
CS-E4530 Computational Complexity Theory

Lecture 1: Problems, Algorithms, Complexity, Reductions

Aalto University
School of Science
Department of Computer Science

Spring 2019

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

2/19

Agenda

Problems vs. algorithms

Efficiency of algorithms, complexity of problems

Rates of growth

Example problems

Reductions between problems

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

3/19

Problems vs. Algorithms

This course focuses on analysing the computational complexity of
problems (not algorithms).

A problem: an infinite set of instances (possible inputs) with an
associated question

A decision problem: a question with a yes/no answer

Definition
REACHABILITY:
INSTANCE: A graph (V,E) and vertices v,u ∈ V .
QUESTION: Is there a path in the graph from v to u?

Before turning to the question of complexity of problems we consider
the computational complexity of algorithms.

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

4/19

Algorithm for REACHABILITY

S := {v}; mark v;
while S 6= {} do

choose a vertex i and remove it from S;
for all (i, j) ∈ E do

if j is not marked then mark j and add it to S
endif

endfor
endwhile ;
if u marked then return ’there is a path from v to u’
else return ’there is no path from v to u’
endif

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

5/19

How efficient is the algorithm?
How is the efficiency affected by

I Programming language?
I Computer architecture?
I Representation of the graph?
I Representation of the set S?

Typically the efficiency of an algorithm is measured by the rate of
growth of the running time (or memory usage), i.e., by
considering how the run time (or memory usage) of the algorithm
scales when the size of the input increases.

For this the O-notation is used where multiplicative and additive
constants are ignored.

For example, given some assumptions about the efficiency of the
bookkeeping, the algorithm above terminates in O(|E|) steps,
where |E| is the size (number of edges) of the graph.

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

6/19

Rates of Growth

Definition (The O-Notation)

Let f , g: N 7→ R+.

f (n) = O(g(n)) (f grows at most as fast as g), if there exist c > 0
and n0 > 0 such that for all n≥ n0, f (n)≤ c ·g(n)
f (n) = Θ(g(n)), (f grows exactly as fast as g), if g(n) = O(f (n))
and f (n) = O(g(n)).

f (n) = o(g(n)) (f grows strictly slower than g), if for any c > 0
there is an nc > 0 such that for all n≥ nc, f (n)< c ·g(n)
f (n) = Ω(g(n)), if f (n) 6= o(g(n)), i.e. if for some c > 0 there is
for any n > 0 an n′ ≥ n such that f (n′)≥ c ·g(n′) (in other words
“f grows infinitely often at least as fast as g”)

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

7/19

Rates of Growth: Some Example Functions

Example

If p(n) is a polynomial of degree d, then p(n) = Θ(nd).

If c > 1 and p(n) is a polynomial, then p(n) = o(cn), i.e.

any polynomial grows strictly slower than any exponential.

If c≥ 0, then logc n = o(n).

 1

 10

 100

 1000

 1 10 100

2**x
5*x+20

x
log2(x)

Observe the logarithmic scales

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

8/19

Computational Complexity of Problems

The following simplifying assumptions are typically made in
considering the computational complexity of problems:

A problem is efficiently solvable if there is an algorithm solving the
problem, for which the rate of growth of the solution time is
polynomial w.r.t. the size n of the input (i.e. O(nd) for some
d ≥ 0).

A problem is intractable when no polynomial time algorithm is
available for it.

One assesses the worst-case performance (not e.g. average
case).

As the standard mathematical model of algorithms one uses
Turing machines.

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

9/19

Discussion
Possible criticism:

Not all polynomial time algorithms
are efficient in practice.
There are efficient computations
that are not polynomial.
For instance, consider n10 vs
2

n
100.000 .

Average case analysis is more
informative than worst-case. (In
case one knows the distribution
of inputs.)

 1

 1e+20

 1e+40

 1e+60

 1e+80

 1e+100

 1e+120

 1e+140

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

2**(0.00001*x)
x**10

log2(x)**50

+ “Adopting polynomial time worst-case performance as our
criterion of efficiency results in an elegant and useful theory that says

something meaningful about practical computation, and would be
impossible without this simplification.” (C. Papadimitriou 1994)

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

10/19

Some Example Problems

Maximum flow

Bipartite matching

The travelling salesperson problem

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

11/19

Maximum Flow

Definition
MAX FLOW
INSTANCE: Network N = (V,E,s, t,c), where (V,E) is a (directed)
graph, s, t ∈ V , the source s has no incoming edges, the sink t has no
outgoing edges and c is a function giving a capacity for each edge
(each c(i, j) is a positive integer).
QUESTION: What is the largest possible value for the flow in N?

where

A flow is a function f that assigns to each edge (i, j) a
nonnegative integer f (i, j)≤ c(i, j) such that for each vertex
(except s and t) the sum of f ’s on the incoming edges is equal to
the sum of f ’s on the outgoing edges.

The value of a flow is the sum of the flows on edges leaving s.

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

12/19

Maximum Flow: An Example
Network N:

Network flow f of value 3 f optimal iff t is not reachable from
s in the augmentation network N(f):

[Papadimitriou, 1994]

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

13/19

Maximum Flow: Discussion

MAX FLOW is an optimisation problem.

MAX FLOW(D) (decision problem)
INSTANCE: Network N and integer K (goal/target value)
QUESTION: Is there a flow of value K or more in N?

MAX FLOW is an illustrative example of a problem where the
challenge was for some time to find a polynomial time solution
method.

When the “barrier of exponentiality” was broken, more and more
efficient polynomial time algorithms were developed
(O(n5), . . . ,O(n3), . . .)

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

14/19

Bipartite Matching

Definition
MATCHING
INSTANCE: Bipartite graph G = (U,V,E), where
U = {u1, . . . ,un}, V = {v1, . . . ,vn}, and E ⊆ U×V .
QUESTION: Is there a set M ⊆ E of n edges such
that for any two edges (u,v),(u′,v′) ∈M, u 6= u′ and
v 6= v′

(i.e., is there a perfect matching)?

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

15/19

Reductions Between Problems
A reduction from a problem B to a problem A is an algorithm R
that transforms any instance x of B to an “equivalent” instance
y = R(x) of A.

If the reduction R is efficient, and an efficient algorithm for A
exists, then the two can be combined to yield an efficient
algorithm for B.

input x =⇒

Algorithm for B:
Reduction

R
R(x)
=⇒ Algorithm

for A
=⇒ Answer

In a sense, R transforms problem B into a special case of
problem A.

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

16/19

Reductions: An Example

MATCHING can be solved by a reduction to MAX FLOW:
Given any bipartite graph G = (U,V,E), construct a network

N = (U∪V ∪{s, t},E′,s, t,c),
where E′ = E∪{(s,u) | u ∈ U}∪{(v, t) | v ∈ V}
and all capacities are equal to 1.

Now G has a perfect matching iff N has a flow of value n. (The
claim from right to left follows from the so called Ford-Fulkerson
integral flows theorem.)

[Papadimitriou, 1994]

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

17/19

The Travelling Salesperson Problem

Definition
TSP
INSTANCE: n cities 1, . . . ,n and a nonnegative integer distance dij

between any two cities i and j (such that dij = dji).
QUESTION: What is the shortest tour of the cities, i.e., a permutation
π such that

n

∑
i=1

dπ(i)π(i+1)

is as small as possible (where π(n+1) = π(1)).

Decision problem TSP(D): is there a tour of length at most B (budget)?

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

18/19

The Travelling Salesperson Problem: Discussion

A naive algorithm for TSP: enumerate all possible permutations,
compute the cost of each, and pick the best.
Not very practical: O(n!) tours.
Consider e.g. a 25-city TSP instance:

I n = 25⇒ n!≈ 1.6×1025

I 1 route/µs⇒ runtime ≈ 500 bn years
I age of the universe ≈ 10-20 bn years

For TSP no polynomial-time algorithm is known, despite decades
of intensive efforts at developing one.

Conjecture: there can be no polynomial-time algorithm for TSP.

This is closely related to one of the most important open
problems in computer science: is P = NP?1

1This is one of the seven “millennium” mathematical problems defined by the Clay
Mathematics Institute in the year 2000 (http://www.claymath.org/). The first
person resolving this question will be awarded 1.000.000 USD by the Institute.

http://www.claymath.org/

CS-E4530 Computational Complexity Theory / Lecture 1
Department of Computer Science

19/19

Learning Objectives

Ability to read and formulate decision/optimisation problems

Basic understanding of growth rates (polynomial vs. exponential)

The idea of reducing one problem to another

