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FINITE DIFFERENCES

8:0 INTRODUCTION

The widespread use of the digital computer has made finite-
difference methods extremely valuable for solving problems that
are not susceptible to the analytical methods discussed in earlier
chapters. As we have noticed, analytical methods are usually
restricted to very simple geometries and boundary conditions.
For the more complex problems, finite differences is a feasible
method of attack.

Finite-difference methods are also quite useful in problems
involving nonlinearities, such as radiation. Analytical methods
rarely work in these cases. Problems with variable properties
must often be handled numerically.

It should be mentioned here, however, that, although the
majority of practical problems may require finite-difference
methods to obtain detailed answers, analytical methods are still
important. In setting up a complex problem using finite dif-
ferences, limiting cases are often considered as a check on the
computations. These limiting cases often have analytical solu-
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FIG. 81 Approximation of
derivatives,

ANALYTICAL WMETHODS IN CONDUCTION HEAT TRANMSFER

tions that can be used for comparison to the finite-difference
results. Asymptotic, analytical solutions can often be used in
conjunction with the computer to provide better solutions.

This chapter is intended to provide the reader with the basic
ideas behind finite-difference methods for solving differential
equations. To give added insight to the engineer, the problem
is formulated from both a physical point of view and a mathe-
matical point of view. Several simple problems are discussed to
elucidate the techniques and point out some of the pitfalls.
Section 81 is an introduction to the mathematical concepts
needed in finite differences. The solution of one-dimensional,
steady-state problems is discussed in Sec. 8:2. These considerations
are then extended to two-dimensions in Sec. 8:3. One-dimensional,
transient problems are discussed in Sec. 8:4. The extension to
more dimensions should be apparent from these sections. Some
more advanced problems are discussed in Sec. 8-3.

8:1 FUNDAMENTAL CONCEPTS

You have already been exposed to most of the basic ideas that
will be needed for the finite-difference method. The energy
balance and rate equation will be used either directly to arrive
at a finite-difference formulation (physical formulation) or to
arrive at the governing differential equation for the problem as
in Chap. 1. The differential equation can then be converted into
finite-difference form (mathematical formulation).

The only new idea that is used is the approximation of
derivatives in terms of differences. Let us consider the function
t(x) shown in Fig. 81. The exact definition of the derivative at
X, 18 given as

dt A . t(x]ﬂ + Ax) - t(xm)
—] = lim
dx| .. Ax—0 Ax

¢ Approximate derivative

A at x,. -+ %

i Approximate
| derivative

| Ax

I

I - x
xm—l xm xm+1
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As an approximation, let us not go through the limiting process.
Then we could write

dt

e _ f(xm + A—\.) - f(.\'mJ _ Im+1 f&
dx

Ax Ax

i

This would be an approximate expression for the derivative at
X O, more appropriately, we could consider it to he an approxi-
mation of the derivative midway between X, and x,, .. That is,

dt t ¢

m=1 = tm
= — Ml m 811
dX sy Ax ] ( )
Similarly, the slope at x,, — Ax/2 may be written as
d{ E - f —1
hud = m_ m_l 8:1-2
dx|,, 4 Ax ( )

The second derivative of a function is simply the rate of change
of the first derivative. Thus the second derivative at X,, may be
approximated as

dt
_dx

dr

, 2
d°t Xt Ax2 X
dx?|,, Ax

Equations (8-1:1} and (8-1-2) may now be substituted into the
above to give

X é.t."lz

Em+1 - tm fm — Ly

Ax Ax
Ax

d*t
dx?
which reduces to
dz{ - 2'[;:: + tm+1
dx? (Ax)?

The above results may also be deduced by considering a

Taylor series expansion of ¢(x). Expanding t(x) about x,, + Ax/2,
the value of #(x) at x,,, , (that is, Ln+1)1s given by

dt Ax 1 d* Ax\?
t = n — - - _ Ax)3
m+1 tm-}-z + dx mt 3 ) + 2 dxz mt s ( 2) + O[( Y) ]

The symbo! O[(Ax)*] means that the order of magnitude of the
remaining terms is (Ax)*. The value at X, 18 similarly found to

be
(%E) + O[(Ax)*]

hi

_ Im—l

(813}

M

Ax+ [ d?
s 2 2 dx?

dt

dx

Ly = 'tm+-§ -
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These equations may now be subtracted. Observe that the first
and third terms will cancel out. Thus
dt

Ax + O[(Ax)*]

rm+1 - 'rm - dx

mT 3

This may now be solved for the derivative as

dt
dx
This result is identical to Eq. (8:11). As Ax becomes small, the
remainder terms, whose order of magnitude is (Ax)*, may be
neglected. A similar expression may be found corresponding to
Eq. (8:1:2).

The second derivative of t(x) may be found by considering
the Taylor series expansion about the point x,,. The values of
1,4+ and t,,_; may be written as

— Tt 1 T + O[(AX)Z] {814)

nt+i Ax

tvy = Iy + -j—i ) Ax + % j—; ) (Ax)?

+ —é— % ) (Ax)* + O[(Ax)*)
bt = tm — j—; ) Ax + % —;1; i (Ax)?

— % g N (Ax)® + 0[(Ax)4]

Upon adding these two equations, the odd powers of Ax will
cancel to give

2
t
II‘H"‘I + tl}l'_l = 2Im + @ (A'}C)Z + O[(Ax)4]
This may now be solved to give the second derivative as
d*t oy — 2yt sy
- - " m " A 2 81-5
dxz . (Ax)z + O[( X) ] ( ]

This is the same result as given by Eq. (8:1-3) when Ax becomes
small.

8.2 ONE-DIMENSIONAL, STEADY-STATE PROBLEMS

Mathematically speaking, one-dimensional, steady-state con-
duction problems are classed as boundary-value problems. A
boundary-value problem is one in which the value of the unknown
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i FIG. 8.2 The thin-rod
i problem.
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function (or some other information) is specified on the boundary
of the region of interest, and the problem is to determine the
behavior of the function within the region. The discussion in
this section will be representative of any boundary-value problem.

As an example, let us consider the familiar thin-rod problem
whose analytical solution was discussed in Chap. 1. Figure 82
describes the problem. Due to the linearity of the problem, it is
entirely adequate to take the ambient temperature to be zero.
The same result would be obtained by defining a new variable
T =1t —1t, as used in Sec. 1:2+4.

The finite-difference formulation of the problem may be
deduced in either of two basic ways. The physical formulation
begms from scratch and uses energy balances and rate equations
in approximate form. The mathematical formulation starts with
the differential equation (as derived in Chap. 1) and then approxi-
mates the derivatives that appear. Both methods will be discussed
because knowledge of each approach is valuable to the engineer.

8-2.1 Physical formulation

We can start directly to set up a finite-difference approximation
to the problem by dividing the rod into a number of equally
spaced nodes as shown in Fig. 8:3. We can then take a typical
interior chunk of material, located about node m, at location X,
and write an energy balance for it. For the energy terms shown in
Fig. 83 we would write

Qm— L — qlc',,. + Qm,m +1

In the above, the notation g,,_ , ,, refers to the energy transferred
into the system from node m — 1 to node m. A similar convention
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FIG. 8:3 Typical thin-rod
nodal system with important
energy terms indicated.
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explains ¢,,,,+, as the conduction heat transfer from node m
to node m + 1. The order of the subscripts indicates the assumed
direction of heat flow.

As in setting up differential equations, the next step is to
write the rate equations for each term appearing in the energy
balance. The expressions for the two conduction terms may be
written as -

dt f, — t,_ o, — 1
- = —kAd— = kg Mm kg ™
q”i 1,m dx Ax Ax
and
dt bwvy — I Iy — ¢
— kAL _pqomEr mo g el
q}ii.”l +1 d'x Ax Ax

The convective loss from the system is most easily approximated
by assuming that the average temperature of this chunk of
material is t,. Then we can write

4., = hpAx (t, — t,) = hp Axz,

where ¢, has been taken to be zero in the expression for g, .
Substitution of the rate equations into the energy balance gives

kA kA
- Im) = hp Ax L + —(rm — Irm~*~1)

— -
A.\' ( f— 1 AX
Multiplying by Ax/kA4 and rearranging gives

hp
Im—l _ 2tm - H(Ax)z Itm + tm+1 =0
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Finally, the equation may be rewritten as

—Ly-y T D"rm — sy = 0 (821)
where
hp 2 20A 2 .

DzZ+H—(Ax} = 2 + m*(Ax) {822}
[n Eq. (82:2) we have used m? = /ip/kA, as we did in Chap. 1. Gy
The m should not be confused with the m used to denote a node -{
as in Eq. (82'1). It should be observed that, for m = 1, the to O
that appears in Eq. (8-2'1) is the known temperature specified by } { __ ?
the boundary condition at x = 0. . o - '_4%

To obtain a relation at x,,, we will write an energy balance on ! i 1!'” ' Z
the end of the rod as shown in Fig. 84. The energy balance, | === )
assuming an insulated end, is given by | %-E_,_

| :

Qar- .M = QCM M—1 M
The rate equations are approximated by FIG. 8.4 Nodal system and

energy terms at tip of thin rod.

Iy—1 — Iy
y—1m = kA ————

Ax
and

Ax hp Ax
Gere = hPT(tM —te) = P2 Fag

Thus, upon substituting the rate equations into the energy

balance,

kA hp Ax
A—x(f;w—l — Ly} = 5 Lo
or

h
Atw-r = ta) = 12 (A 1y

Finally, upon rearranging and using the definition of D given
above,

—2y, + Dty =0 (8:2:3)

This equation is valid at node M.

We have thus arrived at a set of M algebraic equations for M
unknowns (1, t5, . . ., £, ty) by writing an energy balance on
a finite piece of material surrounding each node whose tem-
perature is unknown. These equations are represented by Eqgs.
(8:2'1) and (8-2:3). The solution to these equations will be dis-
cussed later in Sec. 8:2-3.
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FIG. 8.5
problem.

Narmalized thin-rod
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8.:2.2 Mathematical formulation
A completely mathematical approach to the problem begins
with the normalized differential equation and its boundary
conditions. The normalized differential equation is given by

2
d—li — (MmLY*u =0 (8-2:4)
dx

where u has been defined to be (t — ¢, )/(t; — t..). The normalized
boundary conditions are given by

u@) =1 and w(1)=0

We want to find a curve u = u(x), as in Fig. 85, which passes
through ¥ = 1 at x = 0 and has zero slope at x = 1. This curve
must also satisfy Eq. (8-2:4) at every value of x.

To formulate the problem by finite differences, we first divide
the x direction into equally spaced nodes as shown in Fig. 85.
We then replace Eq. (82:4) by an approximate difference equa-
tion. The second derivative at x,, is given by Eq. (81-3). Thus
Eq. (8-24) is replaced by

Up-1 — zum + Hypvt

— 2 =
(Ax)z (mL) Uy, = 0

Rearranging,

Up-1 — [2 + (mL)Z(Ax)z]um + et = 0

This may be rewritten as

—Up-q + Dum = Uyt T 0 (825)

[

i
0 L

X Il"'xm—ixm Kpg w1 = v Ay
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i FIG. 8.6 Fictitious nodal
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where
D =2 + (mL)*(Ax)? (8:2:6})

This equation is recognized as a nondimensional form of
Eq. (8-2:1). It represents a set of relations that must be satisfied
for each interior node between x = 0 and x = 1. At the first
interior node m = I, the boundary condition u, = 1 may be
used to simplify this expression. The boundary condition at
x =1 can be approximately satisfied by taking u,, ., = uy_ ;.
As shown in Fig. 86, this makes the slope of u(x) equal to zero
at x = 1 by providing for symmetry about the endpoint x,,.
Another way of looking at this is to think of having a mirror-
image extension of the rod beyond x = 1 as shown in Fig. 8-7.
Symmetry demands that uy, | = 4y, ,. At x,, Eq. (8:2'5) then
becomes

—Uyq + Duy — oy =0
or
_2”?4—1 + Du‘” = 0 (827)

Equations (82'5) and (8-2-7) represent M algebraic relations
among the M unknown u,, that must be satisfied to obtain an

u—1 =1

-—ﬁ-.
—_

Kyt Xy

FIG. 8:7 Mirror image of thin
Xt rod.
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approximate solution to the problem. They are the nondimen-
sional counterparts of Eqs. (8:2:1) and (8-2-3).
For the case in which M = 4, thesc equations may be written as

Du, — u, =1

o

—uy + Duy, —  wy =
(8-2-8)
— Uy +Duy— uy, =90

— 2uy + Du, =0

Observe that the problem has now been reduced to the solution
of a set of four simultaneous algebraic equations rather than a
single ordinary differential equation. These equations can be
easily solved on the digital computer as discussed in the next
section.

8.2.3 Solution by gaussian elimination
Systems of equations such as those that appear in this problem
are most efficiently solved by systematically eliminating the
unknowns. It is particularly simple in this case since no more
than three unknowns appear in one equation. In addition the
unknowns and equations are arranged in a tridiagonal pattern.
As an example, consider the case of a fin with mL = 2. For
this case D = 2 + (2)%(0.25)% = 2.25, and the system of equations
becomes

2.25u, — Uy =1
—t; + 2.25u, — u =0

i 2 3 (8-2:9)
- U2 + 2.25”3 - u4_ = 0

— Quy + 225u, = 0

To solve these equations let us first eliminate all the terms
below the main diagonal. The first equation can be multiplied by
1/2.25 and added to the second equation to give

2.25“1 — iy = 1
1.81u, — Uy = 0.444
- uz + 2.25“3 - u4 = 0

- 2“3 + 2.25”4 = 0

Observe that v, has now been eliminated from the second equa-
tion. This process may be continued to eliminate u, from the
third equation and u, from the last equation. The result is the
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bidiagonal form shown below:

225u, ~ U, ' = |
[.81u, — I = (0.444 (82410
[.70u, — u, = 0.246

1.07u, = 0.290

Next, the last equation may be solved for u, = 0.290/1.07 =
0.271. This value may be substituted into the third equation to
find u,, which in turn may be substituted into the second equation
to find u,, etc.

This elimination process is easily programmed for the digital
computer. The execution time for this problem on the IBM
360/67 was less than a tenth of a second. This is obviously a
fast way to solve this system of equations.

8.2.-4 Numerical results

The results of this solution are compared to the exact solution of
the differential equation in Table 8:1. Observe that reasonably
good results have been obtained by using only four nodal points.
Better accuracy can be obtained by increasing the number of
nodes. Figure 8-8 shows how the finite-difference solution pro-
gresses toward the exact solution for M = |, 2, and 4.

Finite Error, Error,
Node Exact difference exact-approx. % of u(0)
1 0.6252 0.6289 —0.0037 —0.37
2 (0.4102 0.4150 —0.0048 —(.48
3 0.2998 0.3049 —0.0051 —-0.51
4 0.2658 0.2710 —0.0052 —0.52

As mentioned in Sec. 1-24, one of the important uses of the
thin-rod temperature distribution is to estimate the heat loss
from the rod. This may be done by summing up the convective
energy losses from each chunk of fin. Recall that for the purposes
of evaluating the convection in setting up the finite-difference
equations it was assumed that the entire chunk of material could
be considered as being at its central temperature. Thus the tntal

TABLE 841

243
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FIG. B-8 Effect of nodal-point
spacing on finite-difference
solution for a thin rod with

mL = 2.

A
q:u == hp_z'i'to

:'.7'74“.'

3 -“"'L-"‘-ﬁ"' T
| /‘ !
A = h
I
|
m=20 m=1
fo— 1t
— kA 0 b3
o Ax
FIG. 8.9 Nodal system and

energy terms at root of thin rod.
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1.0

0 0.2 0.4 0.6 0.8 1.0

=

heat transfer by convection in this example would be given by

4
QO = Z qc,,,

m=0q
A A
= hpTxto + hpAxt, + hp Axt, + hpAxt; + hpTxQ

In arriving at this equation we have taken ¢, = 0 for simplicity.
Upon normalizing to obtain the fin eficiency, and setting Ax =
L/4,

o

L¢l 1
= a7 +uy + Uy +ouy + U
hpLt, (3 1 2 Uj siy)

I

h

Here we have defined u = t/t, and recognized that u, = 1. The
result as obtained by finite differences is 0.4961 as compared to
the exact result of 0.4820. The same result could have been
obtained by writing an energy balance about the node at x = 0
as shown in Fig. 8-9. The energy balance is given by

fo — Iy

Ax

Ax

In normalized form, for Ax = L/4, this becomes

do 4
n = =

i
— = 1 — _
Lty L T

8

This gives the same numerical result (0.4961) for the finite-
difference solution. These numbers show that reasonably accurate
heat-transfer rates can be calculated with relatively few nodal
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points. The adequacy of a given number of nodes, however,
depends upon the values of the parameters involved in the prob-
lem (ML in this case). Figure 810 shows how the normalized
heat-transfer rate predicted with M =1, 2, and 4 compares
with the exact value for various values of mL. Observe that the
prediction gets worse as mL increases. This is because at larger
mL the temperature profile is more curved, and four straight-
line segments cannot do a very good job of approximating it.
Also, notice that the prediction improves as the number of nodes
increases for a given value of mL.

As a practical matter, the engineer is always faced with the
problem of determining how many nodal points he should take
to get a reasonable answer. The answer to this question is most
often found by trial. You first work the problem using what you
feel is a reasonable number of nodes based on the accuracy
you desire and the amount of computing you want to do. Then
you either double or halve the number of nodes, rework the
problem, and compare your results. If the two answers seem to
agree, you take the one with the greater number of nodes as being
the best value and stop. If the answers are not acceptably close,
increase the number of nodes until you get acceptable answers.

8.2.5 Matrix representation

Systems of linear algebraic equations are a common occurrence
in finite-difference methods. They will arise in the next two
sections where two-dimensional and transient problems are
considered. It is very helpful to have a shorthand way to write
systems of linear algebraic equations in order to simplify life.
An introduction to matrices will be quite helpful to us later on.

1.0

0.8

0.6

—_ D
= hpLt,
0.4

0.2
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FIG. 810 Finite-difference
selutions for thin-rod fin
efficiency.
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For simplicity, let us consider the following system of two
algebraic equations for the two unknowns u; and u,:
(?Hul + 012u3 - ('1
{82-11)
The coefficients a,,, a,1, 03, and a,, and the right-hand sides
¢, and ¢, are constants. The matrix representation for these
equations Is

{a“ a12} ul:l _ ¢y (8212)
Qa1 daz| [ U2 €2

The coefficients a;; in the algebraic equations are collected
together as the components in the coefficient matrix. The un-
knowns u; are written in the column matrix alongside the coeffi-
cient matrix. The right-hand sides ¢; are put in another column
matrix on the other side of the equal sign. This matrix equation
has the same meaning as the system of equations (8:2-11) and
avoids the writing of the unknowns as many times. An even
shorter notation is to let single symbols stand for each of the

three matrices. Thus we might write Eq. (8-2'12) as
Au=c¢ (8:2-13)

where A stands for the square coefficient matrix, and u and ¢
stand for the column matrices of #; and c;.

We will find it useful to be familiar with a few of the mathe-
matical manipulations that can be done with matrices. This will
enable us to handle systems of equations in a more efficient man-
ner. Some of these operations are discussed in the remainder
of this section.

The left-hand sides of Eqs. (8:2:12) and (8:2-13) can be thought
of as matrix multiplication. The elements of the product matrix,
the ¢; in this case, are given by the following rule:

2
C; = z aiU; (8214)

j=1

As a numerical illustration of matrix multiplication, consider the
following example:

(1 2] 2
A = il =
3 4 3

1 2] 2} [1(2) + 2(3)} [8}
All = = =
3 4] 13 3(2) + 4(3) 18
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Square matrices (equal number of rows and columns) may also
be multiplied together (P = AB) by the following rule:

P = Zaijbjk (8215}
J

As a numerical iflustration, consider the matrices
1 2] -5 3
3 4 4 2

i 2} {_5 3}
P=AB =
3 4 4 2

=8+ 24 103) + 202
T35 + 4@ 3(3) + 42)

(3 7

1 17

A matrix with m rows and »n columns is called an m x #
matrix. Two matrices can be multiplied together only if the
number of columns in the first matrix is equal to the number of
rows in the second matrix. The resulting product is a matrix

with the same number of rows as the first matrix and the same
number of columns as the second matrix. That is,

ApxuByx, = C (8:2:16)

This rule can be extended to the product of three or more matrices
as follows:

AmannxpCqu = Dqu (8217)

This triple product may be computed as either (AB)C or A(BC).
It is also important to know that, in general, AB # BA. This
means that we must be careful to keep matrix multiplications in
the correct order.
Matrices of equal size may be added together (S = A + B)
simply by adding the components according to the following rule:

Thus

1 2] -5 3
S=A+B= +
3 4 4 2

nxnp mxp

)

247
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-5 2+3 -4 5
1344 42| | 7 6
It can also be shown that AB + AC = A(B + ().
Matrices may be multiplied by a constant (often called a

scalar) by simply multiplying each of the components by the
constant. That is,

1 2 3 6
3A =3 =
3 4 9 12

A diagonal matrix is a matrix that has nonzero components
only along the main diagonal. A special diagonal matrix I is
the identity matrix. Its diagonal terms are all equal to 1. That is,
fora 2 x 2 case,

o

The transpose of a matrix is obtained by interchanging rows
and columns. That is, the rows in a matrix are the columns in the
transpose of the matrix. Thus if

[

its transpose AT is given as

AT 1 3
2 4
A matrix 1s said to be symmetric il it is equal to its own trans-

pose. This means that component a;; must equal component aj;.
An example of a symmetric matrix would be

1 30
3 45
0 5 2

The inverse of a matrix is another matrix such that, when a
matrix and its inverse are multiplied together, their product is
the identity matrix. That is, if the inverse of the matrix A is
called A7, then
AAD =1 or ATTA =1 (8-2:19)

For example, the inverse of the matrix A that we have been
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using is

—20 1.0
ATl =
1.5 —05

This may be verified by multiplying A and A%,

1 2 —20 1.0 1 0
AAT!D = =
3 4 1.5 =05 0 1

The determinant of a matrix A is the determinant of the
components of the matrix. For the matrix A we have been using,

l
3

There is one last operation we should mention in regard to a
matrix. The eigenvalues of a matrix A are the values of 2 which
satisfy the following equation:

det (A — AI) =0 (8-2:20)
We have

1 2] )
A — il = .y
3 4 0 1

L A

1 2 A0
|3 4] o 4

det A =

2
= 1(4) — 2(3) = -2
|

Then

det (A — A1)

1 -4 2

=(1-A1)4-4H—-23=0
‘3 4_1’( )@ - 2) - 203)
This is a quadratic equation for 4. Upon rearranging the terms,
J2-50-2=0

The solutions to this equation are

S+ /33 , 53
~ 2TV I Vi

and ” 5

The above concepts of matrix multiplication, addition, the

Ay
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identity matrix, the inverse matrix, and matrix eigenvalues have
all been illustrated with 2 x 2 examples. These ideas are all valid
for n x n matrices. The computations are more involved, how-
ever. The remainder of this chapter will begin to use matrix
representation to simplify the presentation of systems of equa-
tions. You will not need to know any more about matrices,
however, than we have illustrated in this section.

8.2.6 Convection boundary condition

The adiabatic boundary condition at the tip of the rod may be
replaced by a convective boundary condition with no additional
complications in the finite-difference formulation. The only
change is that the equation for the node at x = L must be
modified. The pertinent energy terms are shown in Fig. 811
The energy balance may be written as

QJ\J—I..M = q{.‘,\,} + q{.‘M
The rate equations may be approximated by

Iay-y — Iy
B = kA M=l M
Qar— 1M Ax

; Ax .
= np—
q{‘Jw p 2 M

QeM = heAIM

where we have taken ¢, = Oin the two convective terms. We have
also allowed the end heat-transfer coefficient /1, to be different
from the one on the periphery. These equations may be com-
bined with the energy balance in the usual way to give (after some
rearrangement)

2, Ax
oty (D n ”‘; ’”) ty =0 (82:21)

This equation replaces Eq. (8:2'3), which was found for the

adiabatic-end case.
The normalized version of the set of equations to be solved in

place of Eqgs. (8-2-8) may be written in matrix form as

D —1 Uy 1
-1 D -1 wy | |0
—1 D —1 | |us| " O (8:222)
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In the above we have defined H = h,L/k and set Ax = L/4 in the
term involving h,. _

Mathematically we have the same type of problem to solve.
The only difference is that the numerical value of one of the
components of the coefficient matrix has been changed. The
same computational procedures will work.

8:3 TWO-DIMENSIONAL, STEADY-STATE PROBLEMS

The solution to two-dimensional, steady-state conduction prob-
lems by finite-difference methods is simply an extension of the
techniques discussed in Sec. 8-2. In fact, this section should almost
seem like a review of Sec. 8-2. You should occasionally refer back
to Sec. 82 to note the striking similarities.

As an example, let us consider the steady-state conduction of
heat in a square region with uniform energy generation as
described in Fig. 8-12. It is assumed that there is no temperature
variation in the z direction. The temperature distribution t(x,y)
is the desired result.

8.3.1 Physical formulation
The first step in the physical formulation of the problem is to
subdivide the region into a finite number of small sections by
setting up a system of nodes as shown in Fig. 813.

An expanded picture around a typical interior node located
at the point {(x,,y,) is shown in Fig. 814, with the “call letters”
of the nodes shown in parentheses.'

'The index m denotes the x position, and the index n denotes the y position.

¥
Y
yﬂ 1 = A “““““ . * .
| _X_________. 0
y}l i fAy L:

Yy * 0
| |

!
L] L] ' L] | x
Vs @ v o+ u ﬁﬁ.’
y2 . LI T

Y= — "
=0x x, Xog — v Koy Ko 1z Xy

o X
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FIG. 812 Uniform energy
generation in a square region.

FIG. 813 Nodal-point
arrangement for conduction in a
Square region.
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FIG. 814 Typical nodal
system with important energy
terms indicated.
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(m, n+ l)
e ¢ )
T- -sqmn,} 1

Eni, n

Next, as in previous analytical solutions, we will define a
system and show the pertinent energy terms as pictured in
Fig. 814. The subscript notation for the heat-flow terms should
be familiar from the discussion in Sec. 8:2'1. Observe that con-
duction through the four sides of the system and generation are
the only energy transfers being considered.

The energy balance may be simply written as

G~ 1,m + QH—l,n + Egm.n = Quan+1 + Qrn+1

The rate equations can be approximated by

I —t - t
B — kA " 1. m,n
QM 1,m y Ax
t — ¢
B — kAx my— 1 ",
q}i f.4 Ay
t -
— kA m,n m+ 1l.n
Qm,m+1 y AX

Tt — Lo+ 1
L= kAX m.n ]
q}i,ﬂ +1 A_}»'

The generation term may be written as
Egmm = g" Ax Ay

Substituting these rate equations into the energy balance gtves

k Ay k Ax
— ¢, - -t ——- _q - AX Ay
Ax (m t.n m,n) + AJ’ (tm.n 1 £m,n) + g X J
k Ay k Ax
= '__—J/(lm,n - tm+ l,n) + —— (tm_.n - rm‘l‘l+ 1)

Ax Ay -
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If Ax is taken to be equal to Ay, the above can be rearranged to
give

gAY

fm.n—l + 4tm,n - ltm.n+1 - rm-+-l.i'r - k

ot —
(8:3-1)

Equation (8:3-1) contains five unknown temperatures. Such an
equation c¢an be written for each node whose temperature is
unknown to give a set of equations equal to the number of

unknowns.
The nodes along the adiabatic boundaries must be given

special attention. Consider a typical node along the x =0
boundary as shown in Fig. 815 The energy balance may be

written as

qn—l,n + E"'gl‘,, = QI.Z + qmn+1

The rate equations may be approximated in the following way:

_ kAx Lia—1 = i
Qn—l.u - 2 Ay
t — !
— kA i.n 2.
q1,2 y—“‘__Ax

q ) Ax fin — T+
nn+l 2 A_V

., Ax Ay
2

Upon combining the energy balance and rate equations, setting
Ax = Ay, and rearranging, the following equation is arrived at:

g (A’
_rl,n—l + 4r’l.n - Ittl.m-l~1 - 2t2.n = T_

Egl.n = g

(8:32)

This equation could also have been found from Eq. (8-3'1) by
using symmetry and setting ¢, _,,=f,,, and then setting

! Tn 15; similar fashion the equations along y = 0 are of the form
b F A — 2 — Ly T %Ax)’* (8:3:3)
At the point (x,)) = (0,0) the equation is given by

de, | — 2, — 2y, = LAX)Z \3:3-4)

k

(l,n+4 1)
/

;

%

(l,n&

Z
(l,n—1)
FIG. 8+15
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(mn+1)
Ay
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{(mi—1,n) (m--1,n)
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A, Gmnsh o
'-Q-Ax-—lﬂ-Ax—a-l

FIG. 816 Typical two-
dimensional nodal points.
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In this particular example the temperature at each of the nodes
on the other boundaries is known so it is not necessary to write
special equations at the boundary." Equations (83'1) to (8'34)
represent the system of algebraic equations that must be solved
for the unknown nodal temperatures.

8.3.2 Mathematical formulation

The mathematical formulation of the problem by finite-difference
methods begins with the governing partial differential equation
and boundary conditions. The equation is the following:

Uy + Uy, + 1 =0 (8:3-5)
The boundary conditions are that

u0,y) =0 u,(x,0) = 0

u(l,y) =0 u(x,1) =0

In this normalized problem, u = t/(g”'L*/k) and x and y are
really x/L and y/L, respectively.

The first step is to set up a system of nodal points in the region
of interest just as was done in the physical formulation of this
problem. A typical interior set of nodal points is shown in Fig.
816.

Based upon the discussion in Sec. §-1, the two second deriva-
tives may be approximated in the following way:

i - 2um.u + um+1,n

1 _ “m=1.
xx 2
(Ax)
U = Upn-1 — 2um.n + Uprn+1
L 2
(Ay)

These approximations may now be substituted into Eq. (8:35)
to give

Uy, [ 2um,n + ”m+l,n Upyn-1 — 2”»1.:! + um,n+l + [ = 0

(Ax)? (Ay)?
If Ax is taken to be equal to Ay, this equation may be rearranged
to give
Uy T Upn-1 + 4um‘n T UHppr1 T Uprn = (AxJz (836)

This result is seen to be the normalized equivalent to Eq. (8:3:1).
An equation corresponding to Eq. (8:3-2) may be found by
setting t,-;, = Uy+1, 10 Eq. (83:6) and then setting m = 1.

"Two other types of boundary conditions are discussed later.



FiNITE DIFFERENCES 255

FIG. 817 Nodal-point
arrangement for squure

generation.
d(1,4) «(2,4) «(3,4) o(4,4)
0(1,3) (2,3) #(3,3) +(4.3) ¢-
) +(3,2) o(4,2)
LG - (4,1) ]
=)
Equations corresponding to Egs. (83-3) and (8-:34) may also be
easily obtatned.
Just as in Sec. 82, the finite-difference scheme has resulted in a
set of simultaneous, linear, algebraic equations to solve. As an
illustration of what is involved, let us consider an example in
which Ax = %, just as we did in the one-dimensional case. This
nodal-point arrangement is shown in Fig. 8:17. Observe that the
nodal points (1,5),...,(5,1) which are not labeled are all at
zero temperature as given by the boundary conditions of the
problem. Thus there are 16 unknown temperatures to find.
Since there are 16 unknown temperatures, there will be 16
equations to solve. Using the matrix representation for these
equations, the following is obtained from the normalized form of
Egs. (8:3'1) to (8-:34):
4 -2 0 0 -2 1] s
-1 4 -1 0 0 -2 TN =
0 -t 4 -t 0 0 =2 wal | 4s
0 0 —1 4 0 0 0 -2 Uy g 5
—1 o 0 0 4 =2 0 0 =1 Uy t_lh
-1 0 0 -1 4 -1 0 0 -1 ua| |5
-1 0 0 -1 4 -1 0 0 —I I [ B
-1 0 0 -1 4 0 0 0 -1 Uy | = |15 | (837
—1 0 0 0 4 =2 0 0 —1 u; T
-1 0 0 -1l 4 -1 0 0 —i N I
-1 0 0 -1 4 —1 0 0 -1 TIgN o
10 0 -1 4 0 0 0 —1f|lusa] |i%
—1 0 0 0 4 =2 0 O |,y i
-1 0 0 -1 4 -1  Of |us,| |tk
10 0 =1 4 =1 |uy, =
_ -1 0o 0 -1 41 [vaal  Lied
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[4
0

0

0 0 -2 [u, | ’_ﬁ
-1 0 —-05 -2 T 7
4 —1 0 0 -2 uy 3 %
-1 4 0 0 o -2 ty 4 %
6 0 35 -2 0 0 -1 u | = | &%
T5
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There are several things that should be pointed out about
these equations before discussing methods of solution. First,
notice that by dividing the x direction into only 4 nodes (also,
the y direction has 4 nodes) there are 4 x 4 = 16 simultaneous
equations to solve. In other words, relatively coarse subdivisions
lead to many equations. In a practical situation the number of
equations can be in the hundreds or more. Second, observe that
the matrix is banded. That is, the nonzero components only appear
in a band on either side of the main diagonal. The practical
significance of this is that special subroutines can be written to
solve this problem in less computer time than if the matrix
was filled with nonzero components. Another feature is that the
zero matrix components outside the band do not need to be
stored in the computer. This is of considerable importance in
large problems where computer memory size becomes a limiting
factor.

Two comments should be made regarding the nodal number-
ing system. First, the double subscripting of the nodal tempera-
tures is not necessary. Single subscripts, 1 through 16 in this
example, would be much simpler. Second, the nodal numbering
system can affect the bandwidth of the system of equations.
For example, if nodes numbered 1 and 16 were interchanged,
the upper bandwidth would increase from 5 to 15. It is therefore
advantageous to number the nodal points so as to make the
bandwidth as small as possible.

Two ways that can be used to solve these equations on the
computer are gaussian elimination and iteration.

8-3.3 Solution by gaussian elimination

The elimination procedure is basically the same as that discussed
for tridiagonal matrices in Sec. 82-3. The first equation can be
used to eliminate all the nonzero elements in the first column.
In this example the first equation can be multiplied by 1 and
added to the second and fifth equations (rows) to give

0 0 -1 4 -1 0 0 -1 o
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Observe that all the components in the first column are now zero
except for the one in the first row. The second equation (row) can
now be used to eliminate all the nonzero components below the
second row in the second column. This process is continued until
an upper triangular, band matrix has been formed as indicated

below.

4 -2 0 0 =2

35 -1 4 =05 -2
X X X X
X X X X
X X X
X X X
X X
X

L
ES A - - ]
O A
E -
E
E A

Now we are ready to solve the last equation for Uy 4. SUD-
stitute it into the next-to-last equation to find iy 3, and continue
to work our way back up to the first equation where uy ¢ 1s found.
This completes the solution of the problem.

It is interesting to observe that the original banded matrix in
this example required computer storage space for 124 compo-
nents within the band rather than the 256 spaces that would have
been required to store the entire matrix. This can be of con-
siderable importance in large problems where computer storage
is critical. Of course in this physically symmetrical problem we
could save work by recognizing that Y;; = ;. This would
reduce the number of equations from 16 to 10,

8:3-4 [|terative methods of solution

There is another feature of the original band matrix, given in
Eq. (83'7), that should be observed. Notice that many of the
components within the band itself are zero. In this example,
60 of the 124 band components are zero. These components
must still be stored, however, if gaussian elimination is to be
used to solve the problem, because during the elimination process
they will, in general, change to nonzero values. If computer storage
is critical, one might like to use a method which does not require
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storage of these zero components in the band. The Gauss-Seidel
iteration procedure is one method of doing this.

In this procedure each of the rows in Eq. {8:3-7) would first be
solved for the main diagonal unknown. Thus in this example
we would have

ui = zlfg + 26y, + 21,1)

U, = 4lis + y,y + Uy g+ 2y )

3 = 3{fs + Uy, + Uy + 2Uy3) (8-3-8)
Ugp 3 = %(TI'G + U3z Uy oty )

Ugq = 415 + Uz + Uy ;)

The computational procedure begins with initial guesses u(),

for all the unknowns. An improved value for each of the un-
knowns u;’, is then computed from Egs. (8:3'8) in the following
way:

uly = s + 2u®y + 2uP)]

ui'h = 4lve + ot + u®% + 2uP)

0 = AL + s + 0% + 208
................................ (8.3.9)
A = AT )+ + o)

uyh = His + ui) + u“)

Notice that in the computation of the new values u!!). the latest
values of the terms on the right-hand side are used.

One initial guess that could be used would be to take every
u'® = 0 since this is the value of the temperature along two of

the boundaries. The solutions for u{!) would then be obtained
as indicated below.

ui') = i[5 + 20) + 2(0)] = 0.0156
ul'y = [ + 0.0156 + 0 + 2(0)] = 0.0195
uly = 1[# + 00195 + 0 + 2(0)] = 0.0205

by = i[1e + 0.0292 + 0.0276 + 0] = 0.0298
uiy = i[{5 + 0.0298 + 0.0298] = 0.0305
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This process can be carried out again and again (iteration) until
it converges. That is, you would continue until ¥} 1 is as close
as you want to u? .

One of the problems with the Gauss-Seidel method of solving
the equations is that it is relatively slow to converge to the
solution. In this example, u, ; requires 42 iterations before it
converges to three significant figures.

A method that can be used to accelerate convergence of the
iteration process is successive overrelaxation. In this technique,
Eqgs. (8:39) would be replaced by the following set of equations:

w = i+ 26 + 20 ] + (1 - w)u(m

ut'h = 2[16 + uf'h + ) + 2600w + (1 — ol

ul'y = i[1s + v’y + % + 2uP%Jo + (1 — o),
.................................................... (8.3.10)
uih = 2l7e + o'y + 6l + u o + (1 — ol

ulh = i[1e + uih + uii]o + (1 - w)u(o’

The relaxation factor w may be thought of as a weighting factor.
For w = 0 the new value of u would be identical to the old
value, and hence no progress would be made. For w = 1 the
new value of u would be the same as calculated in the Gauss-
Seidel procedure. Values of @ between 0 and 1 would represent
an underrelaxation or an interpolation between the old value of u
and the Gauss-Seidel value. Values of @ greater than unity would
represent an overrelaxation or an extrapolation beyond the
Gauss-Seidel value for u. It is this extrapolation process that can
accelerate the convergence of the iterative process. The best
value of w will be the one that gives the maximum rate of con-
vergence. This optimum value will depend upon the particular
problem being considered and is determined largely by ex-
perience. Since the iterative process will not converge for values
of w greater than 2, the value of w will be between 1 and 2. In
this patticular example, a value of w = 1.4 will give convergence
of u; , to three significant figures after 16 iterations instead of the
42 iterations required for the Gauss-Seidel method. This value
of w is close to the optimum for this example.

8:3.5 Numerical results
The solution to this example by gaussian elimination is com-
pared to the exact analytical solution (see Exercise 3-38) in

259
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Table 8 2. These results show that the finite-difference solution
falls slightly below the exact analytical solution.

TABLE 8.2 Finite-difference

solution for square Finite Error, Error.

generation Nade Exact difference exXact-approx. 7 of 1(0,0)
1,1 0.2947 0.2911 0.0036 1.22
1,2 0.278% .2755 0.0034 1.15
1.3 0.2293 0.2266 0.0027 0.92
1,4 0.1397 0.1381 0.0016 0.54
2,1 0.2789 0.2755 0.0034 1.15
22 0.2642 0.2609 0.0033 1.12
2,3 0.2178 0.2151 0.0027 0.92
24 0.1333 0.1317 0.0016 0.54
31 0.2293 0.2266 0.0027 0.92
3.2 0.2178 0.2151 0.0027 092
33 0.1811 0.1787 0.0024 0.81
34 0.1127 0.1110 0.0017 0.58
4,1 0.1397 0.1381 0.0016 0.54
4,2 0.1333 0.1317 0.0016 0.54
4,3 0.1127 0.1110 0.0017 0.58
4,4 0.0728 (.0711 0.0017 0.58

Figure 8:18 shows how the finite-difference solution pro-
gressively approaches the exact solution as the number of nodal
points is increased. The number of nodal points could be in-

0.3

0.2

g.1

FIG. 818 Effect of nodal- 0
poini spacing on finite- 0 0.25 0.5 0.75 1.0
difference solution for sqtare x

generation. y/L = 00. T
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creased even more for greater precision. Indeed, the most com-
mon method of determining the accuracy of a finite-difference
solution is to experiment with the number of nodal points.

Problems in which the region of interest is irregular require
more work, but the underlying features are the same as those we
have discussed in this section. The modifications which must be
made to handle the more complicated regions are discussed
later in Sec. &S.

8-3.6 Convection houndary condition

Convection boundary conditions are easily handled by the
finite-difterence method with no additional difficulty. As an
example, let us consider our generation problem again but with
convective boundary conditions replacing the specified tem-
perature boundary conditions. This new problem is shown in
Fig. 819. For simplicity let us take only four interior nodes.
These can be handled just as before.

Since the surface temperatures are not now specified, we will
need to find an additional equation for each of them. This is
easily accomplished by writing an energy balance on each node.
Figure 820 shows the energy terms associated with node (3,2).
The energy balance for the system shown is

qa + s + Eg =4 + Yconv
The rate equations may be written as

Ax ty; — i3

=k — 31 732
q{! 2 Ay

t -

.., AXx

Eg =g —:)—-—Ay

FIG. 8418
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_ AX f3,2 - t3‘3
q{‘ - 2 AJ‘

and
QCOII\’ = h AJ-’(I3,2 - Ix)

Following the usual procedure, the rate equations may be sub-
stituted into the energy balance to arrive at an algebraic equation
involving the four nodal temperatures. For Ax = Ay, the final
result 1s given by |

2h Ax
—2t, — t3y + (4 + T) 32 = l33

g(Ax)? 2 Ax
== t
kT =

To further simplify this equation we can define T =+t — t_.
This reduces the equation to

2h Ax "(Ax)?
“"2T2'2 —_ T3.1 + (4 ’+' k l) T3,2 - T3‘3 = g—(k")_

Next, we can normalize the equation by defining u = T/(g" I?/k).
This gives

_21,{2,2 — U3, -+ (4 + 2H AX)MLZ — Uy 3 = (Ax)z (8311)

where Ax really means A(x/L) and H = hL/k.

Similar equations may be found for each of the surface nodes.
These five surface equations along with the four interior equa-
tions, represented by Eq. (83:6), result in the system of nine
equations shown below in Eq. (8:3-12).

0o =2 I T, ]

i
-1 0 -2 TR 1
4+ H 0 0o =2 T 1
0 4 -2 0 -1 s 1

0 -t 4 —1 0 —1 ol = 3| (8312)
—1 0 -2 4+H 0 0 —1 U 1
-2 0 0 44+ H =2 0 | |us, 1
-2 0 -1 4+H -1 T 3
=2 0 ~2 4+ 2H| |us; 5|

In this equation Ax = } has been used.

This set of equations may be solved by exactly the same tech-
niques that were discussed earlier in this section. Observe that
we again have a banded matrix just as was obtained in Eq. (8:37).

The only additional difficulty is that we now have nine
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equations, whereas for the same nodal spacing there would be
only four equations if the surface temperatures had been speci-
fied. This approximately doubles the amount of computations
that must be done in this particular problem. In more practical
problems, however, the ratio of surface nodes to interior nodes
will be much smaller. For example, if we had used Ax = & in
this problem, there would have been 81 intertor nodes and only
19 additiona! surface nodes that must be considered because of
the convection boundary condition.

8:4 ONE-DIMENSIONAL, TRANSIENT PROBLEMS

The solution of the heat equation as discussed in this section is
done in two steps. The first step is to obtain a system of ordinary
differential equations to approximate the behavior of the heat
equation. Again, this may be done by either a physical formula-
tion or a mathematical formulation. The second step is to obtain
a numerical solution to this system of ordinary differential
gquations.

There is some parallelism to the steady-state problem dis-
cussed in Sec. 83 that should be mentioned here. In the steady-
state problem, finite differencing the spatial behavior (physical)
or the second derivatives (mathematical} gave rise to a system of
algebraic equations. In the transient problem we are about to
consider, finite differencing the spatial behavior or the second
derivatives in the heat equation will give rise to a system of
ordinary differential equations. In the steady-state case we had
to learn how to solve systems of algebraic equations. Now we
will have to learn how to solve systems of ordinary differential
equations. In the steady-state case we were able to obtain the
gxact solution to the algebraic equations. In the transient case
it is also possible to obtain the exact solution to the system of
differential equations. This is only practical for systems with
relatively few equations, however. For the more typical case in
which there are many equations, we will have to resort to
approximate numerical techniques.

As a specific example, the following sections will discuss the
solution for a plane wall, insulated on one face, that is subjected
to a step change in surface temperature on the other face. Figure
8-21 describes the problem.

8:4.1 Physical formulation
The first step in the finite-difference formulation is to subdivide
the x direction into equally spaced nodes, Ax apart, as shown
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FIG. 8:21 Plane-wall

transient.

Ax Ax

FIG. 822 Nodal-point
arrangement for plane-wall
transient.
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in Fig. 8:22. As an approximation we will let the temperature of
each node represent the temperature of a thin plane wall Ax thick
surrounding the node. A typical set of three consecutive nodes is
labeled in Fig. 8:22.

An energy balance can now be written for the thin wall about
node m. The system shown in Fig. 822 is elaborated in Fig. 823
to show the pertinent energy terms. The energy balance says that

G- 1,m = Qnm+1 + Esm (841)

Next we must use the rate equations. These may be approximately
stated as

b, — 1
ot = kAN 842
q”i 1,m Ax ( )
b, — I
Qnm+1 = kA vl (843)
' Ax
and
. dt
E. = pcA Ax — 844
S pc X dg ( )
Substituting the rate equations into the energy balance gtves
kA kA dt
—(t_y — ) = —(t, — A Ax —= 845
Ax ( m—1 m) Ax (tm m-l- 1) + )OC X == dO ( )
This may be rearranged to give
dt kA
AAx 2 = —(t,,_, — 2t t 84-6
pe X d@ AX ( w1 m + mt 1) ( )

A similar equation can be written for each of the interior nodes.

The node M at the insulated surface must be treated separately.
Since there is no energy conducted out the insulated face, the
energy balance is simply

gy—-1.M = EsM
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The rate equations are

r,"fi'—l - ta\f

Ga-1.m = kA Ax

The resulting ordinary differential equation is found to be

cA Ax dt, kA
P T 0 = as b = ) (847)

The set of equations represented by Egs. (8:4-6) and (847)
must be satisfied for all values of time beginning with the initial
condition. The problem has now been reduced from the solution
of a single partial differential equation to the simultaneous
solution of a set of ordinary differential equations. The solution
of these equations will be discussed after we first see how to
formulate the problem from a mathematical point of view in
the next section.

8.4.2 Mathematical formulation

The mathematical formulation of the finite-difference method
begins with the partial differential equation plus its boundary
and initial conditions. For this problem they may be written in
normalized form as

Heo = Up

u(0,6) = 0
u (1,0 = 0
u(x,0) = 1

In these equations, u = (t — t,)/t;, — to) and x and 8 are really
x/L and «8/L?, respectively.

A nodal mesh may be set up just as was done in the physical
formulation of this problem. F ollowing the discussion in Sec. 81,
the second derivative in the differential equation may be re-
placed by its finite-difference approximation to give

Uy — 2“»: + U+ 1 d“m
- 48
(Ax)* d6 (548)

This equation is seen to be the nondimensional equivalent of
Eq. (84+6). It is applicable to all the interior nodal points.

The equation for the node at x = 1 may be obtained from
Eq. (8:4-8) by recognizing the symmetry involved. Replacing the
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adiabatic condition with another wall that is the mirror image
of our problem does not change the problem. Thus wu,,,, may
be set equal to uy, _; in Eq. (8-4-8) to give the equation for node M
as

2upyy — Uy duy

= 8-49

(Ax)? 40 ( )

Again, we recognize this as the nondimensional version of
Eq. (84°7).

To see more clearly what the problem has now become, let
us consider four divisions in the x direction just as we have done
in Secs. 8-2 and 83 (see Fig. 8-24). There will then be four simul-
taneous ordinary differential equations to solve. These are
shown below in normalized form.

du ]

?61 = (A—x)z(_zul + uy)

du 1

—d—gz = @(Ul — 2“2 + U3)

du 1 {8:4:-10)
3

du 1

?()i = w(zus — 2u,)

In these equations Ax should really be set equal to . This has
not been done, however, to retain some generality for later
discussions. In arriving at the first of these equations, it has been
recognized that u, = 0 because of the boundary condition at
x =0

This system of ordinary differential equations may be classed
as an initial-value problem as opposed to boundary-value prob-
lems, such as were discussed in Secs. §2 and 8-3. This is because
these equations are to be solved for the unknowns as a function
of time beginning with an initial value for each of the unknowns.
In this case the initial values are obtained from the initial tem-
perature distribution in the plane wall. Thus, in normalized
form, the initial conditions that go with Eqs. (8410} are

u; (0) =1 U (0 = 1
u,(0) = 1 u,{0) =1

Methods for solving these equations are discussed in the next
four sections.



FINITE DIFFERENCES

8.4.3 Analog and exact methods of solution

These two methods can be used to solve the system of equations
without further numerical approximations. The analog method
is based on the thermal-circuit notion. The exact solution uses
the theory of ordinary differential equations to solve the system,

Analog method 'The use of the thermal-circuit notion is most
easily seen by rewriting the dimensional form of the general
nodal equation (8-4'5) as

{m—l - tm rm - tm+] dlm
= ‘A Ax -
Ax/kA AxjkA PR G

The term Ax/kA is recognized as the steady-state thermal
resistance between two nodal points. The term pcA Ax is recog-
nized as the thermal capacitance of the material surrounding
node m. If we denote these quantities by R and C, respectively,
the system of four equations, in dimensional form, becomes

lp = 1)  tg— 1 @
R ~ R "“a
t]. - fz . 32 - f3 dﬁ
R~ rR "%
(8:4-11)
R R do
£3 - £4 _ £ d£4_
R 249

The thermal-circuit representation of these equations is shown
in Fig. 8-25. Initially, each of the temperatures is at the value L
At time zero the switch is suddenly closed and the system begins
to respond. This may be set up and solved on an analog com-
puter. It should be pointed out, however, that large systems of
equations with hundreds of nodes would require a great many
resistors and capacitors and also a lot of work to set up the
circuit. Consequently in many practical problems the analog
thermal-circuit approach will not be feasible.

Exact mathematical solution If the number of simultaneous
equations is small enough, it is practical to obtain their solutions
by analytical methods. For example, consider the case in which
only one node is used (at x = 1). In this case Egs. (8:4'10) reduce
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to only one ordinary differential equation to solve:

du,
0= - 2u, (8:4:12)

Here u, is now the normalized temperature at x = 1. The initial
condition is that u#,(0) = 1. The exact solution to this equation
is

u, = e *° (8-4:13)
This differential equation and its exponential solution should
remind you of the lumped-parameter analysis in Chap. 1.

For a two-node system the following pair of ordinary dif-
ferential equations must be solved simultaneously:

du,

= —8uy + 4u,

J (8:4-14)
u

d—02 == 81{1 - 8“2

Now, u, is the temperature at x = 0.5 and u, is the temperature
at the insulated surface x = 1.

Since these are linear equations with constant coefficients,
let us follow Appendix A and seek solutions of the following
form:

20

U, = ae u, = be*? (8-4-15)

These assumed solutions may be substituted into Eqs. (84:14)
to give

are™® = —8ae™® + 4be??
bie*® = 8ae™® — 8he™?

The time dependence may be divided out and the equations re-
arranged to give the following result:

() + 8)a — 4b = 0
~8a+ () + 8)b =0

These equations have the trivial solution that a = b = 0,
which ts of no value to us. They have a nontrivial solution only
when the determinant of the coefficients is zero. Thus we will
demand that Z have a value such that
i+ 8 -4
=0

-8 A+ 8
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Expanding the determinant,

(A + 84+ 8 —(—4—8 =20
Rearranging,

{(/ + 8)* = 32

Taking the square root of both sides,

—_—

P8 =4 /32 =142

of

i=-84+4/2

We now sce that there are two values of A that make the determi-
nant equal to zero. These values are given by

Ap = —8+4/2 = —-8—-4/2 (8:4:16)
This means we have two solutions of the form given by Eq.
(8-4:15), one using 4,, the other using 4,. Because of the linearity
of the system of equations we can superimpose these two solutions
to get the general solution. Thus the general solution may be

written as

u, = a;eM? + aet?’

uy = bje*? + bt &1
The four constants a,, a,, b,, and b, must now be determined

from the initial conditions of the problem. The initial values of u

are given as
u, (0) = 1 and () =1

These values may be substituted into Egs. (8:4:14} to find the
initial values of the time derivatives. Thus

du,

Y o —8(1) + 4(1) = —4
d“z

’r) o 8(1) — §(1) = 0

These four conditions are enough to determine the values of the
four constants. The result is that

_2+V2 -2
4 2 4

y L+ 2 -2
1=y =

2 2

ay
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FIG. 8:26 Exact solutions to
finite-difference system of
ordinary differential equations
for M = 1 and 2 show effect of
nodal-point spacing.
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The final solution is then given by the following pair of equations:

uy = £{2 + /2) exp [—(8 — 4./2)0]

+ (2~ 2 exp[—(8 + 4/2)0];}
wy = ${(1 + /2) exp [~ (8 — 4,/2)6]

+ (1 = /2)exp [—(8 + 4/2)07)

These are the exact solutions to the system of two ordinary dif-
ferential equations which resulted from a two-node finite-
difference approximation to the original problem.

The one-node and two-node solutions (84-13) and (8:4:18)
are compared to the exact solution of the original problem in
Fig. 826. This shows how the finite-difference approximation
approaches the exact solution as the number of nodes is in-
creased. It is interesting to note that the finite-difference solutions
fall below the exact solution at the start of the problem but then
cross over to the high side as time goes on.

You should observe the increase in complexity in obtaining
the two-node analytical solution as compared to the one-node
case. In a practical case, where there may be hundreds of equa-
tions, an analytical solution of the set of ordinary differential
equations is not feasible. Consequently, we are again forced into
using finite-difference ideas to solve the system of ordinary dif-
ferential equations. The next three sections discuss three ways
of going about this.

Before continuing on, however, a comparison with the steady-

(8:418)

I .0 >

T I I I
Exact solution of
partial differential
equation

0.8

0.6
u(1,8)
0.4

0.2 N .
Exact solution of partial

differential equation
) 1 ! i

0
0 0.2 0.4 0.6 0.8 1.0
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state problems discussed in Secs. 82 and 83 is worth making.
Replacing spatial derivatives with their finite-difference approxi-
mations in a steady-state problem reduced a differential equation
to a system of algebraic equations. Large systems of such algebraic
equattons may be solved directly on the digital computer as we
discussed earlier. In a transient problem, however, finite dif-
ferencing the spatial derivatives reduces the governing partial
differential equation to a system of ordinary differential equa-
tions. Exact analytical solutions to these equations cannot be
carried out directly on the digital computer. Some further
approximations will be needed. Thus a transient problem is
considerably more complex than a steady-state problem.

8-4:4 The Euler method of solution

Since the exact analytical methods for solving systems of ordinary
differential equations become rather cumbersome if the number
of equations is large, we need approximate numerical methods
for finding the solution. A further application of the finite-
difference concept can be used.

Since this is an initial-value problem, we will know the
solution u' at some point in time 8, and we will be seeking to
find the solution u™*" at some later point in time §0+" —
0™ + A6, as shown in Fig. 827. The simplest way to estimate
the solution at 6** Y is to compute the derivative at 8 and
then move ahead in time in the following way:

du|™

T A8 (8:4-19)

ut ) = 0y

This can be generalized for the system of equations we are

A Obtained from earlier
calculations beginning
with the intial con-
dition at 0 = 0

Linear extrapolation

Y] I jof slope at g
S
u:\- + 17 __:."A[\
--AG--‘
0 l '

0 9(\': 9"’ + 1

FIG. 8:27 Linear
extrapolation of previously
computed solution to move
akead in time.
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considering to give the following:

| | du. o
ul T = ) 4 —d()I Af
| )

G ) dut, AQ
U uy? 4 o7
L ) 4 duy | A0 (8-4-20}
7 T de

. . du ()
u2+1) =u? + @_‘l A

The values of the four derivatives may be obtained from the
system of differenttal equations (84-10} and substituted into
Eq. (8'4:20) to give the following system of algebraic equations:

(1) ) (v) ()
u" = ul? + [—2ul” + u’] A
(A )
bt = uf [u(" ud) + ul"] A0
u§ T = u + S [ud — 2u + u] Al
(A )
0 = )2 [2u — 2] AO

In this example, of course, Ax has already been chosen as % in
arriving at four equations. This substitution has not yet been
made in order to maintain some generality.

These equations may be rearranged to give

u" D = (1 — 2pt” + put?

uy Tl = pul’ + (1 — 2ppy’ + pus’

uy ™!l = pult 4+ (1 — 2puy + pu)
uy "l = 2pu) + (1 — 2puy’

where p = A0/(Ax)? has been defined for simplicity.

As in Sec. 82 and 83, where we were dealing with systems of
algebraic equations, it is convenient to use a matrix representation
for these equations. They can be expressed as follows:
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— 3

l—ul_("”’ i —2p p u, |
T p 1 - 2p p t,
sy - p 1 —2p 2 Ity
i, 2p 1 = 2p| |u,

(8-4-21)

The tridiagonal matrix on the right-hand side of the equation is
known (and constant) once the size of the time step is picked.
The known values of u at 8 (that is, 4"} are multiplied by this
tridiagonal matrix to obtain the new values of u at 0" ", This
matrix multiplication is quite easy to carry out on the computer
since only the nonzero terms will contribute to the calculation.
This 1s an explicit computation to obtain the new values of u
from the old values of u.* The process is repeated over and over
again to move ahead in time.

To be more specific, let us consider a numerical example in
which Af has been selected so that p = 4. That is,
AD = p(Ax) = {(3)* = o5
The problem then reduces to

—ul cen o [050 025 | I_u,_ )
U, 025 050 025 i,
- (8-4-22)
I 0.25 050 025 fuy
ty | 0.50 0507} |u,

The solution begins by substituting the given initial conditions
#'® into the right-hand side and then carrying out the matrix
multiplication as shown below.

v ] [oso 025 1[10
T 025 0.50 0.25 1.0
w| 025 050 025|110
|t | 0.50 0.50_ 1.0_

0.50(1.0) + 0.25(1.0)
0.25(1.0) + 0.50(1.0) + 0.25(1.0)
0.25(1.0) + 0.50(1.0) + 0.25(1.0)
[ 0.50(1.0) + 0.50(1.0)

*Because of this fact. the Euler method is usually called the explicit method when
S [ . S . ' - an
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which gives

L [0 fors]
Uy 1.00
w,l | 1.00
Uy 1.00

These are the new values at 'V, They are now substituted into
Eq. (8-4:22) as shown below in order to move on to the next step
in time. Thus

u, |9 [050 025 075
u, 025 0.50 025 1.00
w | 025 050 025 |1.00
| | 050 050 | 1.00]

The matrix multiplication can again be carried out to give the
next values of . The result is

(4, ]®  [0.6250]
U, 0.9375
w | |1.0000

s | 1.0000

The digital computer is ideally suited for carrying out this
process over and over again to obtain the solution. The numerical
results of these computations are compared to the exact solution
in Fig. 8-28. Figure 8284 shows the temperature at x = 1 as a
function of time. Figure 828 shows the internal temperature
distribution at three values of time. In this case the response is
hardly distinguishable from the exact solution of the original
partial differential equation.

8.4.5 The Crank-Nicolson method of solution

In the Euler method the value of the derivative at the beginning
of the time interval was used to move ahead in time. A more
accurate method would be to use the arithmetic mean value of
the derivatives at the beginning and the end of the time interval.
That is, instead of using Eq. (8-4:19) to move ahead in time, one
would use

. , 1 [dul® du
dO D = ) L

> a8 T as

(v+1)
:IAH (8:4:23)
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1.0yee T T 7
(a)
0.8 _
u(1,6 Exact solution
(10 " of partial dif.
0.6 9, ferential equation =
0.4}
0.2}
O |
0 0.2 0.4 0.6 0.8 1.0
o
0.8 I ! T T
8=1025
Exact solution
061 §
u(x,0)
04} # =0.50
0.2l 8=10.75
0 | | | |

0 0.2 04 0.6 0.8 1.0
X

This can be generalized for the system of equations we are con-
sidering to give

1 ,:dul Oy, | OO Af

Gt _ o - | % st 3

Hy uy’ + 7| 78 + 70 |

1 [du, ™ N du, [ ¢ U7

2 do df i
1[du ™ dy, (ot

ey o 1| Gl b4

uy uy’ + 3 | a6 + 70 :,AG

u{2\'+1) —

Af

I
=
s
=
+

(8:4:24)

l(\""l) — u(\'] |
s YT T a

L[, (| duy T Ja

The values of the derivatives can be found from the system of
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FIG. 8:28 FEuler finite-
difference solution for M = 4
and p = 0.25.
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differential equations and substituted into Eqgs. {8424} to yield

, , Af) , N , ,
ut ) = ul? ) [(—=2u0) + u) + (=2ul* D + ul Y]
_ , Al . o .
uytl = ) 4 )’ [ — 2uy? + uf?)
@Y = 2T+ Wt
Al
rE1) ) () (v) )
u = uy’ + us! - 2uy!) + u
3 3 2(Ax)2 [( 2 3 4)
+ Wy - 2T 4wy )
A8

M2‘+1) =yt +

= U+ [T = 2 + g7 = 2w )

Observe that the unknown values of "™V now appear on both
sides of the equation. This is of no particular difficulty in this case
since they can be transferred to the left-hand side and combined
with the ones already there. If this is done, the system of equations
may be written in matrix form as

I +p __% U, (v+ 1)
p P
y 1 +p Y U,
p p
AR
B —p 1 + pj | s
i p 17 1
R
- (8-4:25}
? P
PR I
| P ] — Pl | U]

where p = A0/(Ax)* as before.

Just as was the case in the Euler method, the right-hand side can
be computed directly because all the components are known. This
results in a column matrix as before. The difference comes in the
fact that this does not give an explicit result for the unknowns on
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the left-hand side. Rather, an implicit tridiagonal system of
algebraic equations results. This system of algebraic equations
must then be solved. The process is repeated at each step in time.

[t is immediately apparent that there will be more computa-
tional work in the implicit Crank-Nicolson method than there
was in the explicit Euler method. There are three reasons, how-
ever, that one might be willing to resort to this extra work at
cach time step. First, by using the average value of the derivative
to move ahead in time, the solution should be more accurate
than the explicit method. Second, if increasing the accuracy is
not too important, larger time steps can be taken, thereby
reducing the total number of steps needed to reach a certain
point in time. Finally, as we shall discuss in Sec. 8:4:7, the Euler
method is much more apt to produce unwanted numerical
oscillations than is the Crank-Nicolson method if too large a
time step is taken.

As a specific numerical example, let us consider the case in
which the time step has been chosen to give p = 1. That is,

AD = p(Ax)® = 1()* = 15

This means that it will take only 16 steps to reach § = I instead
of the 64 used with the explicit example. Equation (8:4:25) then
reduces to

20 =05 w, [P
—-0.5 20 =05 1,
—~0.5 20 =05 |u,
—1.0 201 Juy
[00 05 1w, e
05 00 05 U
= (8:4:26)
05 00 05 [u,
1.0 0.0J |y

The solution begins by substituting the known initial conditions
u'® into the right-hand side of the equation. Thus

[ 20 —05 rulh M
—-0.5 20 —-05 U,
—0.5 20 =05 |u,

—-1.0 20| | uy
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_ o
00 05 1.0
05 00 05 1.0

B 05 00 05|10

10 00|10
| 1 L |

The matrix multiplication on the right-hand side is again easy
to carry out because of the tridiagonal nature of the square matrix.

The multiplication may be carried out to give
- - . -

20 —05 a, |0 [05]
-0.5 20 —-0.5 T 1.0
~05 20 —05||u| |10

~10 20| |u| |10

This tridiagonal system of equations must now be solved to find
the values of u at the new time. The solution is most eastly
obtained using gaussian elimination as was discussed in Sec. 82,
The following result is obtained:

u, |0 [0.464
", 0.856
uy | [0959
Uy 0.979

These are the values of temperature after one time step, or at
0 = %. These values can now be substituted into the right-hand
side of Eq. (84-26) to begin the process all over again to move
ahead to the next point in time.

The results of these calculations are compared to the exact
solution in Fig. 829. The accuracy is quite good even though the
time step was four times as large as in the Euler example. In fact,
the accuracy appears to be slightly better than the Euler method
shown in Fig. 828.

8:4.6 A pure implicit method of solution

One of the difficulties with the explicit method is that numerical
oscillations can be introduced which will be unstable if too large
a time step is taken. Numerical oscillations also occur in the
Crank-Nicolson implicit method, but they never become un-
stable. They can become large enough, however, to make the
solution inaccurate.
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10 - T T T T
(a)
0.8+ ; .
u(1,0) ; Exact solution
. ferential equation
0.4F A
0.2+ i
0 | 1 1 |
0 0.2 0.4 0.6 0.8 1.0
]
08 | i I T
(b) 0 = 0.25
Exact solution,
0.6
u(x,0)
0.4

0.2

The pure implicit numerical method discussed in this section is
not as accurate as the Crank-Nicolson method, but numerical
oscillations will never appear (no matter how large a time step
is taken). This means that the solution will be more accurate than
either the explicit method or the Crank-Nicolson method if
very large time steps are being used.

In order to see how this method works and at the same time
to become more familiar with matrix methods of handling
systems of equations, let us rewrite Egs. (8'4:10) in matrix form.
They can be represented in the following simple way:

i = —Ku (8:427)

where 0 stands for the column matrix of time derivatives of
temperature, and u stands for the column matrix of temperatures.

FIG. 828 Crank-Nicolson
[finite-difference solution for
M=4dandp =10
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The matrix K is given by

2 -1 |
I
K=y -1 2 -1 (84:28)

The easiest way to verify Eq. (8:4-27) 1s to carry out the matrix
multiplication and show that Eqs. (8-4:10) are obtained.

In the Euler method we move ahead in time by using the
derivatives evaluated at the old time, Eq. (8'4'19). In the Crank-
Nicolson method we moved ahead by using the average of the
time derivatives at the old and the new times, Eq. (8-4-23). Now
we will use only the time derivative at the new time. Thus, we will
be moving ahead according to the matrix equation

D = ) At (8'4-29)

Equation (8'4-27) may be evaluated at 0" " and substituted into
Eq. (84:29) to eliminate 0 * ). Thus

a D = g _ AO Ku®*+V (8-4-30)

The temperatures at the new time may be transferred to the
left-hand side of the equation to give
D L AGK T = g (84-31)

Since u®* Y may also be written as Iu™*", Eq. (8:4:31) may be
simplified to

(I + AOK)uC*Y = gyt (8'4-32)

The expanded form of this equation, comparable to Egs. (8:4:21)
or (8:2:25), is

1+2 —p ] "u,_("“’ [, |
—p 1+ 2p —-p U> Uy
—p 1+ 2p —p ty B Us
i -2p t+ 2p— _ud s |

(8:4:33)

This is an implicit set of equations to solve for the new tempera-
tures at each step in time. Computationally it will be a little easier
than Eq. (8:4:25) because there is no matrix multiplication on the
right-hand side to carry out at each time step.
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The numerical solution to Eq. (84:33) is compared to the
exact solution for p = 1.0 in Fig. 830. Observe that the accuracy
is not as good as the Crank-Nicolson method for the same time
step. This is expected since the average derivative used in the
Crank-Nicolson method should be more accurate.

8.4.7 Numerically induced oscillations

In Sec. 843 we discussed the ability of the exact analytical
solution to a set of ordinary differential equations to approximate
the solution to the original partial differential equation. Now we
need to discuss the numerical schemes used to obtain approximate
solutions to the set of ordinary differential equations. We have
used three numerical methods to solve these equations: the
explicit Euler method, the Crank-Nicolson implicit method, and
the pure implicit method. In all these cases we expect better
results if we take smaller time steps. In practice, however, one is

1.0 T T T T
° (a)
0.8 - N
1,0 . Exact solution
“(L0 #" of partial dif-
0.6 ferential equation A
2]
2]
0.4F _ o .
a
2]
R ]
021 .
. e t] o |
0 1 | | i
0 0.2 0.4 0.6 0.8 1.0
¢]
0.8
0.6
u(x,9)
0.4
0.2

FIG. 8:30 Pure implicit
finite-difference solution for
M=4adp = 10.
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usually trying to take as large a time step as one can to cut down
on the amount of computations. In addition to decreasing the
accuracy of the solution, larger time steps can introduce some
unwanted, numerically induced oscillations into the solution.

A deeper understanding of the types of behavior that the
numerical solution of these ordinary differential equations can
exhibit begins by considering the special case in which there is
only one such equation, Eq. (84:12). The exact solution is given
by Eq. {(84:13). The following three equations are obtained
corresponding to the three numerical schemes:

Euler: Ot = (1 — 2pu™
Crank-Nicolson: (1 + pu®*!" = (1 — pju®™
Pure implicit: (1 + 2ppu*t = 4™

Each of these may be put in the following general form:

vt = 1™ _ (84:34)
where 7 has the following definitions:
Euler: A=1-2p (8-4:35)
Crank-Nicolson: 7 = - (8:4:36)
14+ p
Pure implicit; A= ! (84:37)
pHEL: 1+ 2p

The value of 1 determines the character of the solution. By
looking at Eq. (8-4-34) it can be seen that there are four possible
types of behavior:

. A>1 Steady, unbounded growth (the new value
of u has the same sign as the old value and
is larger in magnitude)

2. 1>A>0 Steady decay (the new value of u has the
same sign as the old value and is smaller
in magnitude)

3. 0> 2> —1 Stable oscillations (the new value of u has
the opposite sign as the old value and is
smaller in magnitude)

4. 1< -1 Unstable oscillations (the new value of u
has the opposite sign as the old value and
is larger in magnitude)

oy

s
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d
Steady,
unbounded
growth

Hp—————— e ——————

Steady
decay

l l =P
> |
Stable

oscilla-
tions

_______ ]

Unstable
oscilla-
tions

¥

Pure implicit

Crank-Nicolson

Figure 831 shows A as a function of p (p = A8 for this special
case) for each of the three numerical schemes we have considered,
Eqgs. (84:35) to (84:37). It should be observed that all three
schemes become identical if the time step is small enough (i.c.,
as p — 0). As the time step is increased, the solutions begin to
differ. The Euler method can have either steady decay, stable
oscillations, or unstable oscillations. The Crank-Nicolson method
can have either steady decay or stable oscillations. The pure
implicit method has only a steadily decaying type of solution.

Figure 8:32 compares the three numerical solutions to the
exact solution they are trying to approximate, Eq. (84-13).
For a stable time step of p = 0.25 the Crank-Nicolson method
gives very good results. The Euler method is low because it uses
too large a time derivative to move ahead at each step. The pure
implicit method uses too small a derivative and consequently
falls above the exact solution. As the time step is increased to
p = 0.50 (an oscillatory limit of the Euler method), all three
solutions lose accuracy as expected. The Crank-Nicolson is still
the best. The explicit solution falls even lower than before, and
the pure implicit solution moves farther above than it was
previously.

If we increase the time step beyond p = 0.50, numerically
induced oscillations will begin to appear as shown in Fig. 8-33.
For p = 0.80 the Euler solution gives a decaying oscillatory
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FIG. 8:31 Finite-difference
stability curves for M = 1.
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FIG. 8:32 Finite-difference
solutions for M = | withp =
0.25 and 0.50.
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solution. This is obviously wrong and cannot be used. The Crank-
Nicolson solution still looks rather respectable but, of course,
less accurate. The pure implicit solution is reasonable but less
accurate. Increasing the time step to p = 1.2 makes matters worse.
The oscillations in the Euler solution now grow without bound,
and oscillations are introduced into the Crank-Nicolson solution.
The pure implicit solution continues to lose accuracy, but no
oscillations appear. Further increases in the time step will just
make matters worse. The oscillations in the Crank-Nicolson
solution will become more severe, but they will never go unstable.
Oscillations will never appear in the pure implicit solution,
but it will continue to lose accuracy.

The above discussion may be extended to the more general
case in which there is more than one equation. The matrix
representation for any of the three numerical schemes can be
written as o

Au® "D = Ba™ (8-4-38)
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where the matrices A and B will depend upon the particular
method. This equation can be premultiplied by the inverse of
matrix A to give

b = A7 Bu® (8-4-39)
The eigenvalues 4 of the matrix A~ 'B play a similar role to the /4
in Eq. (84:34). If there are M simultaneous equations being
handled, there will be M eigenvalues of A~ !B. These values will

determine the character of the solution (see Refs. [3, 5]}
The eigenvalues of A~ 'B are determined from the relation

det(A™'B - Al) =0 _ (8:4-40)
We may now multiply this equation by det (A} to get
det(A)det (A™'B — Al) = 0

There is a theorem in matrix theory that says the product of the
determinants of two matrices is equal to the determinant of the
product of the matrices. Thus the above is equivalent to

det(B — 1A) =0 (8-4-41)

9 Euler 2} Crank-Nicolson ob  Pure implicit
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FIG. 8:33 Finite-difference
solutions for M = | withp =
0.8 and 1.2.
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This requirement will determine the values of 2 for the problem.
Equation (8-4'41) is a little easier to use than Eq. (8:4-40) since the
inverse of A does not have to be found.

There will be three general classes of solutions which will arise
in this problem. If all the eigenvalues are between 0 and 1, there
will be no oscillations. The solution will gradually approach a
steady-state value. If one of the eigenvalues falls between 0 and
— 1, numerically induced oscillations will appear. If one of the
eigenvalues is less than —1 the oscillations will be unstable.

As an example, let us consider the two-node case for the Euler
method. The matrices A and B are then given by

1 0] 1—2
A — B p p
0 1] 21— 2p
Then

B - 1A =

(1 —2p — p
2p 1 —2p —~ 4

The determinant of this matrix is then given by

det (B — AA) = (I — 2p — A4)? — 2p?

This is then set equal to zero in accordance with Eq. (84-41).
The resulting equation is a quadratic in 2. Its solutions turn out
to be

=1-p2+ /2 d=1-p2-/2

The value of 4; will determine the character of the solution
since it is the one that is most likely to be negative. It is plotted
in Fig, 834 as a function of p along with the corresponding
eigenvalues for the Crank-Nicolson method and the pure implicit
method. These curves are comparable to Fig. 831 which was
obtained for the one-node case, The same general character is
exhibited by the solutions, but the curves have shifted to the left
so that the critical values of p are smaller than before. The upper
limit for stable oscillations of the Euler method is now 2/(2 +
\/é) = (0.586 as compared to 1.000 in the one-node case.

In a practical case the matrices A and B are large. This pro-
hibits an algebraic analytical investigation of the numerical
oscillations as we have done here. Qualitatively the same behavior
can be expected, however. In the limit, as the number of nodes
becomes infinite, it can be shown that the stability limit for the
Euler method approaches 0.500.
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The limiting value of the critical stability limit for the Euler
method (0.500) may be derived by considering the physical
picture of the Euler method. Let us begin with the dimensional
form of the set of differential equations (8-4-11). If, for example,
we pick the second one of these to study, it may be rewritten as

dt,

R

+ 2t =t + i,

We are looking for the solution of this equation as a function
of time. In the exact solution all three temperatures are varying
with time, and this equation is therefore coupled to the other
equations in the set. A semiexplicit approximation to this equation
holds the values of ¢, and ¢, constant at their initial values at
the beginning of the time interval, ¢{? and ¢{”. Thus the equation
becomes

dt,

RC df

+ 26, =t + 4 (8-4-42)
This semiexplicit equation now has only one dependent variable
t, which starts at its initial value ¢§” and exponentially approaches
a steady-state solution. Specifying ¢, and ty as constants has
uncoupled this equation from the rest of the equations in the set.

Equation (8-4-42) has the rather obvious steady-state solution
that the final temperature ¢, is the average of the two temperatures
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FIG. 8.34 Finite-difference
stability curves for M = 2.
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FIG. 8.35 Semiexplicit Euler
solution.
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on either side. The exact solution to this semiexplicit equation is

t — E'Z —0:(RC;2)
o = g UIRC 844
5 — t, ¢ (8:443)
This solution is pictured in Fig. 8-35.
In the Euler numerical solution of Eq. (8:4-42), the derivative of
t, at 60 is used to move ¢, ahead in time according to the relation
dt
t, = 5 + —2
2 2 d@
We know from the exact solution of Eq. (8:4:42) that the solution
for ¢, can never be beyond f,. The first and second laws of thermo-
dynamics could not both be simultaneously satisfied if it did.
Thus Af,, the largest value of Af that can be used without
violating one of these laws, must be such that

(v}
AG

~ de, |
f, =5 + —

A
do 0

(8:4-44)

£

The initial value of the derivative may be obtained from Eq.
(8-4-42) as
() 1

= o (i) = 2 + )

t,
do

Thus Eq. (8:4-44) becomes

ALEEEIY A0
— T = t("] + AL - b + t(\‘} <
2 2 ( 1 2 3 )RC
t
f [
tal\‘] i_ tsll')

1 %ll',

| dg

l

|

+_

|

|

f

Y

01\'; UW: + Agt
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This may be solved to give

AD, 1
RC =3 (8:4-45)

Ifeach of the other three equations is checked in the same WaYy,
the same result is obtained. Thus, by comparison with Eq. (8-4:43),
we see that the critical time step A0, is equal to the nodal time
constant RC/2. It is pleasing, of course, to see that physical
significance can be attached to this critical time. It is not obvious
that violation of Eq. (8-4-45) will produce numerical oscillations.
However, it is not surprising to find mysterious behavior of
mathematical solutions when physical principles are not satisfied.

We have seen that the stability limit for the one-node approxi-
mation was 1.000. For the two-node approximation we found
that the stability limit was reduced to 0.586. In the limit, as the
number of nodes becomes infinite, it can be shown that the
stability limit approaches 0.500. Thus the critical time step
derived from physical considerations is a conservative estimate
of the stability limit for a finite number of nodes and an exact
value as the number of nodes becomes infinite.

In practice the engineer does not do a great deal of analysis to
determine his stability limit. He generally checks a few of the
nodal time constants that he expects to be critical and then
forges ahead with the solution without exact knowledge of the
oscillation limits. The result must then be examined to see if any
oscillations are showing up. He may be willing to put up with
small oscillations or he may want to decrease his time step to
reduce or eliminate them.

It is important to point out that the selection of the spatial
mesh size Ax and the size of the time step A8 are related through
the parameter p = AB/(Ax)2. Cutting the spatial mesh size by a
factor of 2 not only doubles the number of nodal points (giving
better accuracy) but it also forces you to divide the time step by a
factor of 4 if you want to maintain similar stability conditions
(for example, p = 0.5). Thus what started out as a doubling of
the amount of work (i.e., twice as many equations) really amounts
to eight times the amount of work (i.e., twice as many equations
and four times as many calculations to get to a particular point
In time),

8-4.8 Convection boundary condition

The finite-difference method may casily be extended to handle a
convection boundary condition. As an example, let us consider
the same example of a plane-wall transient but with a convective
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boundary condition at x = 0 rather than a step change in surface
temperature. Figure 836 shows the nodal system that we will use.
We have again taken Ax = 4, but now we have fives nodes to
consider instead of only four because the surface temperature is
now an unknown.

The set of ordinary differential equations for the interior nodal
points are obtained in the same way as was done to find Egs.
(84-6) and (8-4-7). The surface node must be handled separately
because of the convective boundary condition at the surface.
Figure 837 shows an expanded picture of the surface nodal
system and the important energy terms. The energy balance may
be written as

q{‘u = QO,i + ESG (84.46)
The rate equations may be written as
4., = NA(t, — to) (8-4-47)
to — 1
go.y = kA (8-4-48)
Ax
. Ax dto
E, = pcA— — 8:4-49
50 pc 2 dg ( )

Upon combining the energy balance and rate equations in the
usual way, the following differential equation is obtained:
kA Ax dt

hA(t,, — tg) = —(tg — 4= 20
1 (GO 0) Ax (to r1) + )Oc 2 dg

This equation and Eqs. (8:4'6) and (8'4'7) provide the set of
ordinary differential equations. After normalizing and re-
arranging, the resulting system may be written as

(84:50)

?O—O = -(Zi)—z[uﬂl + H AxX)uy + 2u, ]

%:(TL)_Z[% — 2uy + u,]

% = ﬁ[ul — 2u, + U5} (8:4:51)
%za%z—[uz — 2uy + Uy
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Observe that the Biot number. H = hL/k has appeared in the
normalization. This is not surprising since it is an important
number that appears in analytical solutions. It should also be
observed that the ambient temperature has been absorbed into
the nondimenstonal temperature defined as u = (¢t — ¢t )/t —
t..). These equations replace Egs. (8:4:10) as the set of differential
equations to be solved.

For the Euler numerical method of solving these equations,
the following matrix equation is obtained:

u** " = Bu™ (84-52)
where

1 — 2p(1 + HAx)  2p

p 1-2p p

p t—2p p
2p [ —2p

All the components of the matrix B are known and constant for
this problem. The values of the temperature at the new time are
obtained by simply multiplying the old values of temperature by
the tridiagonal matrix B as given by Eq. (84:52), The only
difference between this and the nonconvective boundary con-
dition case (8-4-21) is that we now have one more equation and it
involves the heat-transfer coefficient. The computations are
carried out in exactly the same manner.

The Crank-Nicolson method may also be used to move ahead
in time. In this case the following matrix equation is obtained:

Apt Tt = Ba™ {8:4-53)
where

1+ p(l + HAY)  —p

—p/2 l+p —p/2

A= —p/2 14+p —-p/2

—p/2 1+p —p/2
—-p l+p

291



292

ANALYTICAL METHODS IN CONDUCTION HEAT TRAMNSFER

and

I — p(l + HAx) p
p/2 L—p p/2

Equation (84'53) takes the place of Eq. (8:4:25) for the non-
convective boundary case. Again, it should be observed that the
solution has not been significantly complicated by the convection
boundary condition. Multiplication of the old temperatures by
the tridiagonal matrix B still gives a set of known values on the
right-hand side. You then have a set of simultaneous equations
to solve for the new temperatures at the next time.

The most serious limitation that the convection boundary
condition imposes is that the critical stability limit for the Euler
numerical method of solution is more restrictive. Using the
techniques discussed in Sec. 8:4-7, it can be shown that the
critical stability limit (beyond which the solution will be un-
stable) is conservatively given by

1

Perit = 0.5 1 4+ H Ax (8454)
This compares to p,;, = 0.5 that we derived for the case in which
we assumed a step change in surface temperature. For a given
nodal spacing, the critical stability limit becomes smaller as
H = hL/k increases. To maintain the same stability condition
(that is, p = constant), the value of Ax will have to be decreased
as the value of H is increased. Since p = A8/(Ax)?, this means
that smaller time steps will have to be used.

One way of easing this stability restriction is to implicitize
the surface node that is giving the trouble. That is, we will stiil
treat all the interior nodes in an explicit manner, but we will
move ghead in time in the implicit way for the surface node at the
convective boundary. The resulting matrix equation is

Au®+D = But¥ (8:4:55)

—
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where
rI-i*p(1+HAx) —p |
A= 1
1
B IJ
and
(|- p( + HAY)  p ]
p l=2p p
B = p [ —2p p
b =2 p
2p I —2p

This is still an explicit solution since no simultaneous algebraic
equations must be solved. The values of uf{'* ", u§+ 1, 4§+ 1 apd
u§™ 1 can be solved for immediately. The newly computed value
of ui"" " can then be substituted into the first equation to find
u§ ™!, The solution can then be continued to the next time step.
This can easily be extended if both surfaces of the plane wall had

convection boundary conditions.

8.5 INTRODUCTION TO ADVANCED PROBLEMS

Thus far, we have considered only problems in which we could
have found an exact analytical solution. This was instructive
because the approximate finite-difference solutions can then be
compared to the exact solution to provide us with an idea of the
accuracy of the finite-difference method. It should be apparent
that, if enough care is taken (e.g., take small-enough nodal
spacings and watch out for stability problems), the finite-
difference method will give very good engineering results.
The whole purpose of discussing finite-difference methods is
to be able to solve problems either for which there is no analytical
solution or for which the analytical solution is too hard to obtain.
Even in some cases where you may be able to find an analytical
solution, it may be hard to evaluate because of a slowly con-
vergent series that must be summed or some other difficulty.
This section discusses a few examples which, in general, must be
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handled approximately because of difficulties with exact analyti-
cal methods.

Conceptually, there is very little difference in the formulation
of these more complicated problems. You have already been
exposed to the basic ideas you will need. The only additional
difficulties are computational. Although the computations be-
come more involved, the use of the digital computer makes them
quite feasible in most cases.

By the time you have studied this section your confidence
should have developed to the point where you could tackle
almost any conduction problem.

8.5:1 Nonuniform heat-transfer coefficient

The discussion of the thin-rod problem in Sec. 82 assumed that
the heat-transfer coefficient was a constant along the entire
length of the rod. In a more practical case it might be a variable.
For example, the flow of air over the rod might be very small near
x = 0 due to the effect of the wall. This would mean that the
heat-transfer coefficient would be low near x = 0 and increase
further out along the rod. In general such a problem could not
be handled analytically.

The finite-difference formulation follows directly from the
discussion leading up to Eq. (8-2:1). The only difference is that
in the convection rate equation the constant value of i would
now have to be replaced by a suitable average value h,, over the
system upon which the energy balance is being made. Equation
(82:1) would then be replaced by

— Ly + Dmrm - l‘:m+1 =0 (851)

Here, D, is given by

h,p
D, =2 + ™ (Ax)? 852

Thus the numerical value of D,, would be different for each nodal
equation.

After normalization, the resulting system of algebraic equa-
tions may be written in matrix form as

Au=c¢ (8:53)
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where, for four nodes,

n —
Dl ‘_].

—1 D, -1

A =
-1 D, -1

and

l

0
C =

0

_OJ

This equation replaces Eq. (8:2'8), which was derived for a
uniform heat-transfer coefficient. The solution of Eq. (8'53) is
obtained in exactly the same manner as it was for Eq. (82'8).
The only difference is that the numerical values of the diagonal
terms have been changed.

8.5.2 Variable conduction area

A thin rod with variable conduction area can sometimes be
handled analytically as shown in Chap. 2 (Exercises 2:25 and
2:26). However, if the area does not vary in certain special ways,
exact analytical techniques fall down and approximate methods
must be employed.

Figure 8-:38 shows a typical section of a rod with variable con-
duction area (and also perimeter). If the cross-sectional area
does not vary too rapidly, we can still use a one-dimensional
treatment of the problem. As in the constant-area case, the energy
balance is given by

Qm— Lan — Qm.m+1 + Qc‘,,,

Now we must modify the rate equations to account for the
variable area and perimeter. For the conduction terms we may
write

Am-— + Am tm— - tm
q”i— taw — k l -
’ 2 Ax

m + Am+1 by — tm+l
2 Ax

A
qm,m+l = k
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FIG. 8:38 Typical nodal
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The convection term may be written as

qcm = hpm Ax Im

Observe that the perimeter, as well as the cross-sectional area,
varies with position. The rate equations can be substituted into
the energy balance to arrive at the following equation:

A,., + A Apy_1 + 24, + A,y hp
o m m o H H m m A 2 I
24, [ 24, *a, B O
. Am + Am+1

2Am tm+1 = O (854)
Observe that this equation reduces to Eq. (8-2:1) if all the areas
are equal. If the areas are different, we will still have a tridiagonal
system of equations to solve. For four nodal points, these equa-
tions may be written in normalized matrix form as

Au=c¢ (8:5-5)

The normalized temperature is given by u = (t — 1. )/(ty — t..)
For t, = 0 this becomes u = t/t;. The matrixes A and ¢ are
given by

D, b,
A _ *"(?2 .D2 “bz
_03 D3 _b3
—2(14 D4
and
a,
0
L =
0
0

where the following symbols have been defined:

Am—l + Am Am + Am+1
Qp = — Q73— bm = a1
2Am 2Am

and (8:5:6)

D _ Am-l + 2Am + ’4m+1 4+ hpm

32
m 2Am kAm (A\]




FINITE DIFFERENCES

The numerical solution of these equations is carried out just
as it was for Egs. (8:2-8). The only difference is that the matrix
components have been altered. Each one must be computed
separately based upon the cross-sectional-area variation. You
should also observe that these equations can incorporate a
variable heat-transfer coefficient with relatively little change in
complexity. The # in the expression for D, would have to be
replaced by h,,.

8-5.3 Variable thermal properties

In some engineering problems it Is necessary to take variations
of thermal properties into consideration. When large temperature
differences exist, average values of conductivity and specific heat
may no longer be acceptable. The temperature dependence of
these quantities must be considered. Another possibility is that
the material may not be homogeneous in composition. Again,
exact analytical methods are not too fruitful an approach in
such cases.

As an illustration of how such a problem might be attacked
using finite differences, let us consider a one-dimensional,
transient problem such as we discussed in Sec. 84. Now we will
assume that the thermal properties k and ¢ are functions of
temperature and position within the wall. The density is a
constant in time, but it may vary with position.

Figure 823 will still apply as will the energy balance given
by Eq. (84'1). The alterations will come in writing the rate
equations for these energy terms. The conduction terms may be
approximated as

Jkm— + km rm— - tm
qm— tan — - A 1
2 Ax

Qh‘i.m+1 = km + km+1 A Itm - tm+1
2 Ax

The thermal energy storage term may be written as’

: d
E,, = (pc)d A5 22

't is left as an exercise for the student to show that this expression is correct
and not

. d
E, = A4 Ax—(pct
X (pct),,
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Upon substituting the rate equations into the energy balance
and rearranging, the following equation is obtained:

()OC]HIA Ax

drm _ A lkm-] + km ¢
a9 Ax 2 ml

km—l + 2km + km+1 km + Ikm+1
— t Mmoo wmre
2 m + 2

1‘m+ 1) (85?)

Observe that this equation reduces to Eq. (8:4-6) for constant
properties if k, , =k, =k,.;, =k and (pc), = pc. Upon
dividing by (pc),,4 Ax, the above may be written as

dt,, 1
dG - (A—x)i(amfm—l - 2bmtm + C?Htm+1) (858)

where the following definitions have been made to simplify
matters:

km—l + km
Ay = — A7~
2(,0C)m
zbm — km-—l + 2km + km+1 (859)
2(pc)m
k
Cm — + km+1
2pc),

The normalization of Eq. (8:5-8) is not as clear cut as it would
be for the constant-property case. You will recall that in the
constant-property case a nondimensional time was defined as
8 = «0/I?. In the present case, o is no longer a constant. It is a
function of position and time. Some average value (averaged
over space and time in some manner) might be used if one in-
sisted on normalizing the equation. Instead of doing this, let us
just continue to work with the equation in dimensional form.

The Euler method of solving these equations results in the
following matrix relation (for four nodes):

(0D = B 4 o0 (8:5-10)
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where

|—1 - 2pb1 pCl (‘IJ
pa, 1 — 2pb, pe,

B{vl —_
pa; 1 — 2pb, pPe;
2pay, [ — 2ph,
and
_palro_{"’

0
¢ =

0

0

As in previous examples, we have defined p = Af/(Ax)?, but
here p, Af, and Ax are dimensional since we have not normalized
the problem. The matrix ¢! has appeared since we did not take
t — to as the temperature variable. If we had done this (or,
equivalently, set to = 0), the matrix ¢ would not appear.
Even if it is not set equal to zero, we can easily add ¢™ to B™t™
at each step in time without much extra work.

The reason for putting the superscript (v) on the matrices
B™ and ¢ is that their components may now depend upon
time because a,,, b,,, and ¢,, may now depend upon temperature,
which in turn depends upon time. This means that the matrix
components of B™ and ¢™ will have to be reevaluated at each
step in time. That is, given the temperatures t), the components
of B and ¢ can be calculated. The computations indicated
by Eq. (8510) can then be carried out to find t"* 1. The process
is then repeated.

In the constant-property case, Eqs. (8:4-21) may be written as
u®* Y = Bu". The matrix B is calculated only once and used
over and over again. If the properties vary with position only,
the superscript (v) may be dropped from B and ¢ in Eq. (85'10)
because these no longer depend upon temperature, This con-
siderably simplifies the computational problem since, in this
case, B and ¢ are constants and do not need to be reevaluated
at each time step. This is then no more difficult than the constant-
property case once the components of B and ¢ are computed
at the start of the problem.
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The Crank-Nicolson method of moving ahead in time leads
to more complications than the Euler method mentioned above.
The matrix equation for the imphcit method turns out to be

AU gl ) o BUg) L o0 L T D)

where, for four nodes,

A(‘r+ 1) —

B =

et —

1+ pb,

pa;

2

i

i~
1

"~

L]

e T e T N ]

and

vty _

(8:511)

T+ 1)

Jiv+ 1)

To reduce the problem to its simplest form, let us take t, = 0
in order to get rid of the matrix e. Equation (8-5-11) then reduces

to

(r+ Dglv+ 1) . pivg(v)
A t B''t

(8:5-12)

The right-hand side of this equation may be computed with no
more difficulty than we had in the explicit case. If we call the
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result r', we get
AGH D+ o) (8-5-13)

We now have a system of equations to solve. The trouble is that
the coeflicient matrix now depends upon the unknown tem-
peratures. We must know t"* Y to evaluate the components of
A" We cannot solve for the temperatures by the usual
gaussian elimination scheme unless we know the components
of the matrix A"~ Y, and the components of this matrix are
functions of the unknown temperatures that we are looking
for.

To solve this problem we can use an iterative technique. The
first step would be to take AY* 1 & A™, That is, let us assume
that the components in matrix A¥* " are not too different than
if they were evaluated using temperatures from the previous
time t*). Under this assumption, the matrix A®* Y is known
approximately, and the system of equations may be solved for
the unknown temperatures ** Y, If the time steps are not too
large and/or the property variations with temperature are not
too strong, this result may be quite satisfactory. In practice one
often reduces the size of the time step so that this result is adequate.
[f you want to improve your solution, you could now use the
values t**Y that you have just found to recompute the com-
ponents in A¥* Y. An improved solution can then be found by
then solving again for the unknown temperatures t" ! using
the improved values for the components of A®* 1. This process
could be continued.

An alternative approach for obtaining a first approximation
to AY*D would be to use thermal properties extrapolated from
the known values at 6" and earlier. That is, conductivity at
0@+ 1 could be estimated as

Ok| ™
kOt o g0} il Al
T30
The time derivative can be rewritten using the chain rule to give
Sl or |
PR VI ¥ B I Y
Yol @ M

The derivative of conductivity with respect to temperature is a
material property. It may be almost a constant or it may be a
function of temperature, in which case it might have to be eval-
uated numerically by the computer from a table of conductivity
as a function of temperature. The derivative of temperature with
respect to time might be approximated as being zero at the start
of the problem, but once the first step in time had been com-
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pleted, it could then be approximated as

ct

co

M) ) gl 1)
N AB

Thus, for later times, conductivity could be computed as

-

, , ck
k‘:‘"‘l) — k(\} + —
ot

{v)
(r{\') _ Ih'-“)

The other properties in A“* " can be computed in the same way.
The purpose of this extra work in making a first estimate of
A" "1 is that it may be a good enough approximation so that
iteration can be avoided without having to take too small a
time step.

The consideration of variable properties has increased the
computational time necessary to solve the problem, but neverthe-
less we have a way to attack this complicated problem. The use
of the digital computer considerably eases the burden of making
these calculations.

8-5.4 Radiation boundary condition

Radiation is hard to handle by exact analytical methods because
of its dependence on the fourth power of the temperature. This
makes the problem nonlinear. Although the computations be-
come more involved, the finite-difference method is quite able
to handle such problems.

As an illustration of how one might handle a radiation
boundary condition, let us consider the plane-wall transient
once again. This time let us replace the convection boundary
condition (discussed in Sec. 8:4:8) with a radiation boundary
condition. The energy balance for the surface node will be the
same as given by Eq. (8:4:46) except that g, will be replaced by
4y,» @ radiation heat-transfer term. The conduction and storage
rate equations will remain unchanged as given by Eqs. (84:48)
and (3449). From Eq. (1-1'4) the radiation rate equation can
be written as

4., = €Ac(T} ~ TE) (8514)

When considering radiation, we must be careful to use the
absolute temperature scale.
Combining the energy balance and the rate equation then gives

kA Ax dT,
eAa(Th — T3) = (T~ T) + pe 5 Ebg (8:515)
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This equation replaces Eq. (8'4-50), which was derived for the
convective boundary condition.

One possible way of handling Eq. (85:15) is to linearize the
radiation term. This is done by factoring the difference in the
fourth power of the temperatures as follows:

T} = T5 =(T7 + TYUTI — T5)
= (T} + TolT, + T)T, — Tp)

This may now be substituted into Eq. (8515} to give

kA Ax dT,
AT, — T,) = < (To = Tu) + ped 5 (8:516)
where
h, = ea(T} + TiNT, + Ty) (8-5:17)

has been defined to make Eq. (8'5:16) have the same appearance
as Eq. (8:4-50). This radiation coefficient h, is really a variable
since it depends upon the surface temperature 7;,, which changes.

The problem may be linearized by now assuming that the
value of Ty in Eq. (8:5-17) may be replaced by T,.. Then

h, = co(T2 + THT, + T,) = deoT? (8:5:18)

The radiation heat-transfer coefficient is now a constant, and
Eq. (8:5-16) may be treated exactly as we did Eq. (84'50) for
convection at the boundary.

For cases in which T, is not close to T,, this linearization
will not be adequate and the nonlinear equation (8'5'15) must
be handled directly. The first thing we will do is to normalize
the problem by defining u = T/T, so that the value of the
normalized variable u will always be between 0 and [.* We will
also normalize x and (0 in the usual manner. With these definitions,
Eq. (8'5'15) becomes

2ec¢LT? . 2 du,
—IC—A'x—(l{,x, - ng) = w(lio - h’l) + w

This may be rewritten as

du, | 2R
—2 = [-2(1 + R Ax 3 2R , -
dO Ax)z [ 2(1 + X uO)“O + 2“1] -[— Ax ux (8 5 19)

where R = ¢6 LT /k has been defined for convenience.
Equation (85:19) takes the place of the first of Egs. (8'4:51).

*We are assuming that T; is greater than T,.
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Insofar as possible it has been written in a comparable form.
The most serious difference is that u, appears to the fourth
power in Eq. (8519). This nonlinearity will complicate the
solution of the problem. It should also be observed that, in this
nonlinear equation, it is impossible to absorb the ambient
temperature into the nondimensional temperature as we usually
did in the linear cases we have studied. Thus we will have to be
content to carry along an additive constant in this equation.
The remaining equations for the interior nodes are the same
as those given in Eqs. (8:4'51)}.

To see what is involved in the numerical solution of this set
of differential equations, et us first consider the Euler method
for moving ahead in time. The matrix representation of the
numerical problem is given by

el = By 4 ¢ (8:5:20)

where, for Ax = 1,

1 — 2p(1 + RAxud) 2p m
p 1-2p p
BY = p 1-2p p
p 1—=2p p
i 2p 1 -2p]
and
[ 2pR Ax ut
0
c = 0
0
L O _

The major difference between Eq. (85-20) and the correspond-
ing equation for the convection boundary condition, Eq. (8'4-52),
is that the matrix B now depends upon time. This is denoted by
writing it as B*". This does not cause much difficulty, however.
It simply means that the one component of B which contains
the temperature will have to be recomputed at each time step
before going on to the next step. Since the value of u, that is
needed in this computation is known, u}’, there is no difficulty.
The constant matrix ¢ will have to be added to the product
B™u') at each step. This is no problem either since ¢ is known
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and constant. The numerical sotution can be carried out on the
computer with no difficuity.

[t should also be mentioned in passing that the stability
situation will be different than it was in previous examples. It
will be more restrictive than the original case we considered of
a step change in surface temperature where we found p_,;, = 0.5.
This 1s the same thing that happened to us when we considered
the convective boundary condition in Sec. 848,

The Crank-Nicolson method of solution may also be used to
solve this problem. This will significantly complicate the problem,
however. The matrix equation that results is

ATt = BG4 o (8:5:21)
where
[ 1+ p+ pRAxu;  —p 1o+
—p/2 l+p —p/2
AGHD —-p/2 1 +p —p/2
—p/2 1+p —p/2
i —p 1+p
'l —p— pRAxu} p 1™
p/2 1—p p/2
B — p/2 L —p p2
pi2 1 —p p2
] p 1—p
[2pR Ax u® )
0
c = 0
0
L 0 -

Notice that the right-hand side of Eq. (8-5-21) has the same
general form as in the Euler method (8:5-20). When the matrix
operations on the right-hand side are carried out, the following
matrix equation is obtained:

ADT OO+ ) (8:5:22)

The right-hand matrix r'” is completely known.
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A major difficulty arises on the left-hand side of the equation
because A" ig a function of one of the unknown temperatures
at the next time, u§ * . In most of the previous examples we have
discussed, the matrix A was a constant, independent of tempera-
ture. In these cases we had a simple, linear set of algebraic equa-
tions to solve for the new temperatures. We could use gaussian
elimination on the matrix A since it was entirely known.

In the variable thermal-property case every component of
A depended upon temperature, and we were forced to do an
iterative solution of the entire system of equations. We could
also do this in the present problem. The first step in the iterative
process would be to assume that A¥* D = AN, If we only take
the first step in this process and replace Eq. (8:5:22) by AMu+ 1) =
r™, we are effectively linearizing the radiation term once again
but in a slightly different way. We are replacing T4V by T’
rather than by T,,.* Since only one row of the matrix contains
an unknown temperature, a simpler scheme can be employed
to avoid linearization or iteration of the entire matrix, This
scheme makes use of gaussian elimination for most of the matrix
and an iterative solution only for the row containing the un-
known temperature.

As an illustration of how this gaussian elimination—iteration
scheme works, let us consider a numerical example. Suppose
we take R Ax = 1.0, p = 0.5, and u, = 0.7. The matrices then
reduce to

[ 1.50 + 0.50u3 —0.50 Jokn
~0.25 1.50 —0.25
AT = ~025 150 —025
025 150 —0.25
! ~050  1.50
[0.50 — 0.50u} 0.50 e
0.25 0.50 0.25
BY = 0.25 0.50 0.25
025 0.50 0.25
I 0.50 0.50

*5til another method of linearization is suggested in Exercise §23.
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[0.240 ]
0
c = 0
0
0

The value of uy that appears in each of the first two matrices will
change as time goes on. The value that appears in B™ will always
be known, but the value in AY* P will be unknown. If, for example,
we start out from the uniform initial condition u'® = 1.0, the
first component of B'” becomes zero. The matrix operations on
the right-hand side may now be carried out as follows:

[0.00 0.50 17107 [0.2407
025 050 0.25 1.0 0
= 0.25 0.50 025 10]+| o©
0.25 0.50 0.25]({1.0 0
i 0.50 050]|10] | 0 |
[050] [0.24077 [0.7407
£.00 0 1.000
={100|+| O |=11000
1.00 0 1.000
100 | 0 | [1.000]

We have now arrived at the following matrix equation:

1.50 + 0.50uF —0.50 Wy (1 0.740
—025 1.50 —-0.25 U, 1.0G0
—0.25 1.50 —-025 i, = | 1.000

—0.25 1.50 -0.25 tiy 1.000

—0.30 1.50 ty 1.000

At this point we have a set of algebraic equations that must
now be solved. Since the first row has an unknown component,
we will begin in the lower right corner of the coefficient matrix
and eliminate all the components above the diagonal. The last
row can be multiplied by 0.25/1.50 and added to the next-to-last
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row to give
1.50 + 0.50u —0.50 D 'Y [0.740
—0.25 1.50 —0.25 ", 1.000
—0.25 1.50 —-0.25 U, = | 1.000
~025 1417 s 1.167
-{.50 1.50 ty 1.G00

Now the next-to-last equation may be multiplied by 0.25/1.417
and added to the middle equation. This process can be continued
until all the terms above the main diagonal have been eliminated.
At that point we have the following situation:

1414 + 0.500u3 Wl | [1.154
—0.250 1.457 u, 1.207
—0250 1456 u, | =11.206| (8523
—0250 1417 ty 1.167
~0.500 1500 | |u, 1.000

If we knew the value of the first component in the coefficient
matrix, we could now begin the back-substitution process to
solve for the unknowns in the usual gaussian elimination manner.
In this case, however, the unknown u, appears in this component,
and we are forced to handle this equation differently.

Let us now examine the first equation by itself. It may be
written as

1.414u" + 0.500uiD = 1.154 (8:5-24)

The only thing that changes in this equation at the succeeding
time steps would be the constants 1.414 and 1.154 and the super-
scripts denoting the time step. We have the same general problem
to solve at each time step.

To consider the solution of Eq. (8:5:24) in a more general way,
let us rewrite it as follows:

f(&) = 0.500¢* + a& — b (8:5-25)

In this expression we have let 1414 = ¢ and 1.154 = b and
replaced the unknown ul’ by & A qualitative picture of (&)
is shown in Fig. 839. We are looking for the point at which
S8 =0.

The Newton-Raphson technique of finding the zero of this
function is a straightforward one to use. The first step is to
assume a value of &, call it £, in general, and then evaluate f(£,)
and the derivative of the function, f'(¢,), at this assumed value
of £&. An improved value of &, call it &, ,, is then computed by
“sliding down the tangent” at £, to the point where it crosses the



FINITE DIFFERENCES

& axis as shown in Fig. 8:39. A mathematical relation among
these quantities may be obtained from geometry by writing
the slope as

_J@ -0
6!{. - ék'f'l

Solving for &, , | gives

f1(&)

. S
¢ =& — oo (8:5-26)
=k+ 1 k f (ék)
This improved value ¢, ,, can then be used to begin the process
again.

Equation (8:5-26) may be simplified by substituting Eq. (8:5-25)
to give

05008 + a, — b

Sert = G 2.000&2 + 4
These terms may then be combined to give the following result:
1.500&F + b
— 2k 7 527
ber 2.000& + a (:527)

The values of 2 and b (1.414 and 1.154 in this first time step)
come from the gaussian elimination procedure. The unknown
that we are solving for (1}’ in this first time step) is the surface
temperature at the new time. The easiest first guess for the
temperature at the new time is the temperature at the old time
(in this case, u” = 1.0). The calculations then proceed as follows:

¢, = (guessed from last-known value of 1) = 1.000

1.500(1.00* + 1.154
&2 2.000(1.0)° + 1.414

1.500(0.777)* + 1.154
= = 0.72
& 2.000(0.777)° + 1414 3

1.500(0.723)* + 1.154
= — 0.721
S 2.000(0.723)° + 1.414

. _ LS00721)* + 1154 _
*5 = 20000721 + 1414 ~

It should be observed that fairly rapid convergence to the solution
has been obtained. This computation is easily programmed for
the computer.
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FiG. 8:39 Newion-Ruphson
technique for finding the zerg of
a function.
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We have just found u}’ = 0.721. This value can then be used
in the second row of Eq. (8:5-23) to begin the usual back-sub-
stitution process in the gaussian elimination method. This results
in the following solution:

[0.721]
0.952
't = 10992
0.999
| 1.000 |

We are now ready to move on to the next time step.

We have just seen how a single radiation boundary condition
can be handied in a one-dimensional, transient problem. The
basic solution technique was still the gaussian elimination
method, but we had to do a special iterative solution to handle
the single nonlinear equation. If we had had a radiation boundary
condition at each surface of the wall, the problem would be more
involved. We would not be able to even start the gaussian elimi-
nation process because we would have unknown components
in each corner of the coefficient matrix. If one of the two radiation
boundary conditions was not too critical, it could be linearized.
This would allow the procedure we have just discussed to be
used. If neither one of the boundary conditions can be linearized,
you would then probably either iterate the entire matrix to find a
solution at each time step' or else return to an explicit scheme
for moving ahead in time.

8-b6.6 lrregular regions
One of the most common situations in heat-transfer calculations
is to be required to obtain a temperature distribution in an
irregularly shaped region. This also happens to be a situation
that can rarely be handled by exact analytical methods. Finite-
difference methods can be adapted to these problems, however.
To show how finite-difference methods can be applied to a
problem with an irregular boundary, let us consider a squar¢
mesh of grid points near a boundary that does not coincide with
any of the nodal points as shown in Fig. 840. Observe that the

'You could guess a value for the least-sensitive surface temperature, carry out the
elimination-iteration procedure to find the temperature at the other surface, back
substitute to find the internal temperatures, and iterate the final equation to
obtain a better value of the surface temperature that was guessed initially. The
entire process could then be continued to convergence.
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Boundary
{(m,on41)
L] » | ]
Qn.n+l
Ay II__ 1 (m - a, n)
Qm—l,'n (m’ ”)
3 '\i""b‘ » &
(m— 1,01} q'!"’ﬂ (m -+ 1,n)
Eh’m ] ”'H‘I T
A;\.‘ —'—;__j‘ R

G s
{ (m,n—1)

Outside

node (m + 1, n) lies outside the boundary of the region of interest.
When this occurs we will introduce a new point (m + a, n) that
is on the boundary and use it in the formulation of the problem
in place of the point outside the boundary.!

IT we assume that this is a steady-state problem with uniform
generation, the important energy terms are those shown in
Fig. 8-40. The energy balance may be written as

qm—l,m + Gu—1. + Egm,,. = q"a.m+u + qﬁ,n+1

The rate equations may then be written as follows:

bn—tm — Loty
o= kAyimota = Lo
q,‘n 1,m y AX
- k Ax + aAx tm,n—l - 'tm.n
dy- 1.n — 2 2 Ay
Ax aAx .
— e - A
min ( 2 + 2 ) y
tm n " byran
=kA ’ :
Qm.m+ﬂ y a Ax

AX 2] Ax Elh " - t +1
— k . HiH
q”.u+ 1 ( 2 + 2 ) Ay

The only difference in these rate equations from what was done
in Sec. 831 is that some of the distances have been modified to
reflect the nonuniform spacing between the nodes.

These rate equations can now be substituted into the energy

'If point (m,n + 1} was also outside the boundary, we could then introduce a
second new peint (m.n + b) on the boundary.
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FIG. 840 Typical two-
dimensional nodal system near
an irregular boundary,
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FIG. 8.41 Coarse and fine
nodal-point arrangenients for an
irregular region.
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balance to give (for Ax = Ay}

1 i
k(‘tm—l.n - rm,m) _]_ k(_-lz-_ﬂ) (tm,n—i - l‘m.n) + gw( _; a) (Ax)z

1 1
=k (—> (Im.n - lrmri+n.n) + k( T a) (rmn — 1t n+1)
a 2 ' ’

The terms in this equation can now be combined and rearranged
to give the following result:

a(l + a all + a
__(—'_"—)tm.n—l + (1 =+ a)z ltm.m - (—z_ltm.rﬁl

—aty,_1n —
' 2

1 “(Ax)?
— lutan = a( 2+a) d (k x) (8528)

The only change that has occurred in this development is that
the coefficients in Eq. (8:5:28) have different numerical values
than the corresponding equation (8-3-1) that was developed for
the case in which all the nodal points were inside the boundary.
It should be observed that both equations become identical for
a = 1 as you would expect.

The finite-difference formulation still reduces to a set of
simultaneous algebraic equations to solve which have the same
general character as Eq. (8-3-7). Some of the numerical values of
the components in the coefficient matrix will be changed as will
some of the components in the column matrix on the right-hand
side of Eq. (8:3-7). The computer solution of the equations would
be carried out in exactly the same manner as described in Sec. 8-3.

An irregularly shaped boundary may influence the spacing of
the nodal points. The mesh size should be small enough so that a
reasonable approximation of the boundary may be made.
Figure 8-41a shows a nodal spacing that would be too large for
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the region of interest. The temperature distribution in a semi-
circular region would not be very well determined by the node
at the center of the circle. A smaller mesh size is called for.
Figure 841b would be much better since the circular region has
many more points than before. Notice that as more points are
added the curved boundary can be closely approximated by the
nodal points themselves, This suggests another way of handling
a curved boundary. Let us approximate the boundary by a set
of line segments connecting the nodes nearest the boundary as
shown in Fig. 842. This would avoid having to modify the
equations near the boundaries as we did in arriving at Eq.
(8:5-28). The temperatures at the nodal points on this approximate
boundary would then be taken to be ¢, as given by the boundary
conditton.

To get a better solution within the circular region, we had
to make the mesh size smaller. By decreasing Ax by a factor of 4,
we have increased the number of unknown nodal temperatures
from 9 to 154. This means that we would have to do a lot more
computational work to find a solution. In a practical case it
may not be necessary to increase the number of nodes over the
entire region to improve the accuracy near a particular portion
of the boundary. This leads us into the idea of a graded network
as discussed in the next section.

8.5.6 Graded networks

The selection of the number and placement of the nodes in a
problem is governed by two considerations. First, the more
nodes you have the more accurate you expect the solution to be.
Second, the fewer nodes you have, the smaller the work and time
required to solve the problem. The notion of graded networks
can help to give you the advantage of accuracy where needed
without unduly complicating portions of the problem where
accuracy is not as critical.

In the discussion in the previous section, Fig. 8:41b showed a
network of nodal points that might be about right for the circular
region but which might be too fine a spacing for the rectangular
region.’ To save on the number of nodes we might like to use a
graded network as shown in Fig. 8:43. This pattern contains 58
unknown nodal temperatures, which is quite a saving compared
to the 154 nodes shown in Fig. §-415.

Arriving at the nodal equations for nodes at the interface

'This assumes that the temperatures in the rectangular region are not as critical
to us.
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FIG. 842 Approximation of
an irregular region with o
uniform nodal-point
arrangement.

FIG. 8:43 Graded network for
an irregular region.
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FIG. 844 [Interface region of a
graded network.

I

r—

FIG. 8.45 Overlupping in the
interface region of a graded
nefwork.
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between regions of two different mesh sizes requires special
consideration. Figure 844 considers this interface region in more
detail. Two columns (1 and 2) of the coarse network and three
columns (3, 4, and 5} of the fine network are shown. The nodal
equation for a typical node in column 2 is found by making an
energy balance on system @ The resulting equation would
involve the central temperature and the four surrounding ones as
indicated in the figure. A node in column 4 would be handled by
considering system .

To get nodal equations for the nodes in column 3 we must
introduce some intermediate nodal points between columns 2
and 3. These are the nodes shown in column 2.5. Half the nodal
equations for column 3 may then be found by considering a
system like ©, and the other half may be found by considering
a system like @ Notice that system @ is at 45° relative to the
coarse and fine networks. Its size is in between the coarse and
fine sizes. Nodal equations for the nodes in column 2.5 are
determined by considering systems like @

When using three different network sizes as in Fig. &44, you
must be especially careful to use the correct equations for each
node. Conceptually, however, there is no additional difficulty.
A set of simultaneous algebraic equations will be obtained—
one equation for each node whose temperature is unknown.

One of the difficulties that arises in using a graded network is
shown in Fig. 8-45. This figure shows the systems that are used in
making energy balances on each node. Each system would have
a resistance and a capacitance associated with it. If the nodal
pattern was regular, the sum of these nodal resistances and
capacitances would approximate the total resistance and capaci-
tance of the region. Notice, however, in Fig. 845 that for a graded
network these systems overlap. Thus some of the regions are
counted twice. This will give too much resistance and too much
capacitance. If this interface region is relatively small compared
to the entire region, not too much error will be introduced. In
some cases, however, the entire region may be graded and
significant errors can be introduced. In this case the nodal
resistances and capacitances would have to be modified in some
manner to reduce this problem.

8.6 SUMMARY REMARKS ON FINITE DIFFERENCES
This chapter has developed the fundamental ideas of the finite-

difference method of finding approximate solutions to heat-
conduction problems. With the aid of the digital computer the
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finite-difference method is capable of handling almost any
problem (if you are willing to do the computations). The basic
ideas were presented in Secs. 82 to 84. These were then ex-
tended in Sec. 85 to incorporate some of the complications that
arise in practice. The extension of this chapter to three-dimen-
sional, steady-state problems and to two- and three-dimensionat
transient problems would follow the same basic ideas as those
we have developed in this chapter.

Orne of the headaches that must be faced in handling practical
problems is that computational times can become quite long
{even on the computer). This 1s especially true in two- and three-
dimensional transient problems. Bandwidths can be guite large
so that implicit methods become too costly. At the same time,
however, the boundary conditions and irregular nodal spacing
can cause severe restrictions in the allowable time-step size in the
Euler method because of stability considerations. There are many
alterations which people are forced to make to save on computa-
tional time or to improve stability limits. The particular modi-
fications that must be made for a specific problem are usually
determined by personal experience and trial and error. Textbooks
and research papers can only serve as guides to suggest possible
alternatives. The references at the end of this chapter contain
introductions to some of these techniques.
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EXERCISES

8.1  Use gaussian climination to solve the
following set of algebraic equations:

4, — u, =2
~uy +du, — uy =4
— 2uy + 4uy = 8

4. Ketter, R. L., and S. P. Prawel: Modern
Methods of Engineering Computation, McGraw-
Hill Book Company, New York, 1969.

5. Smith, G. D.: Numerical Solution of Partial
Differential Equations, Oxford University Press,
London, 1965.

6. Stiefel, E. L.: An Introduction to Numerical
Mathematics, Academic Press, Inc., New York,
1963,

8.2 Carry out the following matrix opera-
tions:

{«) 4 -1 Gq3
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|1 00 2 0 0
12 071 1 0
1 2 1 0 =2 2

(d) 4 -1 0
det | —1 4 -1
0 -2 4

8-3 The convective heat loss from the nodal
system in the thin-rod problem is given by

X+ A2
4e,, =j hpt(x) dx
N —AXI 2

In Sec. 8:2-1 it was assumed that z,, was a good
average valuc to use for the temperature. Thus
the above integral was replaced by ¢, =
hpt,, Ax. A better approximation is to actually
integrate an assumed piecewise-linear profile.
Derive the finite-difference equations using this
betier approximation of the convection loss.
Compare your result to Sec. 82-1.

8.4 Using finite differences, determine the
steady-state temperature distribution in a plane
wall with uniform energy generation inside it.
Take the thickness of the wall to be 2L and each
surface to be held at temperature t,. Compare
your result to the exact solution.

8:6  Solve Exercise 1'17 using finite-difference
techniques. Derive all expressions you need.
Take node 0 at one end of the rod and node 4
midway between the two ends of the rod.

8.6  Using finite differences, obtain a solution
for the temperature distribution in the square
plate shown. Compare your result to the exact
solution obtained in Exercise 3-36.

y
A pe==q, 4 Tsin ¥

8.7  Using the finite-difference results in Table
82, verify that the heat loss through the side
x = L is equal to 0.5000 ¢""L* as given by the
cxact result.

8.8 The temperatures obtained by a finite-
difference solution for a two-dimensional con-
duction problem are as shown. For those results,

(e) Derive the finite-difference equation for the
node whose temperature is 39°F and verify
that the above solution approximately satis-
fies this equation.

l 1000, 70 45 .22 o 4

g



(h) Evaluate the heat-transfer rate per foot depth
(in Btu/hr-ft) between the surface whose
temperature is 100°F and the surface whose
temperature is 0°F. Take k& = [.0 Btu/hr-fi-
°F.

8.9 The 27 nodal positions for a two-dimen-
sional, stcady-state conduction problem in a
rectangular region are arranged as shown. Num-
ber the nodal peints to obtain the minimum
bandwidth in the resulting system of 27 algebraic
equations. Determine the npper bandwidth.

8.10 Determine an algebraic expression for /
as a function of p for the Crank-Nicolson curve
in Fig. 834.

811 Reduce Egs. (84-10) to a system of two
equations corresponding to nodal points at x =
0.5 and x = 1. Solve these equations by the Euler
method, the Crank-Nicolson method, and the
pure implicit method for values of p = A0/{(Ax)?
of 0.25, 0.5, and 1.0. Compute your solution out
to & = L. Discuss your results with regard to the
stability curves in Fig. 8-34.

812 Consider a plane wail whose width is
L = 2Ax. The temperature on one face of the
wall is ¢(0,0) = 1, while on the other wall it is
t(2Ax, 0 = 0. The initial condition is {{x,0) = 0.
The governing partial differential equation is

Thus, for only one interior node,

#0,0) == | ~f H2AX0) == O
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Taking ty = 1 and ¢, = 0 for all times, show that
the finite-difference solution for ¢t = ¢, is given by

D =1 = 2pp O p 3 (1 — 2pY

i=0
where ¢, = ' = 0 at zcro time and p = %Al
{Ax)%.

(¢} What does the temperature-time response
look like for the following increments p?

p=0 1521333 ,and 2

() Plot the exact solution, as given by Eq.
(3-2-12), on the results of part 4. Points for
alj(Ax)* = 025, 0,50, and 1.00 should be
encugh.

(¢) What can you conciude regarding the solu-
tion {or various values of p?

813 A 6-in.-thick plane wall has an initial tem-
perature distribution given by

{(x,0) = 1000 sin —
x,0} = in—
T

where x = 0 and x = L are the two faces of the
wall. The temperature of each face is hetd at zero,
and the wall is allowed to approach equilibrium
as time increases. Determine the temperature-
time response throughout the wall using finite-
difference techniques. Assume that « = 0.0t
ft?/hr. Plot a temperature-time curve for the
center point in the wall and compare it with the
analytical solution.

8:14 Using finite differences, solve the partial
differential equation

Uy + 8 = 1y

with the following boundary and initiat con-
ditions:

(0,0 = 1
u(l,) =0
(x,0) = 0

Compare your result to the exact solution
obtained in Exercise 3-30,
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8:16 In deriving Eq. (8:4-6), we assumed that
1, was an acceptable average temperature 1o use
to represent the thermal storage in the system. A
better average Lo use might be the true average of
a piecewise-linear profile between nodes m — |,
m, and m + 1.

(a) Modify Eq. (84-6) to incorporate this new
assumption.

(b) Obtain the pair of ordinary differentiat equa-
tions for the plane-wall problem discussed in
Sec. 84 with nodes at x = L/2 and x = L.

(¢} Obtain the analytical solution to these
equations,

(d) Derive expressions for the /-p curves for the
three numerical methods of solution.

Compare these results to the exact solution and
to the finite-difference method as discussed in
the text.

8:16 For only two nodes the system of equa-
tions given by Eqs. (8:4:51) reduces to the follow-
ing pair of equations:

du 1

d—l; = .(A?)Z [=2(1 + H Ax)uy + 2u,]
du 1

@~ o e = 2]

(@) Derive the exact analytical solution of this
pair of equations and compare it to the exact
solution of the original problem which may
be obtained from the solution to Exercise
3:17. Use values of H = 1 and 10 for the
comparison.

(b) Derive analytical expressions for the Ai-p
stability curves for the Euler, Crank-Nicol-
son, and pure implicit numerical methods of
solution. Discuss the inftuence of H on the
oscillatory behavior of the numerical solu-
tions.

817 Reduce Eq.(84-55) t0 a two-node case and
then determine its stability curve. How does it
compare to the result for the pure Euler method
in which the surface node was not implicitized?

8.18 Derive a stability condition for a plane-

wall transient with a convection boundary con-
dition. Use the physical approach discussed in
Sec. 847 and consider only the surface node as
shown.

819 A plane wall {conductivity = k), initially
at a uniform temperature t;, is suddenly exposed
to convection with an ambient at ¢, on the wall
surlace at x = Q. The wall surface at x = L is
insulated. The surface heat-transfer coefficient is
h. Using finite differences, determine the tempera-
ture within the wall as a function of position and
time for hL/k = 1.0.

8:20 A plane wall (conductivity = k), initially at
a uniform temperature ¢, is suddenly subjected to
a constant heat flux per unit area, gy, on the
surface Jocated at x = 0. The surface at x = L is
perfectly insulated. Using finite differences, deter-
mine the temperature within the wall as a func-
tion of position and time,

8.21 Derive a stability condition for a two-
dimensional transient conduction problem. Con-
sider only a typical interior node and use the
physical approach discussed in Sec. 8-4-7.

8.22 Using finite differences, evaluate the tip
temperature and the heat loss from the fin
described in Exercise 2:26.

8-23 A thin circular fin (inner radius = r, outer
radius = r,, thickness = §, conductivity = k) has
a temperature of ¢, at its inner radius and may be
assumed to be adiabatic at its outer radius. The
surface heat-transfer coefficient is . Using finite
differences, determine the temperature distribu-
tion within the fin and the heat loss through the
fin. Use cylindrical coordinates and compare
your result to the exact solution for /irZ/ké = 1.0.



8.24 Using the finite-difference method obtain
a solution to

d*t I 4t g

dr? - roodr * ko 0

for t =0 at ¥ = r,. This 1s most readily done
using cylindrical coordinates. Special attention
must be given to the node at » = 0 since the
system containing this node is a solid cylinder,
whereas for the other nodes the system is a
heollow cylinder. Compare your result to the
exact solution.

8.25 An alternative approach to the lineariza-
tion of Eq. {8521} would be to expand the
ub * " that appears in the first row in a Taylor
series in time as
dug|™

(v+ 14 _ L (vid o

u =uy* + —| Af

0 0 20

Upon taking the indicated derivative and re-
placing it with a difference approximation, the
following expression is obtained:

O = At — ug)

Continue this development and compare the
final computation scheme with the one discussed
in Sec. 8-54.

8.26 A small metallic object, initially at 500°R,
is suddenly placed in a region at 2000°R. The
only mechanism for heat transfer is radiation,
The governing differential equation for the
transtent is given as

daT N ocA
dao phe

with T(0) = 500°R and T, = 2000°R. Deter-
mine the solution using finite-difference methods.

(T* ~ T4) =0

8.27 Consider the solution to the equation

8%t N 8% —0
ax* | 8yt

Derive the finite-difference equation for node 0
which is near (but not at) a boundary with
convection. Take Ax = Ay.
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Boundary

= h{1 —t,)

8.28 Obtain a finite-difference solution for
energy generation in an equilateral triangle. Use
a square network of nodes and make use of
symmetry to reduce the number of equations.
The problem is described by

%t N %t . g"
ox*  gy? k

What is the maximum temperature?

=0

4—-——-23—~|

8.29 Derive the nodal finite-difference equation
for a node (m,n) located near enough to a
specified temperature boundary so that two
adjacent nodes (m + [,n) and (m,n + 1) lie
outside the region of interest as shown.

Boundary



