Heating and Cooling Systems EEN-E4002 (5 cr)

Fundamentals of system design

Learning objectives

Student will learn to

- have a general view of an HVAC engineer's contribution in the design of heating and cooling systems
- know the basics of selecting heat conversion and distribution methods
- apply the basic theories and computational tools for sizing heating and cooling systems

Aalto University

Lesson outline

1. Design process of heating and cooling systems
2. Perspectives on system level design

- selection of heat conversion methods
- selection of heat distribution methods

3. Sizing of heat exchangers
4. Sizing of heat distribution network
5. Heat losses and insulation of pipes
6. Determining heating/cooling loads (for each space)
7. Choosing the energy conversion (e.g. district heating, heat pump) and distribution methods (e.g. floor heating)
8. Choosing the heat exchangers
9. Disposition of the heat exchangers and pipework in the target building aka routing
10. Sizing and balancing the pipework
11. Choosing the prime movers
12. Compiling the drawings (aka blueprints) and operational descriptions

The theoretical principles of determining heating and cooling loads have been treated under the topics 1-2. The design process and its practical implementation will be treated in detail in the courses "EEN-E4005 Fundamentals of HVAC design" and "EEN-E4006 Advanced HVAC design".

Aalto University

Areas to be covered

Aalto University

Choosing the conversion method - example of the share of investment and operational costs

- Heated area: $250 \mathrm{~m}^{2}$
- Room height: 2.60 m
- Number of occupants: 6
- Location: Central Finland
- Annual energy for DHW: $6000 \mathrm{kWh} / \mathrm{a}$
- Annual thermal energy total: $50200 \mathrm{kWh} / \mathrm{a}$

Annualized total costs including investment, inflation and energy

Choosing the conversion method - impact on the cost optimality

Choosing the heat distribution

 method - impact on thermal comfort

FH = Floor heating $\quad \mathrm{RO}=$ Radiators outer wall $\mathrm{S}=$ Stove
$\mathrm{CH}=$ Ceiling heating $\quad \mathrm{RI}=$ Radiators inner wall $\mathrm{O}=$ Oven
Comfort criterion: $T_{1.7 \mathrm{~m}}-T_{0.05 \mathrm{~m}} \leq 2 \ldots 3^{\circ} \mathrm{C}$
The temperature at floor level is critical.

Aalto University

Vertical temperature gradient for radiator and floor heating

Vertical temperature gradient for air heating

- Significant temperature gradient and air velocity (draught problems expected)
- Difference in quality in comparison with radiator or floor heating can be perceived.

Sizing of radiators and convectors

- Sizing = choosing the type and geometry of a radiator/convector to release thermal power equal to heating load into the target room (i.e. given fluid flow q_{m} is cooled down from the supply temperature T_{i} to the return temperature T_{o}).
- Both convection and radiation are present.
- The heat release is affected by
- surface area
- heat transfer coefficient
- The heat transfer coefficient is affected by
- installation of the radiator/convector
- characteristics of the surfaces
- characteristics of the air flow in the room

Electric radiators:

The surface temperature is
constant
\rightarrow constant heat release

Aalto University

Heat release equation

$$
\begin{aligned}
& \Phi=c_{p w} q_{m}\left(T_{o}-T_{i}\right)=\dot{C}\left(T_{i}-T_{o}\right) \leftrightarrow \text { released }=\text { received } \\
& =G \frac{T_{i}-T_{o}}{\ln \frac{T_{i}-T_{\text {room }}}{T_{o}-T_{\text {room }}}} \approx G\left(\frac{T_{i}+T_{o}}{2}-T_{\text {room }}\right) \\
& \underline{\text { For brevity: }} \\
& \dot{C}=q_{m} c_{p w}(=\text { heat capacity flow }) \\
& G=U A(=\text { heat transfer coefficient aka conductance })
\end{aligned}
$$

$\theta_{\mathrm{ln}}=\frac{T_{i}-T_{o}}{\ln \frac{T_{i}-T_{\text {room }}}{T_{o}-T_{\text {room }}}}(=$ logarithmic temperature difference $)$
$\theta=\frac{T_{i}+T_{o}}{2}-T_{\text {room }}(=$ mean temperature difference between radiator and room $)$
$\Leftrightarrow \Phi=G \theta_{\mathrm{ln}} \approx G \theta$

Aalto University

Heat transfer coefficient - I

- Heat transfer coefficient (aka conductance) [W/K]:
$s=$ thickness of tube material [m]
$\lambda=$ conductivity of tube material $[\mathrm{W} / \mathrm{mK}]$
- For $A_{i}<A_{o}$ (convectors):

$$
\left.\begin{array}{l}
G=U A_{o} \\
G^{\prime \prime}=\frac{G}{A_{i}}=\frac{A_{o}}{A_{i}} \cdot U
\end{array}\right\} \Leftrightarrow \quad\left[G^{\prime \prime}\right]=\mathrm{W} / \mathrm{m}^{2} \mathrm{~K} .
$$

$A_{i}=A_{o}$
Magnitudes: $\rightarrow \alpha_{o}$ determinative
$\alpha_{i}>100 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}$ (convection only)
$\alpha_{o}>10 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}$ (convection + radiation)
$\lambda=50 \frac{\mathrm{~W}}{\mathrm{mK}}$ (steel)

Heat transfer coefficient - II

- External heat transfer coefficient [W/m²K]:

$$
\begin{aligned}
& \alpha_{o}=\alpha_{c}+\alpha_{r} \\
& \alpha_{r}=\frac{\sigma\left(T_{i}^{4}-T_{s}^{4}\right)}{T_{i}-T_{s}} \quad \sigma=5.67 \cdot 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}
\end{aligned}
$$

$\alpha_{c}=2.2\left[\frac{\theta}{h}\right]^{\frac{1}{4}} \quad($ vertical surface $) \leftarrow \begin{gathered}\text { Expressions } \\ \text { derived from } \\ \text { the theory of } \\ \text { natural }\end{gathered}$
$\alpha_{c}=3.0\left[\frac{\theta}{h}\right]^{\frac{1}{4}} \quad$ (vertical surface close to wall)
$\Rightarrow \alpha_{o}=C \cdot\left[\frac{\theta}{h}\right]^{\frac{1}{4}}$ (total external heat transfer coefficient)

$$
\begin{aligned}
& T_{s}=\text { temperature of } \\
& \text { surfaces in the } \\
& \text { room } \\
& \alpha_{o}=\alpha_{c}+\alpha_{r}
\end{aligned}
$$

The variation of radiative heat transfer is minor in comparison with that of convection, particularly at low radiator temperatures:

$$
\begin{aligned}
& T_{i}=60^{\circ} \mathrm{C} \rightarrow \alpha_{r}=7.1 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \\
& T_{i}=40^{\circ} \mathrm{C} \rightarrow \alpha_{r}=6.5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \\
& \left(T_{s}=20^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Sizing equation

$U \approx \alpha_{o}=C \cdot\left[\frac{\theta}{h}\right]^{\frac{1}{4}}$
Sizing equation (derived from theory):
$\Phi=U A \theta=C A \cdot\left[\frac{\theta}{h}\right]^{\frac{1}{4}} \cdot \theta=C h L \cdot\left[\frac{\theta}{h}\right]^{\frac{1}{4}} \cdot \theta$
Standardized sizing equation (derived from experiments):
$\Phi=C h^{n} L \theta^{r} \quad$ (Reference: DIN 4707 standard)

Note: In practice the heat release is always measured in standardized laboratory conditions.

Example

The supply/return water temperatures are $T_{i} / T_{o}=70 / 40^{\circ} \mathrm{C}$ and the design heating load of the target room is 1000 W . The maximum allowable height of the radiator is 300 mm and length 2 m . Choose the radiator on the basis of the data below. The room temperature is $21^{\circ} \mathrm{C}$.

Parameters C, n and r for selected "Rettig" radiators and convectors:

	1 row			2 rows				3 rows		
	C	n	r	C	n	r	C	n	r	
Convector ("Ratek K")	11.1	0.63	1.29	19.4	0.62	1.31	26.0	0.61	1.33	
Radiator ("Kompakt")	10.5	0.86	1.29	14.6	0.83	1.30	21.6	0.80	1.32	
Radiator ("Plate")	10.2	0.86	1.29	17.6	0.81	1.31	21.4	0.81	1.32	

Solution

1. Mean temperature difference between radiator and room:

$$
\theta_{70 / 40^{\circ} \mathrm{C}}=\frac{T_{i}+T_{o}}{2}-T_{\text {room }}=\frac{(70+40)^{\circ} \mathrm{C}}{2}-21^{\circ} \mathrm{C}=34^{\circ} \mathrm{C}
$$

2. Heat release of the available radiators/convectors:

- $\quad L=2 \mathrm{~m}, h=0.3 \mathrm{~m}$ (assume: the given radiator size is available)
- Sizing equation: $\Phi=C h^{n} L \theta^{r}$
$-\quad$ Calculations applying the sizing equation (e.g. MS Excel):

	1 row	2 rows	3 rows
	$\Phi[\mathrm{W}]$	$\Phi[\mathrm{W}]$	$\Phi[\mathrm{W}]$
Convector ("Ratek K")	983	1866	2716
Radiator ("Kompakt")	705	1053	1733
Radiator ("Plate")	685	1347	1696

3. Decision: The closest higher heat release ($1053 \mathrm{~W}>1000 \mathrm{~W}$) can be obtained with a two-row radiator ("Kompakt").

Impact of connection on the heat release

A!
 Aalto University
 Impact of installation on the reduction of heat release

Reference:

A! Aalto University Impact of mass flow on the return temperature and heat release

When the fluid (water) mass flow rate reduces, the supply water and the mean temperatures reduce, as well. The impact on the heat release is non- linear.

Example: The graph indicates the change of the proportional heat release with respect to the proportional fluid flow given that the supply water temperature is $T_{i}=80^{\circ} \mathrm{C}$ and the return water temperature $T_{o}=50^{\circ} \mathrm{C}$ in the design conditions (subscript 0).

Aalto University

Example

The heat release of a radiator at $T_{i} / T_{o}=90 / 70^{\circ} \mathrm{C}$ is 1000 W . Calculate the heat release at $T_{i} / T_{o}=80 / 50^{\circ} \mathrm{C}$. The room temperature is $20^{\circ} \mathrm{C}$.

Solution - I

1. Principle

- constant surface area A, length L and width $h \rightarrow$ to be reduced
- heat transfer coefficient depends on the mean temperature difference θ
\rightarrow the ratio of temperature differences also determines the ratio of heat release rates:

$$
\begin{aligned}
& \Phi_{90 / 70^{\circ} \mathrm{C}}=U_{90 / 70^{\circ} \mathrm{C}} A \theta_{90 / 70^{\circ} \mathrm{C}}(=1000 \mathrm{~W}) \\
& \Phi_{80 / 50^{\circ} \mathrm{C}}=U_{80 / 50^{\circ} \mathrm{C}} A \theta_{80 / 50^{\circ} \mathrm{C}}(=?) \\
& \Rightarrow \frac{\Phi_{80 / 50^{\circ} \mathrm{C}}}{\Phi_{90 / 70^{\circ} \mathrm{C}}}=\frac{U_{80 / 50^{\circ} \mathrm{C}} A \theta_{80 / 50^{\circ} \mathrm{C}}}{U_{90 / 70^{\circ} \mathrm{C}} A \theta_{90 / 70^{\circ} \mathrm{C}}}=\frac{U_{80 / 50^{\circ} \mathrm{C}} \theta_{80 / 50^{\circ} \mathrm{C}}}{U_{90 / 70^{\circ} \mathrm{C}} \theta_{90 / 70^{\circ} \mathrm{C}}} \\
& \Rightarrow \Phi_{80 / 50^{\circ} \mathrm{C}}=\frac{U_{80 / 50^{\circ} \mathrm{C}}}{U_{90 / 70^{\circ} \mathrm{C}}} \cdot \frac{\theta_{80 / 50^{\circ} \mathrm{C}}}{\theta_{90 / 70^{\circ} \mathrm{C}}} \cdot \Phi_{90 / 70^{\circ} \mathrm{C}}
\end{aligned}
$$

Solution - II

2. Mean temperature differences between radiator and room:

$$
\left.\begin{array}{l}
\theta_{90 / 70^{\circ} \mathrm{C}}=\frac{T_{i}+T_{o}}{2}-T_{\text {room }}=\frac{(90+70)^{\circ} \mathrm{C}}{2}-20^{\circ} \mathrm{C}=60^{\circ} \mathrm{C} \\
\theta_{80 / 50^{\circ} \mathrm{C}}=\frac{T_{i}+T_{o}}{2}-T_{\text {room }}=\frac{(80+50)^{\circ} \mathrm{C}}{2}-20^{\circ} \mathrm{C}=45^{\circ} \mathrm{C}
\end{array}\right\} \Rightarrow \frac{\theta_{80 / 50^{\circ} \mathrm{C}}}{\theta_{90 / 70^{\circ} \mathrm{C}}}=\frac{45^{\circ} \mathrm{C}}{60^{\circ} \mathrm{C}}=0.75
$$

3. Heat transfer coefficients: Constant \rightarrow reduced

$$
\begin{aligned}
& U_{90 / 70^{\circ} \mathrm{C}} \approx C \cdot\left[\frac{\theta_{90770^{\circ} \mathrm{C}}}{h}\right]^{0.25}=\frac{C}{h^{0.25}} \cdot 60^{0.25}=2.78 \cdot \frac{C}{h^{0.25}} \\
& \\
& U_{80 / 50^{\circ} \mathrm{C}} \approx C \cdot\left[\frac{\theta_{80 / 50^{\circ} \mathrm{C}}^{0.25}}{h}\right]^{0 .}=\frac{C}{h^{0.25}} \cdot 45^{0.25}=2.59 \cdot \frac{C}{h^{0.25}} \\
& \text { 4. Heat release rate: }
\end{aligned}
$$

$$
\Phi_{80 / 50^{\circ} \mathrm{C}}=\frac{U_{80 / 50^{\circ} \mathrm{C}}}{U_{90 / 70^{\circ} \mathrm{C}}} \cdot \frac{\theta_{801 / 50^{\circ} \mathrm{C}}}{\theta_{90 / 70^{\circ} \mathrm{C}}} \cdot \Phi_{90 / 70^{\circ \mathrm{C}}}=0.93 \cdot 0.75 \cdot 1000 \mathrm{~W}=\underline{\underline{700 \mathrm{~W}}}
$$

Sizing of heating and cooling coils

- \quad Sizing $=$ choosing the depth of the coil aka the number of rows to release thermal power equal to heating/cooling load into air flow
- A row is considered a single heat transfer unit. The units are connected in series.
- The size of a (finned-tube) heating/cooling coil depends on:
- heat transfer rate (from a fluid to another)
- heat transfer area
- heat exchanger type (counter-flow, parallel flow, cross flow)
- heat transfer coefficients
- The heat exchanger surface area is commonly fixed. The face velocity is $2 \ldots 5 \mathrm{~m} / \mathrm{s}$.

Face area is a known parameter fixed on the basis of the geometry of the flow path.

The flow chart of a coil consisting n units

Example: counter-flow heat exchanger, units $1, \ldots j \ldots, n$

A!

Temperature change in the j-th unit

Heat balance: $q_{m w} c_{p w}\left(T_{i, j}-T_{o, j}\right)=q_{m a} c_{p a}\left(T_{j}-T_{j-1}\right)$

- Heat exchanger effectiveness is defined as...

$$
\varepsilon=\frac{\theta_{\max }}{\theta_{0}}
$$

- ...and it is determined by the heat exchanger's flow pattern and parameters (R and Z) as follows:

Parallel flow:
$\varepsilon=\frac{1-e^{-(1+R) Z}}{1+R}$

Counter-flow:

$$
\begin{array}{ll}
\varepsilon=\frac{1-e^{-(1-R) Z}}{1-R \cdot e^{-(1-R) Z}} & R \neq 1 \\
\varepsilon=\frac{Z}{1+Z} & R=1
\end{array}
$$

Parameters

1. Heat capacity flow:

$$
\begin{aligned}
& \dot{C}_{w}=q_{m w} c_{p w} \\
& \dot{C}_{a}=q_{m a} c_{p a} \\
& \dot{C}_{\max }=\max \left[\dot{C}_{w}, \dot{C}_{a}\right] \\
& \dot{C}_{\min }=\min \left[\dot{C}_{w}, \dot{C}_{a}\right]
\end{aligned}
$$

2. Heat capacity ratio:

$$
R=\frac{\dot{C}_{\text {min }}}{\dot{C}_{\text {max }}}
$$

3. Dimensionless conductance :

$$
Z=\frac{G}{\dot{C}_{\text {min }}}=\frac{U A_{o}}{\dot{C}_{\text {min }}}
$$

Sizing equation

- ...returns the required number of heat transfer units ("rows") (rounded up to the closest $n \in\{1,2 \ldots\})$.
- ...is derived from the unit-specific heat balances through the definitions of heat capacity rates and the heat exchanger effectiveness.

$$
n=\frac{\ln \left[\left(1-\frac{\dot{C}_{\min }}{\dot{C}_{\max }}\right) \frac{\varepsilon}{1-\varepsilon}+1\right]}{\ln \left[\frac{1-\frac{\dot{C}_{\min }}{\dot{C}_{\max }} \varepsilon_{e}}{1-\varepsilon_{e}}\right]} \quad \begin{aligned}
& \text { where } \begin{array}{l}
\varepsilon=\text { the heat exchanger } \\
\text { effectiveness of the whole set } \\
\text { of units }
\end{array} \\
& \begin{array}{l}
\varepsilon_{e}=\text { the heat exchanger } \\
\text { effectiveness of a single unit } \\
\text { (with an assumption that all } \\
\text { units are identical) }
\end{array}
\end{aligned}
$$

Sizing diagram

Sizing of floor (and ceiling) heating

- $\operatorname{Sizing}=$ choosing the required floor heating area (A) and water mass flow $\left(q_{m w}\right)$ to release thermal power equal to heating load into the target room
- Heat release is determined by surface temperature $\left(T_{s}\right)$, which is at highest on the pipe $\left(T_{s, L}\right)$ and at the lowest between the pipes $\left(T_{s, L / 2}\right)$, the mean value being $\left(\bar{T}_{s}\right)$.
- Heat flux $\left[\mathrm{W} / \mathrm{m}^{2}\right]$ both upwards $\left(q_{u p}\right)$ and downwards $\left(q_{\text {down }}\right)$ takes place. The heat flux $q_{\text {down }}$ is significant in condition that there is no insulation below the pipework.
- $T_{i}=30 \ldots 45^{\circ} \mathrm{C}, T_{i}-T_{o}=5 \ldots 10^{\circ} \mathrm{C}$
- The surface temperature should fall within the range $T_{s}=25 \ldots 30^{\circ} \mathrm{C}$

Sizing floor heating as a process

1. Heating load
2. Locations for piping and manifolds (routing)
3. Fixing the supply water temperature $\left(35 \ldots 45^{\circ} \mathrm{C}\right)$
4. Determining the spacing of pipes (L)

- Calculating surface temperatures and heat release rates using the sizing equations
- Comparison: heat release vs. allowable surface temperatures
- Adjustment of spacing (if required)

5. Determing the required area and water mass flow
6. Sizing the network
7. Balancing the network

Layout patterns for floor heating

Spiral counterflow with dense spacing close to cold zone (window)

Double spiral counterflow with dense spacing close to cold zone (window)

Heat release and sizing equations

Heat flux from surface to room is calculated from:

$$
q=\alpha\left(\bar{T}_{s}-T_{\text {room }}\right)=\left(\alpha_{r}+\alpha_{c}\right)\left(\bar{T}_{s}-T_{\text {room }}\right)
$$

where $\quad \alpha_{r}=$ heat transfer coefficient for radiation [W $/ \mathrm{m}^{2} \mathrm{~K}$]

$$
\alpha_{c}=\text { heat transfer coefficient for convection }\left[\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right]
$$

Useful default values for heat transfer coefficients:

- $\alpha_{r}=6 \ldots 7 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ (depending on the temperatures or surrounding surfaces)
- $\alpha_{c}=4 . . .5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ (floor)
- $\alpha_{c}=2 \ldots 3 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ (ceiling)
- $\alpha=\alpha_{r}+\alpha_{c}=11.6 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ (design heat transfer coefficient provided by Uponor Oy)

Standardized sizing equation (from experiments):

$$
q=C \theta^{r}
$$

where $r=1.03 \ldots 1.12$

Coefficients of the sizing equation depend on installation (surface material, depth, distance between pipes) and are provided by manufacturers.

Example

Determine the area and supply water mass flow for the floor heating besides assuming that the supply water temperature is $45^{\circ} \mathrm{C}$ and the return water temperature is $35^{\circ} \mathrm{C}$. The design heating load of the upper space is 500 W .

Heat transfer coefficients:

$$
\left\{\begin{array}{l}
\alpha_{r}=6.4 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \\
\alpha_{c, a}=2.2 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \\
\alpha_{c, s}=4.2 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
\end{array}\right.
$$

Aalto University

Solution - I

1) Total heat transfer coefficients:

$$
\left\{\begin{array}{l}
\alpha_{r}=6.4 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \\
\alpha_{c, a}=2.2 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \\
\alpha_{c, s}=4.2 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
\end{array} \Rightarrow \begin{array}{l}
\alpha_{s, a}=(6.4+2.2) \mathrm{W} / \mathrm{m}^{2} \mathrm{~K}=8.7 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \\
\alpha_{s}=(6.4+4.2) \mathrm{W} / \mathrm{m}^{2} \mathrm{~K}=10.6 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
\end{array}\right.
$$

2) Mean temperature of water:

$$
\bar{T}_{w}=\frac{(45+35)^{\circ} \mathrm{C}}{2}=40^{\circ} \mathrm{C}
$$

3) Heat transfer coefficients $U_{\text {down }}$ and $U_{u p}$:

$$
\begin{aligned}
& s_{b 1}=s_{b}-\frac{d}{2}=0.02 \mathrm{~m}-\frac{0.018 \mathrm{~m}}{2}=0.11 \mathrm{~m} \\
& \frac{1}{U_{u p}}=\frac{s_{b 1}}{\lambda_{b}}+\frac{s_{c}}{\lambda_{c}}+\frac{1}{\alpha_{s}}=\frac{0.11 \mathrm{~m}}{1.5 \frac{\mathrm{~W}}{\mathrm{mK}}}+\frac{0.003 \mathrm{~m}}{0.19 \frac{\mathrm{~W}}{\mathrm{mK}}}+\frac{1}{10.6 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}}=\frac{1}{8.51 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}} \\
& \Rightarrow U_{u p}=8.51 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}, \text { correspondingly }: U_{\text {down }}=4.01 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}
\end{aligned}
$$

Solution - II

4) Surface temperatures for upper space:

$$
\begin{aligned}
& m=\sqrt{\frac{U_{\text {down }}+U_{u p}}{s_{b} \lambda_{b}}}=\sqrt{\frac{(8.51+4.01) \frac{\mathrm{W}}{\mathrm{~m}^{2} \mathrm{~K}}}{0.02 \mathrm{~m} \cdot 1.5 \frac{\mathrm{~W}}{\mathrm{mK}}}}=20.43 \\
& \cosh \left(\frac{m L}{2}\right)=\cosh \left(\frac{20.43 \cdot 0.3 \mathrm{~m}}{2}\right)=10.73
\end{aligned}
$$

Considering $T_{\text {room }}=T_{\text {room }, a}=20^{\circ} \mathrm{C}$:
$T_{s, L / 2}=T_{\text {room }}+\frac{U_{\text {up }}}{\alpha_{s}}\left[\frac{\bar{T}_{w}-T_{\text {room }}}{\cosh \left(\frac{m L}{2}\right)}-1\right]=20^{\circ} \mathrm{C}+\frac{8.51 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}}{10.6 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}}\left[\frac{(40-20)^{\circ} \mathrm{C}}{10.73}-1\right]=20.7^{\circ} \mathrm{C}$
$T_{s, L}=T_{\text {room }}+\frac{U_{\text {up }}}{\alpha_{s}}\left(\bar{T}_{w}-T_{\text {room }}\right)=20^{\circ} \mathrm{C}+\frac{8.51 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}}{10.6 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}}(40-20)^{\circ} \mathrm{C}=36.1^{\circ} \mathrm{C}$
$\bar{T}_{s}=T_{s, L / 2}+\frac{1}{3}\left(T_{s, L}-T_{s, L / 2}\right)=20.7^{\circ} \mathrm{C}+\frac{1}{3}(36.1-20.7)^{\circ} \mathrm{C}=25.8^{\circ} \mathrm{C}$

Solution - III

5) Surface temperatures for lower space:

$$
\begin{aligned}
& m=\sqrt{\frac{U_{\text {down }}+U_{\text {up }}}{s_{a} \lambda_{a}}}=6.46 \\
& \cosh \left(\frac{m L}{2}\right)=1.51 \\
& \text { Considering } T_{\text {room }}=T_{\text {room }, a}=20^{\circ} \mathrm{C}: \\
& T_{s, L / 2}=T_{\text {room }, a}+\frac{U_{\text {doown }}}{\alpha_{s, a}}\left[\frac{\bar{T}_{w}-T_{\text {room }, a}}{\cosh \left(\frac{m L}{2}\right)}\right]=25.7^{\circ} \mathrm{C} \\
& T_{s, L}=T_{\text {room }, a}+\frac{U_{\text {down }}}{\alpha_{s, a}}\left(\bar{T}_{w}-T_{\text {room }, a}\right)=29.3^{\circ} \mathrm{C} \\
& \bar{T}_{s}=T_{s, L / 2}+\frac{1}{3}\left(T_{s, L}-T_{s, L / 2}\right)=26.9^{\circ} \mathrm{C}
\end{aligned}
$$

Solution - IV

6) Heat release rates:

Upper space: $q_{u p}=\alpha_{s}\left(\bar{T}_{s}-T_{\text {room }}\right)=10.6 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}} \cdot(25.8-20) \mathrm{K}=61.7 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
Lower space : $q_{\text {down }}=\alpha_{s, a}\left(\bar{T}_{s}-T_{\text {room }, a}\right)=8.7 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}} \cdot(26.9-20) \mathrm{K}=59.5 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
Total : $q=q_{u p}+q_{\text {down }}=(61.7+59.5) \frac{\mathrm{W}}{\mathrm{m}^{2}}=121.1 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
7) Required heat release area and supply water mass flow rate:
$A=\frac{\Phi_{u p}}{q_{u p}}=\frac{500 \mathrm{~W}}{61.7 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}}=\underline{\underline{8.1 \mathrm{~m}^{2}}}$
$q_{m w}=\frac{\Phi}{c_{p w}\left(T_{i}-T_{o}\right)}=\frac{0.001 \frac{\mathrm{~kW}}{\mathrm{~W}} \cdot 121.1 \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \cdot 8.1 \mathrm{~m}^{2}}{4.186 \frac{\mathrm{~kJ}}{\mathrm{kgK}}(45-35) \mathrm{K}}=\xlongequal{0.023 \frac{\mathrm{~kg}}{\mathrm{~s}}=85 \frac{\mathrm{~kg}}{\mathrm{~h}}}$

Sizing of heat distribution network

- Sizing = choosing appropriate diameters of pipes to distribute a thermal power equal to heating load (i.e. fluid flow at design temperature difference) into the target building and choosing a prime mover for the heat distribution
- Theoretical principle: The fluid seeks the "easiest" flow path (i.e. the path with the lowest pressure drop). The pressure drop of each flow path is balanced to equal. The pipe sizes and valves have to be chosen so that the flow is distributed to each radiator/convector in a desired proportion (\leftrightarrow desired heat flow).
- Loop 1: $\Delta p_{1}, q_{m 1}$
- Loop 2: $\Delta p_{2}, q_{m 2}$

$$
\left\{\begin{array}{l}
q_{m}=q_{m 1}+q_{m 2} \\
\Delta p_{1}=\Delta p_{2}
\end{array}\right.
$$

Balancing of heat distribution network

- \quad Balancing $=$ establishing a desired total pressure drop using valves.
- The total pressure drop is designated by the longest loop (= largest pressure drop).
- In case of an unbalanced network the farthest rooms will remain cold whereas the closes rooms will be overheated (\rightarrow increased energy demand).
- The typical pressure drop of a radiator valve is $2 . .4 \mathrm{kPa}$. The typical pressure drop of a balancing valve is $\approx 1 \mathrm{kPa}$.

Flow rate [L/s]
Flow rate $[\mathrm{L} / \mathrm{h}]$

Pipe sizing based on friction loss

- Useful principle: Experiments show that to prevent noise generation and to make the appropriate selection of valves possible, the pipes should be chosen so that the friction loss per length

$$
R=\frac{\Delta p_{f}}{L} \leq 50 \frac{\mathrm{~Pa}}{\mathrm{~m}}
$$

where $L=$ length of pipe, m

- The chart visualizes the key relations between standardized pipe sizes (steel), fluid velocities, pressure drops and flow rates.

Accounting the pressure drop of pipe components

The pressure drop of pipe components (bends, elbows etc.) depends on turbulence. The impact is accounted as a fraction of the dynamic pressure $\left(p_{d}\right)$ using the minor loss coefficient K (sometimes ξ):

$$
\Delta p=K \frac{1}{2} \rho v^{2}=K \cdot p_{d}
$$

Self-learning: Find data on minor losses from

- ASHRAE DATA \& GUIDEBOOK (USA)
- RECKNAGEL \& SPRENGER (GERMANY)
- GIBS GUIDE (UK)
- VUS HANDBOKEN (Sweden)
- EngineeringToolbox

The branch in which the minor loss is accounted, is highlighted red.

A!
 Aalto University

Cost optimality of heat distribution network

Sizing of heat distribution network in a nutshell

1) Build calculation sheet.
2) Name and number pipes and indicate pipe lengths.
3) Calculate the flow rates (design thermal power \& temperatures)
4) Determine pipe sizes: target $R \leq 50 \mathrm{~Pa} / \mathrm{m}$
5) Calculate pressure losses for each loop:

- Choose pressure drop for radiator/convector + valve: $2 \ldots 4 \mathrm{kPa}$
- Determine the pressure drop (= friction + minor losses).
- Determine the longest loop (= pick the largest pressure drop)

6) Calculate the required pressure drops for balancing valves

- Choose pressure drop for the balancing valve of the farthest rising: $\approx 1 \mathrm{kPa}$
- Calculate the pressure drop required by other risings.

7) Select pump and calculate its power demand.

Example: Sizing of a two pipe system

Solution - I

Example of applying the design routine: sections 11 and 12 (the longest flow path)

1) Volumetric water flow rate:

- Average temperature $(70 / 40)^{\circ} \mathrm{C}=55^{\circ} \mathrm{C}$
$\rightarrow \rho_{w}=986 \mathrm{~kg} / \mathrm{m}^{3}$
- Specific heat $\left(55^{\circ} \mathrm{C}\right) \rightarrow c_{p w}=4.18 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& q_{V}=\frac{q_{m}}{\rho_{w}}=\frac{\Phi}{c_{p w} \Delta T} \cdot \frac{1}{\rho_{w}} \\
& =\frac{1 \mathrm{~kW}}{4.18 \frac{\mathrm{~kJ}}{\mathrm{kgK}} \cdot(70-40) \mathrm{K}} \cdot \frac{1}{0.986 \frac{\mathrm{~kg}}{\mathrm{~L}}}=0.008 \frac{\mathrm{~L}}{\mathrm{~s}}
\end{aligned}
$$

2) Pipe size 11 and $12($ target $R \leq 50 \mathrm{~Pa} / \mathrm{m})$:

- From graph: DN10 (the smallest available size)
- From graph: realized friction loss $R=9 \mathrm{~Pa} / \mathrm{m}$
- From graph: fluid velocity $v=0.07 \mathrm{~m} / \mathrm{s}$

Solution - II

3) Sum of minor losses:

- Assumption: Minor loss coefficient of radiator 2.5

NOTE:

- Section 11: T-branch +2 rounded elbows + radiator:

$$
\sum K_{11}=3.0+2 \cdot 0.5+2.5=6.5
$$

- Section 12: 2 rounded elbows + T-branch

$$
\sum K_{12}=2 \cdot 0.5+3.0=4.0
$$

4) Dynamic pressure:

$$
\Delta p_{d}=\frac{1}{2} \rho v^{2}=\frac{1}{2} \cdot 990.2 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot\left(0.07 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}=2.4 \mathrm{~Pa}
$$

5) Pressure drop:

- Minor loss:

$$
\Delta p=\left(\sum K_{11}+\sum K_{12}\right) \cdot p_{d y n}=(6.5+4.0) \cdot 2.4 \mathrm{~Pa}=25 \mathrm{~Pa}
$$

O boundary of the numbered pipe

- Friction loss: $L=2 \mathrm{~m} \rightarrow \Delta p_{f}=R L=9 \mathrm{~Pa} / \mathrm{m} \cdot 2 \mathrm{~m}=18 \mathrm{~Pa}$
- Total pressure drop (sections 11 and 12): $(25+18) \mathrm{Pa}=43 \mathrm{~Pa}$
- Choose: pressure drop of valve $=2 \mathrm{kPa}$ \rightarrow Total pressure drop: $(2000+43) \mathrm{Pa}=2043 \mathrm{~Pa}$

A!
 Aalto University

Example of calculation sheet

Balancing the first rising

Summary

- The rest of the distribution network is sized and balanced in a corresponding manner. Because risings II...VI are identical to rising I, their pipe sizes and balancing values are the same as with rising I.
- The balancing valves are adapted to provide the network with the total pressure drop 6477 Pa . Their sizes are chosen as identical with the pipe diameter. In the present example, the volumetric flow rate and the pressure drop of the balancing valve of rising VI are $0.063 \mathrm{~L} / \mathrm{s}$ and 1765 Pa , respectively.
- The pressure drops of the boiler loop and the mixing valve are calculated in a corresponding manner and added to the total pressure for the selection of circulation pump. The mixing valve should represent ca. 50% of the pressure drop of the boiler loop.
- The present example does not include the impact of pressure difference due to difference of temperature (density) between supply and return water (aka natural circulation).

Tools for sizing onepipe systems - I

Tool 1:
Fixed proportion of passage (Ω)
Flow rate : $q_{m w}=\frac{\Phi}{c_{p w}\left(T_{i}-T_{o}\right)}$

$$
\text { where } \Phi=\sum_{i} \Phi_{i}
$$

Return water temperature after radiator/convector:

$$
\text { Balance I: } \Omega q_{m w} c_{p w}\left(T_{2}-T_{4}\right)=\Phi_{1} \Leftrightarrow T_{4}=T_{2}-\frac{\Phi_{1}}{\Omega q_{m w} c_{p w}}=T_{2}-\frac{\Phi_{1}}{\Omega \Phi}\left(T_{i}-T_{o}\right)
$$

Supply water temperature before radiator/convector:
Balance II:

$$
q_{m w} c_{p w}\left(T_{1}-T_{5}\right)=\Phi_{1} \Leftrightarrow T_{5}=T_{1}-\frac{\Phi_{1}}{q_{m w} c_{p w}}=T_{1}-\frac{\Phi_{1}}{\Phi}\left(T_{i}-T_{o}\right)
$$

Tools for sizing one-pipe systems - II

Tool 2:

Fixed temperature drop (ΔT)

$$
\begin{aligned}
& T_{1}=T_{2}=T_{3}, \\
& T_{4}-T_{2}=\Delta t=\text { const } \\
& \Rightarrow T_{4}=T_{1}-\Delta T
\end{aligned}
$$

Flow rate : $q_{m w}=\frac{\Phi}{c_{p w}\left(T_{i}-T_{o}\right)}$, where $\Phi=\sum_{i} \Phi_{i}$
Balance: $\Phi_{1}=q_{m w} c_{p w}\left(T_{1}-T_{5}\right) \Rightarrow T_{6}=T_{5}=T_{1}-\frac{\Phi_{1}}{q_{m w} c_{p w}}=T_{1}-\frac{\Phi_{1}}{\Phi}\left(T_{i}-T_{o}\right)$

$$
\begin{aligned}
& T_{8}=T_{6}-\Delta T=T_{1}-\frac{\Phi_{1}}{\Phi}\left(T_{i}-T_{o}\right)-\Delta T \\
& T_{9}=T_{5}-\frac{\Phi_{2}}{\Phi}\left(T_{i}-T_{o}\right)=T_{1}-\frac{\Phi_{1}+\Phi_{2}}{\Phi}\left(T_{i}-T_{o}\right)
\end{aligned}
$$

Etc.

Self-learning: Reflect on the consequences of coupling the heat exchangers in parallel/series (one pipe vs. two pipe systems). Specifically: What is the impact on the heat release (physical size) of heat exchangers and what are the consequences for sizing the radiator/convector network?

Gravity heating system

- Based on the utilization of natural circulation. The driving force is defined as $\Delta p=g h\left(\rho_{o}-\rho_{i}\right) ; \quad \rho_{o}>\rho_{i}$
where $h=$ elevation between radiator (centerline) and boiler (centerline), m
+ Works without electrical power input
- Weak driving force \Rightarrow large pipes
- Sizing and balancing:
- The driving force is calculated separately for each radiator loop.
- The pipe diameters are chosen so that the total pressure drop does not exceed the driving force of the target loop.
- The driving force and the pressure drop
 are set equal by adjusting radiator valve.

Sizing of bladder expansion tank

Sizing $=$ choosing such a tank size $\left(V_{l}\right)$ that is sufficient to compensate the expansion of water due to temperature rise.

Sizing equations (ideal gas law):
$p_{1} V_{1}=p_{2} V_{2} \Rightarrow \frac{V_{1}}{V_{2}}=\frac{p_{2}}{p_{1}}$
$V_{1}=\frac{\Delta V}{\eta}$
$\Delta V=V_{1}-V_{2}=$ Effective expansion volume
$\eta=\frac{\Delta V}{V_{1}}=\frac{V_{1}-V_{2}}{V_{1}}=1-\frac{V_{2}}{V_{1}}=\frac{p_{2}-p_{1}}{p_{2}}=\frac{\Delta p}{p_{2}}$
Rules of thumb (L/capacity of the heating plant in kW):

- $15 \mathrm{~L} / \mathrm{kW}$ (general default)
- 12... $13 \mathrm{~L} / \mathrm{kW}$ (boiler plane)
- $9 \ldots . .12 \mathrm{~L} / \mathrm{kW}$ (district heating)
- 4... $5 \mathrm{~L} / \mathrm{kW}$ (ventilation loop)

Extreme conditions:

Tank filled with air (minimum operational temperature e.g. $10^{\circ} \mathrm{C}$, fill pressure e.g. 1.5 bar$)$.
\qquad
\qquad)

Aalto University

Example

Choose the size of bladder expansion tank with the following information:

- Water volume of the heat distribution network: 300 L
- Fill conditions: $10^{\circ} \mathrm{C} / 1.5$ bar
- Extreme operational conditions: $90^{\circ} \mathrm{C} / 2.5$ bar

Aalto University

Solution

1. Water densities and specific volumes in extreme conditions:

- $\rho_{1}=\rho\left(10^{\circ} \mathrm{C}\right)=999.7 \mathrm{~kg} / \mathrm{m}^{3} \rightarrow v_{1}=1.0003 \mathrm{~m}^{3} / \mathrm{kg}$
- $\rho_{2}=\rho\left(90^{\circ} \mathrm{C}\right)=965.3 \mathrm{~kg} / \mathrm{m}^{3} \rightarrow v_{2}=1.0361 \mathrm{~m}^{3} / \mathrm{kg}$

2. Effective expansion volume:

- proportional change of volume (the absolute tank size is to be chosen)

$$
\frac{v_{2}-v_{1}}{v_{1}}=\frac{(1.0361-1.0003) \frac{\mathrm{m}^{3}}{\mathrm{~kg}}}{1.0003 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}}=0.036
$$

\rightarrow effective expansion volume $\Delta V=0.036 \cdot 300 \mathrm{~L}=10.8 \mathrm{~L}$
3. Tank size:

Tank size:

- from sizing equations: $\eta=\frac{p_{2}-p_{1}}{p_{2}}=\frac{(2.5-1.5) \mathrm{bar}}{2.5 \mathrm{bar}}=0.4$

$$
\Rightarrow V_{1}=\frac{\Delta V}{\eta}=\frac{10.8 \mathrm{~L}}{0.4}=\underline{\underline{27 \mathrm{~L}}}
$$

