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Piston travel Fourier series used in balancing and
vibration analysis

Fourier series
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Simplified piston travel equation
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4-stroke principle

— During the intake stroke piston is going down and the intake valves are
open. Piston is drawing air (or air-fuel mixture) into the cylinder.

— During the compression stroke valves are closed and piston is
compressing air (or air-fuel mixture). The temperature and pressure of
the mixture rise and burning usually begins already at the end of the
compression stroke

— During the expansion stroke gases work against the piston while
expanding. Major part of the combustion happens when the piston is still
close to TDC.

— During the exhaust stroke exhaust valves are open and the piston
pushes the burned mixture (exhaust gases) out of the cylinder.

— Working cycle is two revolutions, 720 degrees of crank angle
— Intake and exhaust strokes together are called the gas exchange



Heywood: Figure 1-2
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The four-stroke operating cycle.*®



2-stroke principle

— During the compression stroke valves are closed and piston is
compressing air (or air-fuel mixture). The temperature and pressure
of the mixture rise and combustion usually begins already at the end
of the compression stroke.

— During the expansion stroke gases work against the piston while
expanding. Major part of the combustion happens when the piston is
still close to TDC.

— Gas exchange takes place when the piston is close to BDC.

— Gas exchange begins when the exhaust ports open and the exhaust
gases discharge to the exhaust duct (Blow down).

— While the piston is still moving down the wash ports (intake ports)
open and fresh charge of air (or air-fuel mixture) enters the cylinder
(scavenging process). Scavenging is succeeded if the pressure in the
intake ports is higher than in the cylinder.



Heywood: Figure 1-3
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Sl engines, turbulent premixed
combustion

Turbulence driven
flame propagation
controls combustion

Physics in main role in /
combustion and in the ' W

charge preparation s

Heywood
Figure 9-4
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Charge temperatures
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Heywood Figure 9-5
Cylinder pressure and
fuel burnt, burnt and

unburnt tem peratures.

Pay attention to the
unburn temperature.
The maximum in this
case is at 20 deg after
top dead center.

The temperature
increase after TDC is
due to increased
pressure caused by
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This is not knocking

Inta = Exhaust
valve — X

This is pre-ignition, not
knocking
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Piston
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What is knocking?

Sudden local heat release is
the cause of knocking.

This results in pressure
waves oscillationg in the
cylinder.

Flame front is proceeding
at speed c. 20 m/s, pressure
wave is proceeding at the
speed of sound (several
hundred m/s).

Combusted
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Normal combustion
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Heywood Figure 9-64.
The sudden heat
release in the end gas
causes pressure wave
propagation in the
cylinder. The pressure
wave can be heard as
the knocking sound.
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Mixture formation methods in Sl-engine

Carburetor
Intake manifold injection
Port fuel injection (PFI)
Gasoline direct injection (GDI)
Homogenous mixture

Stratified mixture: Wall guided,
Air guided, Spray guided
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Spark Plug

“Hot spark plug® *Cold spark plug”
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Fig. 13-12 Hot and cold spark plugs.
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Spark and S| combustion
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Sl operation with stratified charge
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Cl engines, turbulent mixing controlled
combustion
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Fuel spray induced
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mixing controls the
. Air swirl
combustion.
Spray physics in a big
role
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John Dec’s conseptual model of CI
combustion
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Fig. 14-20 Part processes of mixture formation and com-
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Swirl and CI
Combustion
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Old prechamber technology

Low efficiency, high
heat losses
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Experimental heat release analysis,

Heywood
dQ dV <. du
E_DEJerihi = (10.1)
dQ dv .. du
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Experimental heat release analysis, Heywood
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Cl cold start
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Engine start
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Four Stroke Sl Cylinder Pressure, 720 degCA

Combustion
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FIGURE 1-8

Sequence of events in four-stroke spark-ignition engine operating cycle. Cylinder pressure p (solid
line, firing cycle; dashed line, motored cycle), cylinder volume V/ Vnax> and mass fraction burned x,
are plotted against crank angle.
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FIGURE 1-15

Sequence of events during compression, combustion, and expansion processes of a naturally aspirated
compression-ignition engine operating cycle. Cylinder volume/clearance volume V/V,, rate of fuel
injection ri;, cylinder pressure p (solid line, firing cycle; dashed line, motored cycle), and rate of fuel
burning (or fuel chemical energy release rate) 11, are plotted against crank angle.
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Two-Stroke Engine
Cylinder Pressure,
Inlet and Exhaust
Ports 360 degCA

Heywood: Figure 1-16
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FIGURE 1-16

Sequence of events during expansion, gas exchange, and compression processes in a loop-scavenged
swo-stroke cycle compression-ignition engine. Cylinder volume/clearance volume V/V,, cylinder pres-
smre p. exhaust port open area A4,, and intake port open area A, are plotted against crank angle.
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Akihama et. al 2001 SAE2001-01-

Adiabatic flame O 1 Diesel combustion
temperature =] ' K / — controlled heat release (mixing)
in air Sk — controlled combustion timing
2 — wide load range
T4k — high efficiency (relative to Sl)
COto C_DZ Q — NOx and PM emissions
conversion O
diminishes g 3
E
.5 2 =
o
- 1
Spark ignition (S1) combustion
' P! ; . — controlled heat release
1060 1400 1800 2200 2600 3000 géanfﬂ;liﬂgﬁfgm fiming
LTC Temperature [K] — wide load range
— offers diesel-like efficiency (high CR & no throttling) — three-way catalyst
— low NOx and particulate emissions — low efficiency (relative to diesel)
— load range? -

— combustion timing?
— heat release rate?

— transient control?

— fuel?




