Virtual work expression of a structure is the sum of the element contributions

T
5 240
2lo 8|6y 0

Principle of virtual work 6W =0 Vda and the fundamental lemma of variation calculus imply the

linear equation system

24 0 3
E—g 5 “z2 - ne =0 Uzo :imgL and 0Y2 =0. €«




A long dam of homogeneous, isotropic, linearly elastic material,
is subjected to water pressure on one side. Material properties £
and v are constants. Determine the displacement components
uy; and uy; of node 1. Nodes 2 and 3 are fixed. Use a three-

node element and assume plane strain conditions. Consider a

slab of thickness ¢ in calculations. The peak value of the linearly

varying pressure is p .

Solution

Under the plane strain conditions, the virtual work densities of thin slab are

T

0ou/Ox ou / Ox T
int _ ext _ Su fx
owg = 0ov/ Oy HE], ov/ oy and owg = 5 y where
oou /0y +0dov/ox Ou/oy+0ov/ox ’ 7
I-v v 0
[£], 2 v 0

S i-2) 0 0 (1-2v)/2

The external forces ¢, and 1 (force per unit length in this case) acting on the element edges can

be taken into account by a separate force element with the density expression (per unit length)

T
s = {&l} {t}
ov ,
although the expression is actually part of the thin slab model. The approximation on the boundary

is just the restriction of the element approximation to the boundary.

Only the shape function for node 1 is needed as the other nodes are fixed (displacement vanishes).
In terms of the displacement components uy; and uy; of node 1, element approximations of the

displacement components and their derivatives are

1
U:ZUXI = %:0 and %:_MXI’
L ox oy L
V:ZUYI = @:0 and @:lqu'
L ox oy L

When the approximation is substituted there, the virtual work densities simplify to

o " . 1-v v 0 0
5W51t =— 5UY1 /L —t \% 1-v 0 Uy /L =
(1+v)(1-2v)
5MX1/L 0 0 (1—2V)/2 qu/L



Et 0

T 2
SW}I)H _ 511)(1 2(1 +V)L Uy ’
5”Y1 Et(l —V) Uy

0
A+v)(1=2v)L?

T T T
5w§XQt= ou Iy _ ouyy/L| |[pt(l-y/L) _ Ou x| pt(l—y/L)y/L '
ov ty 5quy/L 0 5qu 0

Integrations over the element and edge 2-1 give the virtual work expressions (notice that the virtual

work density of internal forces is constant)

Et

T
Syt :j 5WgtdQ _ _{5@(1} 4(1+v) {MXI}
Q 5”Y1 0 Et(l—V) Uy

2(1+v)(1-2v)

T
L o tL/6
Uy 0

Principle of virtual work oW = SW 4 s =0 VSa and the fundamental lemma of variation

calculus give

Et

0
5W:_{5”X1}T( 4(1+v) {qu}_{ptL/6}):0 -
5”Y1 0 Et(l —V) Uyq 0

2(1+v)(1-2v)

Et

0
401 tL/6
A+ taal_Je =0 < quzzp—L(lJrv) and uy; =0. €
Et(1-v) 3 E

Uy 0

2(1+v)(1-2v)



A thin slab (1) of square shape is loaded by a point force (2) as

shown in the figure. Derive the relationship between the force F
and the displacement uy,4 of its point of action. Young’s modulus
E, Poisson’s ratio v, and thickness of the slab ¢ are constants. The

external distributed forces are zeros. Assume plane stress condi-

tions and use bilinear approximation.

Solution
Let us start with the shape functions of element 1 and approximations. As nodes 1, 2, and 3 are

fixed, it is enough to deduce the shape function of node 4

Xy
N4 == .
L2

Approximations to the displacement components and their derivatives with respect to x and y are

Xy ou y ou x

U=——uUyy, —=->Uyy, and —=—u
L2 X4 o L2 X4 ay L2 X4
v=0, @zo, and @=0.
ox oy

When the approximations are substituted there, the virtual work density of thin slab model simpli-

fies to (plane stress conditions, only the internal part is needed)

T

o0ou / ox . 1 v 0 Ou/ Ox
switt=_1  8sv/ay Tv1o ov/ oy -
oou/oy+0ov/ox I-v 0 0 (I-v)/2||0u/dy+0v/ox
int _ tE 1 » I-v 5
OWo ——5uX41_V2F(y +Tx Niyy.

Integration over the domain occupied by the element gives the element contribution

1_ (L L o i Et 3-v
ow :JO JO 5w$tdxdy:—5ux4?1_v2 Uyy.

Virtual work expression of the point force (element 2) follows from the definition of work
SW? =Suy F .

Virtual work expression of a structure is the sum of element contributions

S =W +6W? = Suyy(-EL3=Y
61

2MX4+F).



Finally, principle of virtual work in the form 6 =0 Vda and the fundamental lemma of variation

calculus imply that

_SF1-v?
Et 3—v

Uxa 6



Y
A structure, consisting of a thin slab and a bar, is loaded by a hori- 4

zontal force F acting on node 1. Material properties are £ and v, g [\ L
thickness of the slab is ¢, and the cross-sectional area of the bar 4 _
are constants. Determine displacement components uy; and uy; of L |:

node 1 by using a linear bar element and a linear plane-stress ele-

ment.

Solution
Under the plane stress conditions, the virtual work densities (virtual works per unit area) of the thin

slab model
| osulox " Bu | Ox sl [ 1
Swal = — d8v/ oy fE, v/ oy and SwS ={5 } { f’“} where
\%
0ou /oy +0ov/ox Ou/0y+0v/ox 7
1 v 0
[E], = E2 v o1 0
Vo 0 (1-v)/2

take into account the internal forces (stress) and external forces acting on the element domain.
Notice that the components f, and f, are external forces per unit area. Forces acting on the

element edges can be taken into account by separate force elements.

Element contribution for the thin slab needs to be derived from approximation and virtual work
densities. Approximations to the displacement components depend only on the shape function asso-
ciated with node 1 as the other nodes are fixed (displacement vanishes). In terms of the displace-

ment components uy| and uy

1
U:UXIZ = %:0 and %ZMXI_’
L ox oy L
1
V:LIYIZ f— @:0 and @:qu_'
L ox oy L

Virtual work density of the internal forces simplifies to (when the approximations are substituted
there)

0" 1v 0 0 T
int 1 Et ouyy| 1 Et |[(1-v)/2 0||uy;
5WQ = — 5“Y1 —2 3 1% 1 O qu = — _2 3
5 iy _ Suyy ] L*1-v 0 1| uy,
Uy 0 0 (1 V)/2 Uy

Virtual work expression is the integral of density over the domain occupied by the element (note

that the virtual work density is constant in this case). Therefore



T
- ou 1 Et |(I1-v)/2 0]fu
1 _ int _ X1 X1
W _jQ SwilldQy = - T .
5”Y1 21-v 0 1 Uy

Virtual work expression of the bar element is given in the formula collection with u,; =uy; and

U =0

T
5W2:— 5”){1 TE_A 1 -1 Ux __ 5”){1 E_A 1 0 Ux
0 L|-1 1] 0 Suy; | L0 0|uy, |
Virtual work expression of the point force follows e.g. directly from the definition (force multiplied
by the virtual displacement in its direction)

T
swd—_Jomal JFL
5”Y1 0
Virtual work expression of the structure is the sum of element contributions
SW =W +sw? + 5w

T
SW=— 5”){1 (l Et (1—v)/2 0 Uy +E_A1 0 Ux1 + F) -
5”Y1 2]—\/2 0 1 Uy L]0 0 Uy 0
| Et A

T |— + 0
o F
SW =— Uy ( 41+v L Uy N ).
5”Y1 0 Et Uy 0

1
21-y?

Principle of virtual work 6W =0 Vda and the fundamental lemma of variation calculus give

1 Et FEA
—+_

— 0
F
414y L e + =0 < MX1=_M£ and I/lYl:O. 6
0 Et Uy 0 tL + 4(1 + V)A E

1 Er
21-y?



A plate, loaded by point force F acting at the free corner, is
simply supported on two edges and free on the other two

edges as shown in the figure. Determine the parameter a, of

approximation w(x, y) =ay(x/L)(y/L) and displacement at

the center point. Use the virtual work density of the Kirch-

hoff plate model with constant £, v , p and ¢.

Solution
Assuming that the material coordinate system is chosen so that the plate bending and thin slab

modes decouple, it is enough to consider the virtual work densities of the bending mode only

T
025w/ ox? . o%w/ox?
swilt =1 525w/ oy> ;—2[/2]0 Pwidy? t, wit = 8wy,
2025w/ oxdy 20%w/ oxdy

in which the elasticity matrix of plane stress

1 v 0
[E], E2 v o1 0
Vo o0 (1-v)/2

In the present case, distributed force vanishes i.e. f, =0 and the point force is taken into account
by a point force element.

Approximation to the transverse displacement is chosen to be (g is not associated with any point

but it just a parameter of the approximation)

Xy w
w(x,y)=ay—— = ——=0,—=0,and =—aqa.
( y) 0 IL axz ayz axay LZ 0

When the approximation is substituted there, virtual work density of internal forces simplifies to

T
25w/ ox* *w/ ox?
3 1 v 0 3
switt=—) 2%swia* + —E v 1 o Pwioy? \=—sag—L L.
) 12(1-v?) 5 6(1+v) *
20°5w/ &xdy 0 0 (=v)/2]|20%w/axdy

Virtual work expression of the plate bending element (element 1 here) is integral of the virtual work

density over the domain occupied by the element

EX 1

swl Swilldxdy = -5
=y [y oty vy 2

Virtual work expression of the point force (element 2 here) follows from the definition of work (no-

tice the use of virtual displacement of the point of action x=y=1L)



SW? =5w(L,L)F =SayF .
Principle of virtual work and the fundamental lemma of variation calculus give

3 2
B 1 -F=0 = ay=61+niL
6(1+v) [2 EP

SW =W+ 6W? = —5ay(

Displacement at the center point

2
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