Solid State Chemistry CHEM-E4155 (5 cr)

Spring 2019

Antti Karttunen

Department of Chemistry and Materials Science

Aalto University

Course outline

Teacher: Antti Karttunen

Lectures

- 16 lectures (Mondays and Tuesdays, 12:15-14:00)
- Each lecture includes a set of exercises (a MyCourses Quiz)
- We start the exercises together during the lecture (deadline: Sunday 23:59)

Project work

- We create content in the Aalto Solid State Chemistry Wiki
- Includes both independent and collaborative work (peer review)
- Lots of content has been created in the Wiki during 2017-2018.

Grading

- Exercises 50%
- Project work 50%

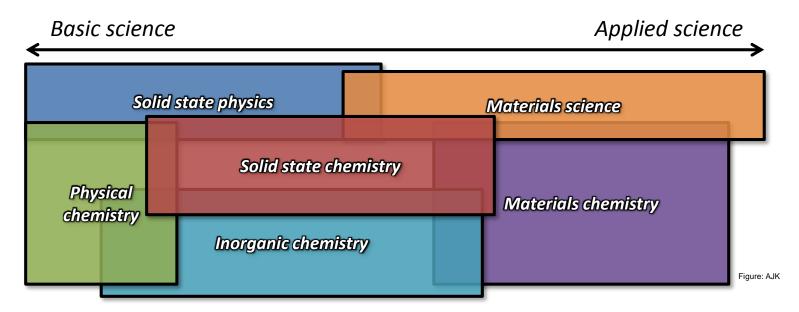
Workload (135 h)

- Lectures, combined with exercises 32 h
- Home problem solving 48 h
- Independent project work 55 h

Honor code for exercises

- The purpose of the exercises is to support your learning
- Most of the exercises are graded automatically
 - Some of the more demaning exercises I will grade manually
- It is perfectly OK to discuss the exercises with the other students
 - In fact, I encourage discussion during the exercise sessions
- It is **not OK** to take answers directly from the other students
 - This also means that is **not OK** to give answers directly to the other students
- The exercise answers and timestamps are being monitored

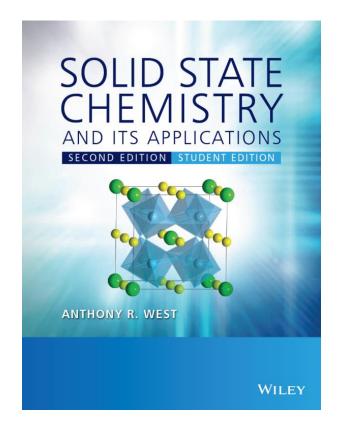
Course calendar

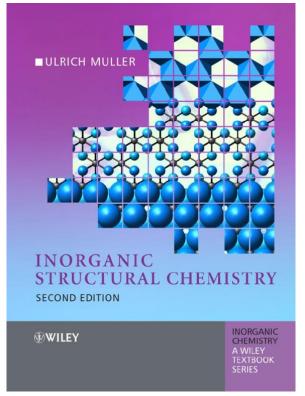

Mondays: 12.15 - 14.00

Tuesdays: 12.15 - 14.00

Week	Lect.	Date	Topic	
1: Structure	1	25.2.	Structure of crystalline materials. X-ray diffraction. Symmetry.	
	2	26.2.	Structural databases, visualization of crystal structures.	
2: Bonding	3	4.3.	Bonding in solids. Description of crystal structures.	
	4	5.3.	Band theory. Band structures.	
3: Synthesis	5	11.3.	Solid state synthesis. Phase diagrams.	
	6	12.3.	High-pressure synthesis, crystal growth, thin films.	
4: Characterization	7	18.3.	XRD, Miller indices. Powder XRD databases. Microscopies	
	8	19.3.	Spectroscopies and thermal analysis.	
5: Main groups	9	25.3.	Abundance of elements, geochemistry, minerals.	
	10	26.3.	Main group compounds, allotropes, Zintl phases.	
6: d-block metals	11	1.4.	d-block metals, ligand field theory, magnetism.	
	12	2.4.	d-block metal oxides and other compounds.	
7: Specialized topics I	13	15.4.	Defects, non-stoichiometric oxides.	
	14	16.4.	Semiconductors, doping, electrical properties.	
8: Specialized topics II	15	23.4.	Tuesday. Layered compounds, intercalation chemistry, diffusion in solids.	
	16	24.4.	Wednesday. Summary of all course topics. Project work checkpoint.	

Solid state chemistry

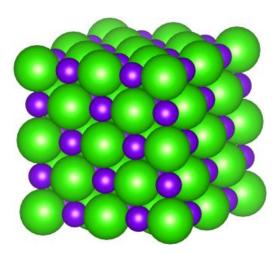

• Synthesis, structures, properties, and applications of <u>crystalline</u> inorganic materials

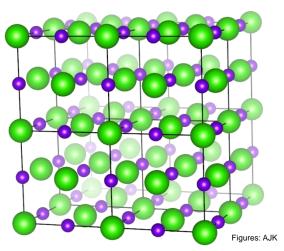


- **Atomic-level structure** of materials is at the very heart of solid state chemistry
- "If you want to understand function, study structure"
 - Francis Crick (1962 Nobel Prize in Physiology or Medicine Structure of DNA)
- The above classification is a rather traditional one: new concepts such as *metal-organic frameworks* are bringing organic/organometallic chemistry into the picture
- What is **your** background? Chemistry, materials science, something else?

Literature

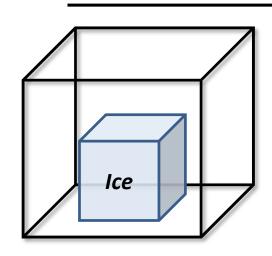
- Solid State Chemistry and its Applications Student Edition (2nd ed.), Anthony R. West, 2013, Wiley.
- Inorganic Structural Chemistry (2nd ed.), Ulrich Müller, 2006, Wiley
 - (Anorganische Strukturchemie (fünfte Ed.), 2006, Wiley)

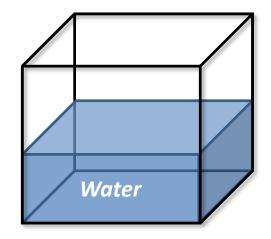




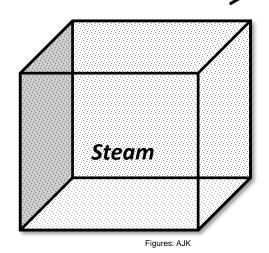
Lecture 1:

Structure of crystalline materials


- Basics of crystalline materials
 - Dimensionality of solids
 - Molecular vs. non-molecular solids
- X-ray diffraction
- Unit cell
- Crystal systems
- Symmetry
 - Point group symmetry and translational symmetry
 - Crystal classes
- Lattice
 - Lattice types and Bravais lattices
- Space groups

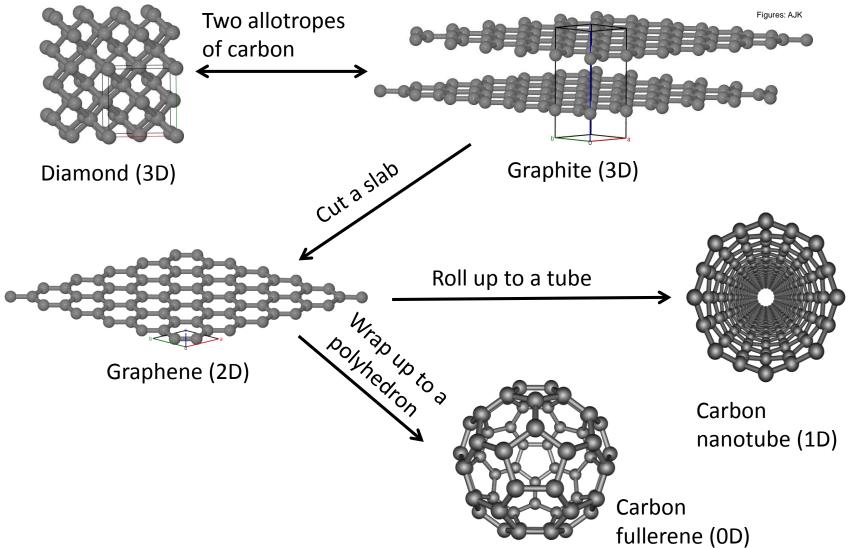


States of bulk matter


Temperature increases

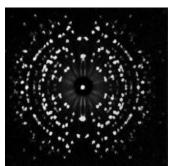
Solid: Adopts and maintains a shape that is independent of the container it occupies.

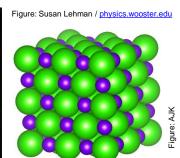
Liquid: Adopts the shape of the part of the container it occupies and is separated from the unoccupied part of the container by a definite surface.


Gas: immediately fills any container it occupies

Condensed matter

Fluids (flow in response to forces such as gravity)

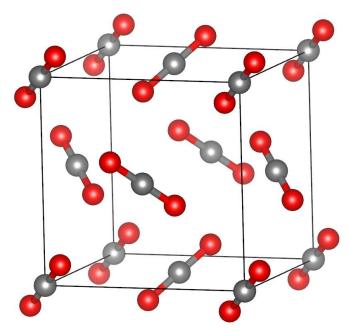

Molecular chemistry


Dimensionality of solids

Crystalline vs. amorphous

- Crystalline material
 - A material is a crystal if it has essentially a sharp diffraction pattern (IUCr definition)
- The definition includes
 - Periodic crystals
 - Aperiodic crystals
 - Quasicrystals
- Periodic crystal is a regular arrangement of atoms in three dimensions. These include
 - a) Single crystals
 - b) Polycrystals composed of many crystallites
- Amorphous materials
 - Non-crystalline
 - Lack long-range order
 - Not discussed on this course

Silicon single crystal grown by *Czochralski process* (*Deutsches Museum, München*)₁₀


Non-molecular crystalline solids

- Coordination polymers such as metal-organic frameworks show covalent bonding of metal atoms and organic molecules
- They are challenging the traditional classifications of solid state structures (see e.g. review of H. Furukawa et al., <u>Science</u> 2013, 341, 1230444).

Molecular crystalline solids

- Composed of molecules that are held together by (weak) van der Waals forces
- Discussed only little here, but can be interesting for intercalation chemistry
- Much more relevant for small-molecule chemistry
- **Crystal engineering** using e.g. **hydrogen** and **halogen** bonding is making the boundary between molecular and non-molecular solids less clear!

Solid CO₂ (space group *Pa*-3, #205) *Acta Cryst. B* **1980**, *36*, 2750.

Solid C₆₀ (space group *Pa*-3, #205) *Nature* **1991**, *353*, 147.

Structure of non-molecular crystalline solids

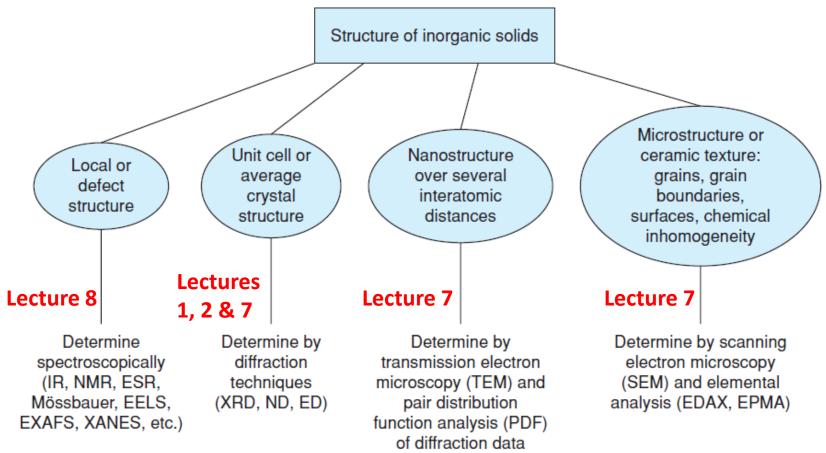
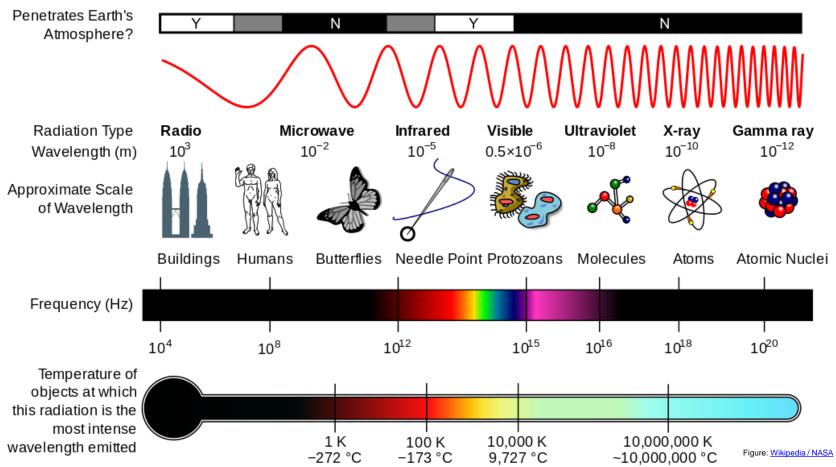
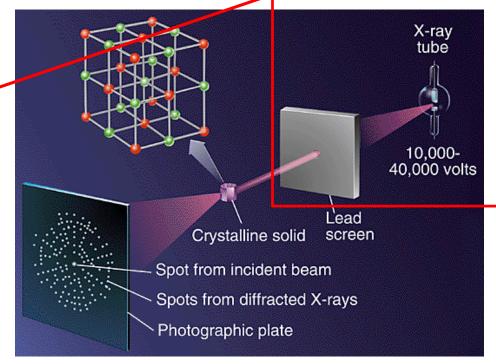
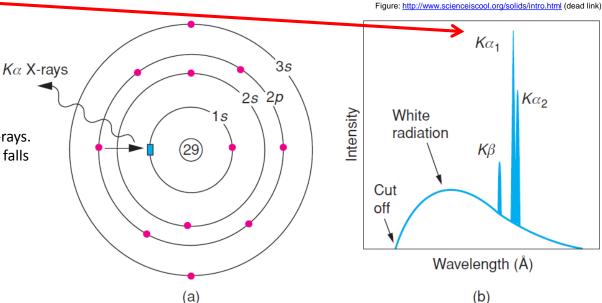



Figure 5.1 Structural features of inorganic solids across the length scales and some of the techniques used to study them.

Ref: West p. 230


X-ray diffraction (1)


- X-rays are electromagnetic radiation of wavelength ~ 1 Å (10⁻¹⁰ m)
 - Matches the scale of atomic-level structure!

X-ray diffraction (2)

- X-rays are produced when high-energy charged particles, e.g. electrons accelerated through a voltage of 30 000 V, collide with matter
- For X-ray diffraction experiments, we use monochromatic X-rays

Figure 5.3. (a) Generation of Cu K α X-rays. A 1s electron is ionised, a 2p electron falls into the empty 1s level (blue) and the excess energy is released as X-rays.

(b) X-ray emission spectrum of Cu

Ref: West p. 233

Bragg's law

- Consider crystals as built up in planes acting as a semi-transparent mirrors
- **Bragg's law**: $2d \sin \theta = n\lambda$, where $n = \text{positive integer and } \lambda = \text{wavelength}$
- When BL satisfied, the reflected beams are in-phase and interfere constructively, giving rise to a diffraction pattern, that can be used to solve the crystal structure
- For some simple crystal structures, the planes also correspond to layers of atoms, but this is not generally the case (they are a concept, not physical reality)!

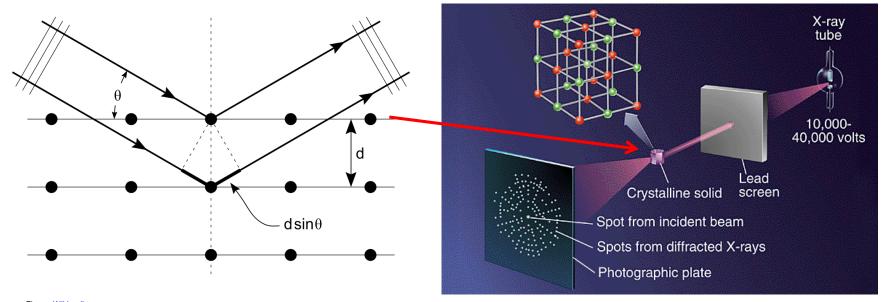
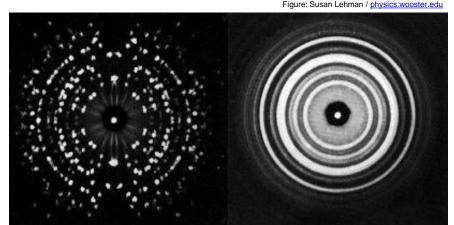



Figure: Wikipedia

Figure: http://www.scienceiscool.org/solids/intro.html (dead link)

Single crystal vs. powder X-ray

- X-ray diffraction pattern of aluminum single crystal (left) and powder (right)
- Polycrystalline powder sample has random orientation of crystallites
- 1D summation of 3D diffraction process!
- The crystal structure might be deduced from a powder pattern with *Rietveld* refinement (typically requires a good model structure)
- X-ray diffraction powder pattern of crystalline (top) and amorphous (bottom) material

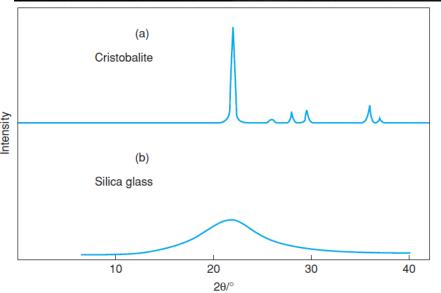
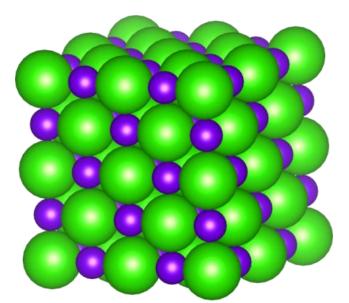
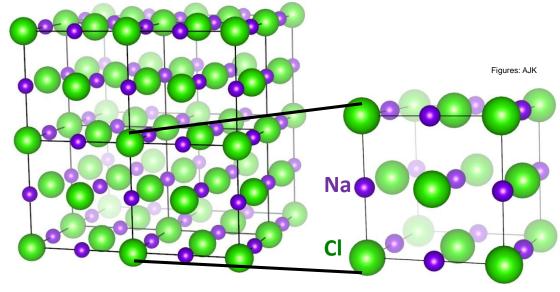



Figure 5.15 X-ray powder diffraction patterns of (a) cristobalite and (b) glassy SiO_2 ; Cu $K\alpha$ radiation.


17

Unit cell

- *Crystal*: Regular arrangement of atoms in three dimensions
- The regular arrangement can be represented by a repeat unit called the unit cell
- Unit cell: The smallest repeating unit which shows the full symmetry of the crystal

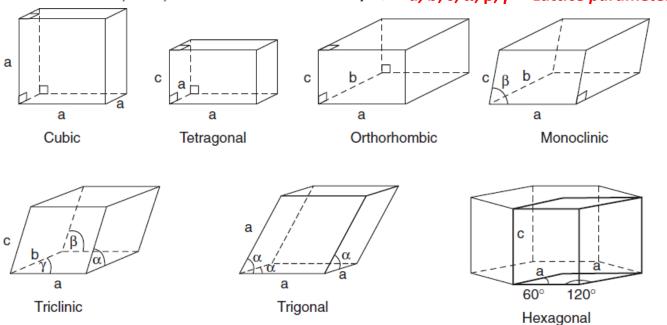
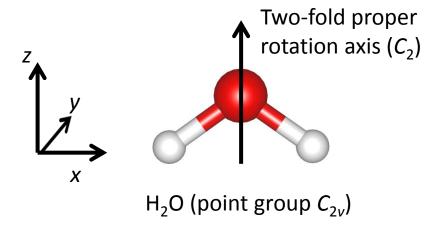
NaCl crystal: Regular arrangement of Na and Cl (space-filling representation)

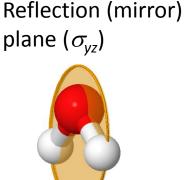
NaCl crystal (non-spacefilling representation

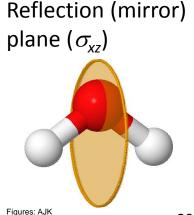
NaCl unit cell

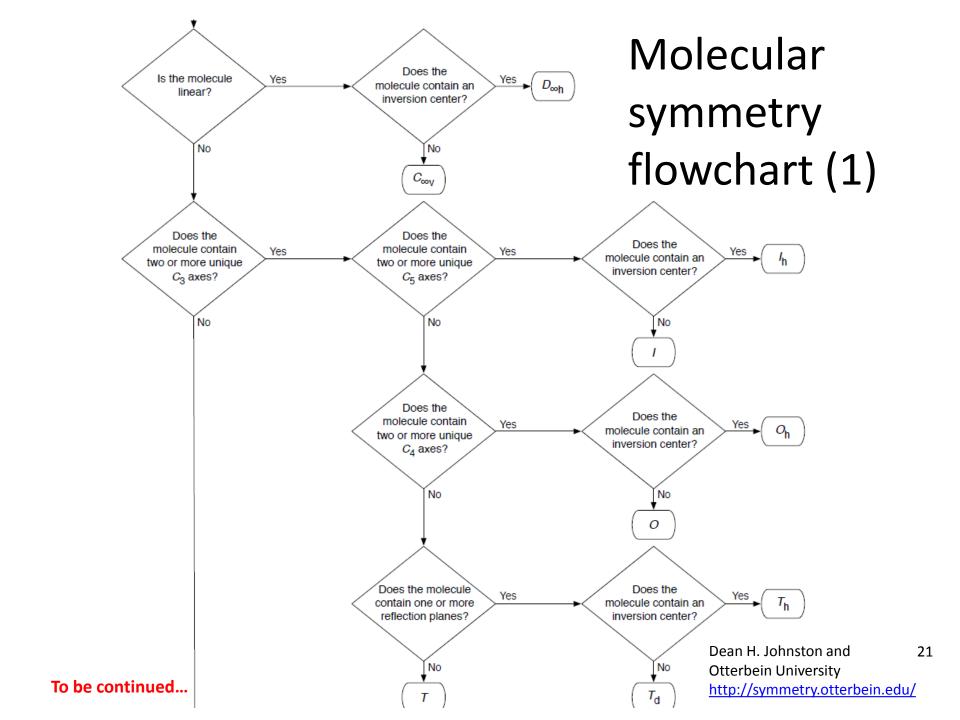
Crystal systems

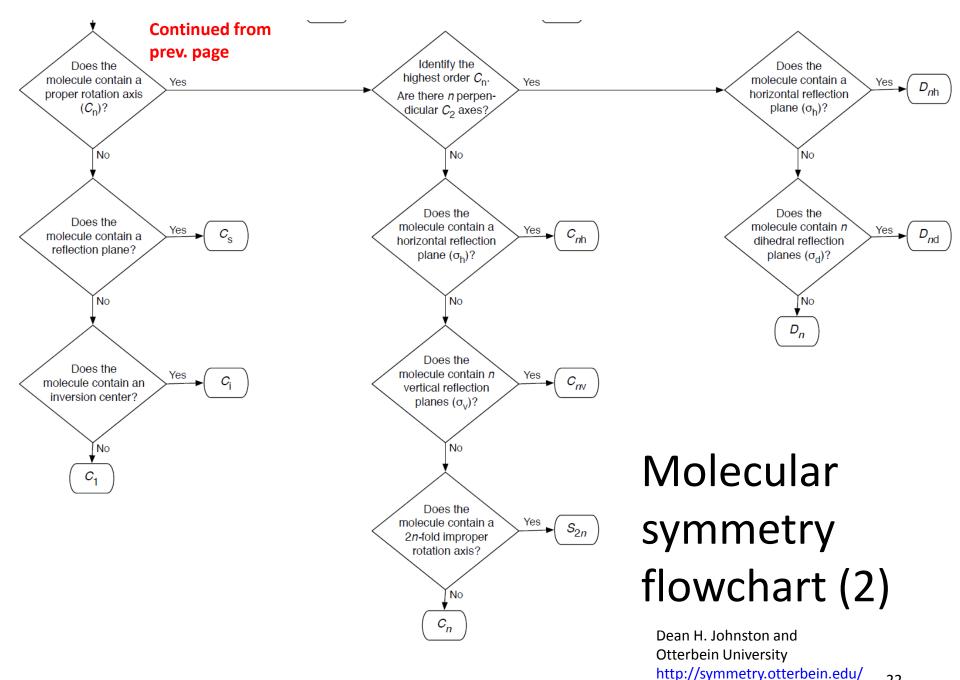
Figure 1.3 (a) The seven crystal systems and their unit cell shapes; α , β , γ = Lattice parameters


Table 1.1 The seven crystal systems


Crystal system	Unit cell shape ^b	Essential symmetry	Allowed lattices
Cubic Tetragonal Orthorhombic Hexagonal Trigonal (a) Trigonal (b) Monoclinic ^a Triclinic	$a = b = c, \alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$ $a \neq b \neq c, \alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ $a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ $a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ $a = b = c, \alpha = \beta = \gamma \neq 90^{\circ}$ $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$ $a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	Four threefold axes One fourfold axis Three twofold axes or mirror planes One sixfold axis One threefold axis One threefold axis One twofold axis or mirror plane None	P, F, I P, I P, F, I, A (B or C) P P R P, C P Ref: West p. 3-4

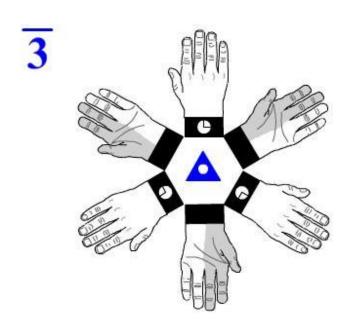

Symmetry


- The most characteristic feature of any crystal structure is its **symmetry**
 - 1. Point group symmetry (also relevant for molecules)
 - 2. Translational symmetry of the crystal lattice (only in crystals)
- Symmetry elements:
 - Mirror plane, inversion center, proper axis, improper axis, and identity
- Symmetry operation: The actual process of applying the symmetry element.
- A symmetry operation transfers an object into a new spatial position that cannot be distinguished from its original position
- Extremely helpful resource for PG symmetry: http://symmetry.otterbein.edu/

Symmetry elements in crystals

- The shape of the unit cell is not enough to determine the crystal system. It is the symmetry of the unit cell that really determines the crystal system
 - For example, a true cubic structure always shows four 3-fold symmetry axes
 - A "pseudocubic" crystal structure could have lattice parameters a = b = c and $\alpha = \beta = \gamma = 90^\circ$, but it would not possess the correct cubic symmetry
- Crystals may display rotational symmetries 2, 3, 4 and 6, not others!
- In crystallography, the symmetries are labeled with *Hermann–Mauguin* symbols

 Table 1.2
 Symmetry elements


	Symmetry element	Hermann–Mauguin symbols (crystallography)	Schönflies symbols (spectroscopy)
Point symmetry At least one point stays unchanged during the symmetry operation	Mirror plane Rotation axis Inversion axis Alternating axis ^a Centre of symmetry	m $n = 2, 3, 4, 6$ $\bar{n} (= \bar{1}, \bar{2}, \text{ etc.})$ $ \bar{1}$	σ_{v} , σ_{h} C_{n} (C_{2} , C_{3} , etc.) $-$ S_{n} (S_{1} , S_{2} , etc.) i
Space symmetry Includes translation	Glide plane Screw axis	a, b, c, d, n 2 ₁ , 3 ₁ , etc.	_ _

^aThe alternating axis is a combination of rotation (n-fold) and reflection perpendicular to the rotation axis. It is little used in crystallography.

Ref: West p. 5

Inversion axis

- Denoted by \bar{n} . Rotation of 360° / n followed by inversion.
- $\overline{1}$ = equal to inversion center
- $\overline{2}$ = equal to mirror plane (m)
- $\overline{3}$, $\overline{4}$, $\overline{6}$ are actual inversion axes
- For example, $\overline{3}$ inversion axis (equal to S_6 improper rotation):

Glide plane

- Reflection followed by a translation
 - Simple glide planes are denoted as a, b, c (axis of the glide)
 - n glide: reflection followed by translation of 1/2 along two cell edges
 - d glide (diamond glide): reflection followed by translation of 1/4 along
 two cell edges

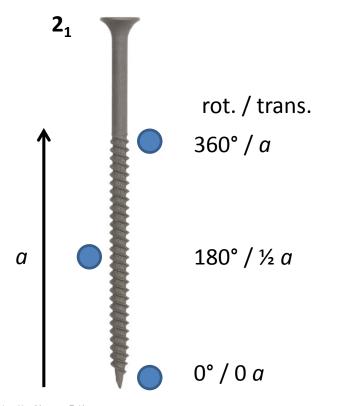
Glide plane (parallel to a, reflection followed by a translation of ½a)

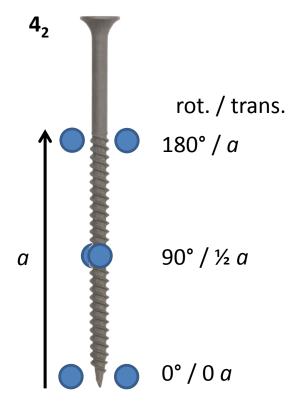
a

y
a

a

a


a


a

a

Screw axis

- Combination of rotation and translation, denoted as x_v :
 - Rotation of $360^{\circ}/x$; translation of y/x units along the screw axis
 - 2_1 screw axis: rotation of 360° / 2 = 180°; translation of 1/2 units
 - -4_2 screw axis: rotation of 360° / 4 = 90°; translation of 2/4 = 1/2 units

Crystal classes

• The seven crystal systems consist of 32 crystal classes corresponding to the 32 crystallographic point groups

Crystal system	Crystal classes (point groups) in Hermann-Mauguin notation	Crystal classes (point groups) in Schönflies notation
Triclinic	1, 1	C_1, C_i
Monoclinic	2, m, 2/m	C_2 , C_s , C_{2h}
Orthorhombic	222, mm2, mmm	$D_2, C_{2v_i} D_{2h}$
Tetragonal	$4, \overline{4}, 4/m, 422, 4mm, \overline{4}2m, 4/mmm$	C_4 , S_4 , C_{4h} , D_4 , C_{4v} , D_{2d} , D_{4h}
Trigonal	$3, \overline{3}, 32, 3m, \overline{3}m$	C_3 , S_6 (C_{3i}), D_3 , C_{3v} , D_{3d}
Hexagonal	6, $\overline{6}$, $6/m$, 622 , $6mm$, $\overline{6}m2$, $6/mmm$	C_6 , C_{3h} , C_{6h} , D_6 , C_{6v} , D_{3h} , D_{6h}
Cubic	23, $\bar{4}$ 3 m , $m\bar{3}$, 432, $m\bar{3}$ m	T , T_d , T_h , O , O_h

Ref: Müller p. 24, Wikipedia

Lattice

- The most characteristic feature of any crystal structure is its **symmetry**
 - 1. Point group symmetry (discussed above)
 - 2. Translational symmetry of the crystal lattice
- Crystal structure = basis (atoms) + crystal lattice

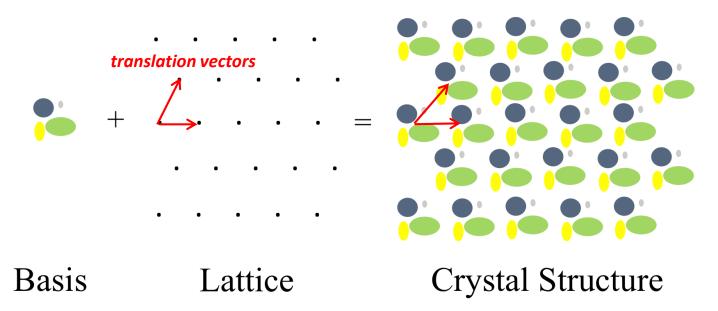
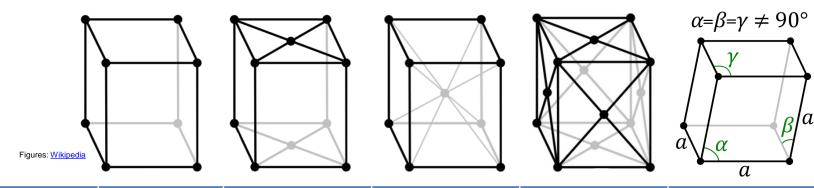
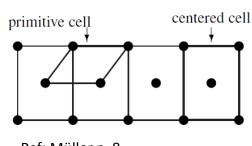



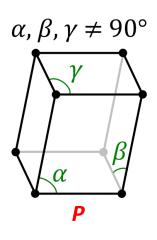
Figure: Andreas Mulyo

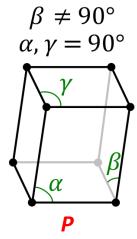
Lattice types

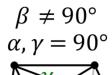

- Every crystal structure belongs to one of five *lattice types*:
 - The balls are lattice points, not atoms!

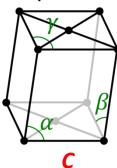
Lattice type	Primitive	Base-centered	Body-centered	Face-centered	Rhombohedral
Symbol	Р	A/B/C	1	F	R
V(C-cell)/V(P-cell)	1	2	2	4	3

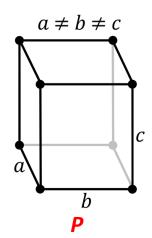
- **Primitive unit cell**: unit cell with the smallest possible volume
- **Centered unit cell**: the smallest repeating unit which shows the full symmetry of the crystal
- Except for the lattice type P, the centered unit cell is 2, 3, or 4 times larger than the primitive cell (table: V(C-cell)/V(P-cell))

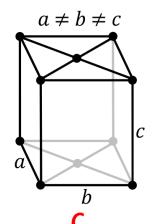


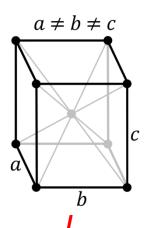

Ref: Müller p. 8

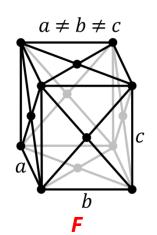

Bravais lattices (1)


Triclinic

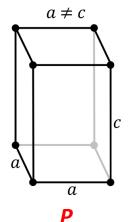

Monoclinic

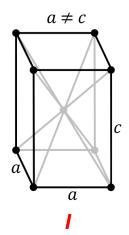




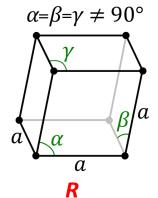


Orthorhombic

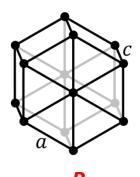


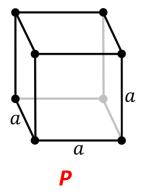


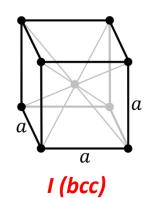
Figures: Wikipedia

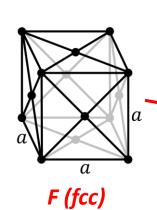

Bravais lattices (2)

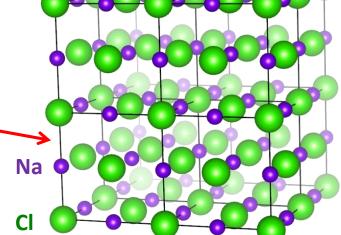
Tetragonal




Rhombohedral




Hexagonal



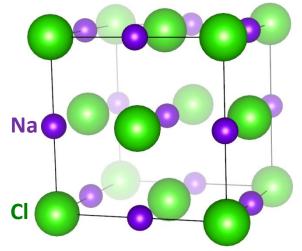
Cubic

Figures: Wikipedia

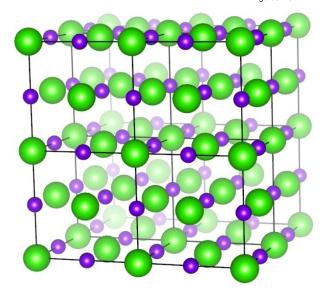
fcc, basis: Cl + Na

Figure: AJK

Space groups


- The 32 crystal classes and 14 Bravais lattices give rise to 230 space groups
- The Hermann-Mauguin symbol for the space group of NaCl: $Fm\overline{3}m$ (or Fm-3m)
- The symbol begins with a capital letter *P, A, B, C, F, I* or *R,* specifying the presence of *translational symmetry* in three dimensions and the lattice type (*centering*)
- The letter is followed by a listing of the other symmetry elements
- Some examples:
 - All triclinic space groups: P1 and P-1
 - Some monoclinic space groups: P2, Pm, C2/c
 - Some hexagonal space groups: P6, P6/mmm, P6/mcc
 - Some *cubic* space groups: *Pm*-3*m*, *Im*-3*m*
- Note that some space groups can be defined with alternate axes and/or origin (see e.g. orthorhombic SGs in http://img.chem.ucl.ac.uk/sgp/large/ortho.htm)
- Everything about space groups: <u>International Tables of Crystallography</u>
- Good resource: http://img.chem.ucl.ac.uk/sgp/large/sgp.htm
- Wikipedia: https://en.wikipedia.org/wiki/List of space groups

Defining a crystal structure


- A crystal structure is defined by
 - Space group
 - Lattice parameters
 - Atomic coordinates (positions) in fractional coordinates $(0.0 \le x,y,z < 1.0)$
 - Normally only symmetry-independent atoms in the asymmetric unit are listed
- For example, NaCl (ICSD code 655785)
 - Fm-3m
 - a = b = c =**5.6402** (Å); α = β = γ = **90°**
 - Atomic coordinates (x, y, z): CI: 0.0, 0.0, 0.0; Na: 0.5, 0.5
- Typically, crystal structures are distributed in Crystallographic Information Files (CIF)
- A definition of a crystal structure is not usually enough to understand the real chemistry. For this, we need a description of the crystal structure
 - Concepts such as bonding, packing of spheres, coordination, polyhedra, ...

Formula units (Z)

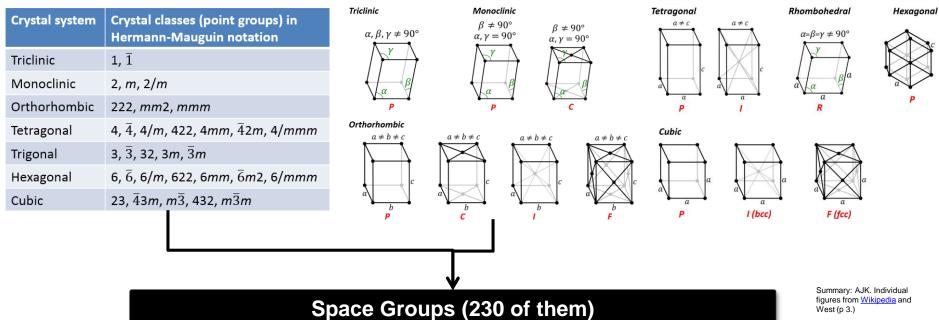
- Counting the contents of a unit cell for NaCl:
- 8 Cl⁻ ions in the 8 vertices, each belonging to 8 adjacent cells = 8/8 = 1 Cl⁻ ion in total
- 6 Cl⁻ ions in the 6 centers of the faces, each belonging to two cells = 6/2 = **3** Cl⁻ ions
- 1 Na⁺ ion in the center of the cell, not shared with other cells
- 12 Na⁺ ions in the centers of the 12 edges,
 each belonging to 4 cells = 12 / 4 = 3 Na⁺ ions
- In total 4 Na⁺ ions and 4 Cl⁻ ions
 - NaCl is said to have 4 "formula units" per unit cell
 - Denoted with Z = 4

Figures: AJK

Summary of crystal structures

- Crystal systems (7 of them)
- Crystal classes / crystallographic point groups (32 of them)
- Lattice types (5 of them)
- Crystal systems + lattice types -> Bravais lattices (14 of them)
- Crystal classes + Bravais lattices -> Space groups (230 of them)

Table 1.1 The seven crystal systems

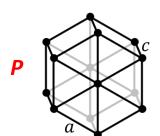

Crystal system	Unit cell shape b	Essential symmetry	Allowed lattices
Cubic Tetragonal Orthorhombic Hexagonal	$a = b = c, \alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$ $a \neq b \neq c, \alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	Four threefold axes One fourfold axis Three twofold axes or mirror planes One sixfold axis	P, F, I P, I P, F, I, A (B or C)
Trigonal (a) Trigonal (b) Monoclinic ^a Triclinic	$a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ $a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ $a = b = c, \alpha = \beta = \gamma \neq 90^{\circ}$ $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$ $a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	One threefold axis One threefold axis One twofold axis or mirror plane None	P R P, C P

Ref: West p. 3-4

Crystal systems (7 of them) Lattice types (5 of them) $\alpha = \beta = \gamma \neq 90^{\circ}$ С Cubic Orthorhombic Monoclinic Tetragonal **Primitive Body-centered** Rhombohedral **Base-centered** Face-centered 60° 120° Triclinic Trigonal Hexagonal

Crystal classes (32 of them)

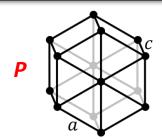
Bravais lattices (14 of them)



Extra 1: Trigonal crystal system

Hexagonal crystal family

Hexagonal crystal system (27 space groups)


Hexagonal Bravais lattice (27 space groups)

Figures: Wikipedia

Trigonal crystal system (25 space groups)

Hexagonal
Bravais lattice
(18 space groups)

Rhombohedral Bravais lattice (7 space groups)

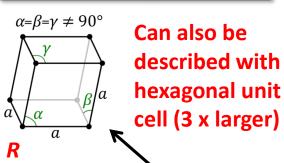
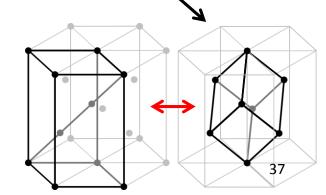



Table 1.1 The seven crystal systems

Crystal system	Unit cell shape b	Essential symmetry	Allowed lattices
Cubic Tetragonal	$a = b = c$, $\alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$	Four threefold axes One fourfold axis	P, F, I P, I
Orthorhombic	$a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c$, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$	Three twofold axes or mirror planes One sixfold axis	P, F, I, A (B or C)
Hexagonal Trigonal (a)	$a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ $a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	One threefold axis	P
Trigonal (b)	$a = b = c$, $\alpha = \beta = \gamma \neq 90^{\circ}$	One threefold axis	R
Monoclinic ^a Triclinic	$a \neq b \neq c$, $\alpha = \gamma = 90^{\circ}$, $\beta \neq 90^{\circ}$ $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	One twofold axis or mirror plane None	P, C P

Extra 2: Perfect crystals do not exist

- Crystal structures from X-ray diffraction are "average" structures
- Real crystals possess defects (lecture 13)
- Point defects, line defects, grain boundaries, stacking faults, bulk defects, etc.
- Some defects can be characterized using techniques other than XRD (lecture 8)

```
CI Na CI Na
```

Figure 2.2 2D representation of a Schottky defect with cation and anion vacancies.

Extra 3: Quasicrystals (1)

- Quasicrystals exhibit long-range order, but do not have translational periodicity
- Quasicrystals can show "forbidden" rotational symmetries of 5, 8, 10, 12, etc.
- Discovered by Daniel Schechtman in 1982, Nobel prize 2011 (<u>link</u>)

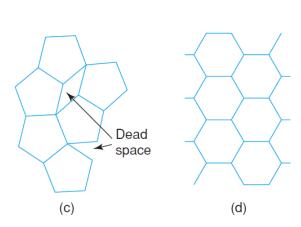
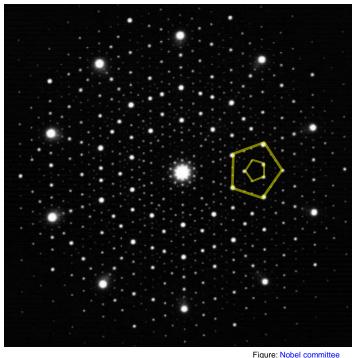
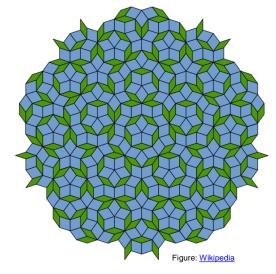
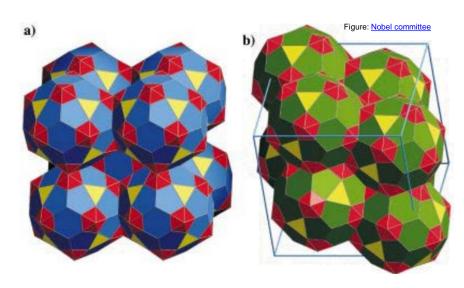
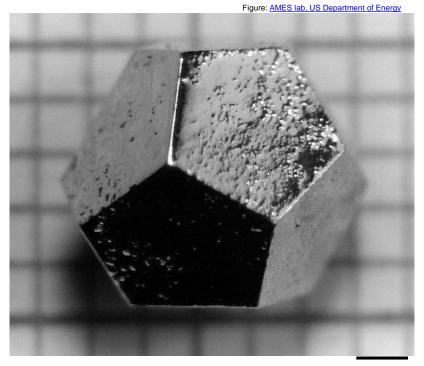




Figure 1.4. (c) the impossibility of forming a complete layer of pentagons; (d) a complete layer of hexagons

Electron diffraction pattern from an icosahedral quasicrystal


Penrose tiling (no translational periodicity)

39


Ref: West p. 5-6

Extra 3: Quasicrystals (2)

- Icosahedral symmetry is allowed together with translational symmetry in 6dimensional space
- Refinement of quasicrystal models involves the refinement of the position and shape of the atomic surfaces in 6-dimensional space for icosahedral quasicrystals

Polyhedral arrangements in icosahedral quasicrystal *approximants* in the system Ca-Cd (*Angew. Chem.* **2001**, *40*, 4037-4039)

Ho-Mg-Zn dodecahedral quasicrystal (*Phys. Rev. B* **1999**, *59*, 308–321)