
CS-E4530 Computational Complexity Theory

Lecture 2: Turing Machines, Decision Problems, Languages

Aalto University
School of Science
Department of Computer Science

Spring 2019

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

2/32

Agenda

Modelling computation

Turing machines

Formal languages and decision problems

Time and space complexity, complexity class P

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

3/32

1 Modelling Computation

To discuss what can and cannot be done with computation,
we must define what computation is

The choice of model is important and delicate...
I We must capture all possible computation: abacuses, sliderules,

modern computers, future computers, computation in nature, ...
I We must also capture the notion of computational efficiency in a

robust and universal way

... but does not really matter:
I Formally: all known models are equivalent
I Informally: any sensible model can simulate all computation

(Church-Turing thesis)
I A lot of computational complexity can be understood without

formally discussing the model

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

4/32

History (1/2)

The nature of computation was studied already before the
existence of the modern computer

I Motivation: foundations of mathematics

Computation and algorithm were understood as mechanical
rules for manipulating numbers

I Muhammad ibn Musa al-Khwarizmi: one of the first published
algorithms, origin of the word ‘algorithm’

I Charles Babbage and Ada Lovelace: first mechanical computer
and first algorithm intended for a machine

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

5/32

History (2/2)

Around 1930s, many models proposed:
I Kurt Gödel: recursive functions
I Alonzo Church: lambda calculus
I Emil Post: rewriting systems
I Alan Turing: Turing machines
I All of these are equivalent – can simulate each other

Post Church TuringGödel

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

6/32

2 Turing Machines

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

7/32

Informal introduction (1/3)

A Turing machine is an abstract machine:
I It has a register with finite number of possible states

I It has k tapes that serve as the memory
I Each tape has infinitely many cells that can store a symbol
I First tape is a read-only input tape, last tape is output tape

I Each tape has a read/write head
I The head is is positioned over a single cell

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

8/32

Informal Introduction (2/3)

Computation is performed step-by-step

First, Turing machine reads its current configuration:
I The current state
I The symbols in cells below each head

Based on the read information and a program, move to a new
configuration:

I Change to a new state
I Write a new symbol below each head
I Move each head left or right (or keep it in place)

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

9/32

Informal Introduction (3/3)

Initialising computation:
I We write the input on the first tape
I We initialise other tapes with special blank symbol �

Perform a sequence of steps until computation stops
I Special halting state

Read the output from the output tape

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

10/32

Formal Definition

Definition (Turing Machine, TM)

A Turing machine M is a tuple (Γ,Q,δ), consisting of:
A finite set Γ of symbols, called the alphabet of M. We assume Γ

contains symbols 0 and 1 and special symbols
I � (blank), and
I B (tape end)

A finite set Q of states of M. We assume Q contains
I a special state q0 called the start state, and
I a special state qh called the halting state

A function δ : Q×Γk→ Q×Γk−1×{L,S,R}k, where k ≥ 2,
called the transition function of M

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

11/32

Configurations

The contents of each tape is an finite string:
I Cells numbered 0,1,2, . . . (0 is the leftmost position)
I Cell number 0 always holds the symbol B
I Other cells initialised to �: only a finite number of other symbols

during a finite execution

A configuration of Turing machine M is defined by:
I The current state q ∈ Q
I The contents of the tapes (finite strings)
I Positions of the heads on tapes (natural numbers)
I Formally: configuration is an element c ∈ Q× (Γ∗)k×Nk

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

12/32

Transition Function

The transition function is the ‘program’ of TM

Let TM be in a configuration with
I state q ∈ Q
I symbols a = (a1,a2, . . . ,ak) under the k heads

For transition function δ(q,a) = (p,b,D), where
I b = (b1,b2, . . . ,bk−1) ∈ Γk−1, and
I D = {D1,D2, . . . ,Dk} ∈ {L,S,R}k

the machine moves to a new state such that
I the new state will be p ∈ Q,
I TM writes symbols b1,b2, . . . ,bk−1 on tapes 2,3, . . . ,k, and
I TM moves head on tape i according to Di

(L = left, S = stay in place, R = right)

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

13/32

Transition Function

Convenient to add additional requirements for the transition
function δ

Does not move from halting state
I If TM is in state qh, don’t change configuration

Always moves right on B
I If there is symbol B on tape i, then the move command for tape i

is R

For convenience, we may assume that the transition function only
writes symbols 0 and 1 on the output tape

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

14/32

Starting and Halting

On input x = x1x2 . . .xk ∈ {0,1}∗, a TM M starts:
I With initial state q0 ∈ Q
I With tape 1 initialised with Bx1x2 . . .xk
I With other tapes empty (i.e., initialised with B�� . . .)
I With all heads in position 1

TM M halts with output y = y1y2 . . .yk ∈ {0,1}∗ if;
I M is in state qh
I The content of output tape is By1y2 . . .yk

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

15/32

Execution

Execution of a TM M on input x is the sequence of
configurations:

I Begins with the starting configuration on input x
I Subsequent configurations obtained via the transition function
I Execution ends when the machine reaches a configuration with

the halting state qh (execution halts), or the execution is infinite
(execution does not halt or diverges)

Output of machine M:
I If M halts on input x with output y, we write M(x) = y to denote

the output of M in input x
I Alternatively, the machine may not halt

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

16/32

Computing a Function

Definition (Computing a function)

Let f : {0,1}∗→{0,1}∗ be a function. We say that a Turing machine
M computes the function f if M halts on all inputs and M(x) = f (x) for
all x ∈ {0,1}∗.

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

17/32

Diagram Notation for Transition Function
Consider a single-tape Turing machine Minc = (Γ,Q,δ) with
Γ = {0,1,�,.} and Q = {q0,q,qh}, and the following transition
function δ:

t ∈ Q a ∈ Γ δ(q,a)
q0 0 (q0,0,R)
q0 1 (q0,1,R)
q0 � (q,�,L)
q0 . (q0,.,R)
q 0 (qh,1,S)
q 1 (q,0,L)
q � (q,�,S)
q . (qh,.,R)

Diagram representation:

q0q0 qhqhqq

⇤/⇤, L⇤/⇤, L

1/1, R1/1, R
B / B, RB / B, R

⇤/⇤, S⇤/⇤, S

1/0, L1/0, L

0/1, R0/1, R

B / B, RB / B, R

0/0, R0/0, R

The machine is designed to compute the successor n+1 of a natural
number n given in binary.1

1Actually, the machine design is not quite correct. Can you spot the error?

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

18/32

Example: Palindromes

Define a function P : {0,1}∗→{0,1} as follows:
I P(x) = 1 if x is a palindrome, that is, if x read from the right is the

same as x read from the left
I P(x) = 0 otherwise

Basic idea for a Turing machine that computes P:
I Copy input to a working tape
I Move the input tape head to the beginning of the input
I Move input tape head to the right and working tape head to the

left. If the heads see different symbols at any point, write 0 on the
output tape and halt.

I If working tape head reaches B, write 1 on the output tape and
halt.

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

19/32

3 Formal Languages and Decision Problems

Basic concepts and notation:

Alphabet: a finite set of symbols S
String: a finite sequence x = x1x2 . . .xk of symbols from S

I Example: S = {0,1}, x = 0101101
I ε = empty string of length 0

(Formal) Language: a set of strings over some alphabet S

|x| = length of string x
xk = x concatenated with itself k times

I Example: 17 = 1111111, (01)3 = 010101

Sk = all strings of length k over alphabet S
S∗ = all strings over alphabet S

I Example: {0,1}∗ = all binary strings

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

20/32

Representing Decision Problems

For technical convenience, we focus on decision problems

A decision problem for property P asks if for any given instance x,
instance x has property P.

If the instances of a decision problem P are encoded as strings
over some alphabet S, then P can be represented by its
characteristic funtion fP : S∗→{0,1} (1 ∼ “yes”, 0 ∼ “no”)

Equivalently, the problem can be represented by its set of
“yes”-instances, i.e. the language

LP = {x ∈ S∗ | fP(x) = 1}.

Because of this equivalence, the terms “language” and “decision
problem” are used interchangeably.

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

21/32

Deciding Languages by Turing Machines
Definition
Turing machine M decides a language L if:

for any x ∈ L, M(x) = 1

for any x /∈ L, M(x) = 0

Turing machine M accepts (semidecides) a language L if:

for any x ∈ L, M(x) = 1

for any x /∈ L, M does not halt on input x

If a language (problem) is decided by some Turing machine, it is
called decidable. (Or historically “recursive”.)
If a language (problem) is accepted by some Turing machine, it is
called semidecidable. (Or historically “recursively enumerable”.)
A language (problem) which is not decidable is undecidable. An
undecidable language (problem) may still be semidecidable.

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

22/32

4 Time and Space Complexity, Complexity Class P

Definition (Running time)
Let M be a Turing machine that halts on all inputs. We say that M runs
in time T(n) if for all inputs {0,1}∗, the machine M halts after at most
T(|x|) steps.

Definition (Space usage)
Let M be a Turing machine that halts on all inputs. We say that M uses
S(n) space if for all inputs {0,1}∗, the machine M visits at most S(|x|)
cells on the non-input tapes of M.

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

23/32

Robustness of the Definitions

Time and space complexity should not significantly depend
on:

I Number of tapes
I Size of the alphabet

We will outline proofs that this is the case
I Focus on time
I Similar things hold for space

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

24/32

Time-Constructible Functions

Definition (Time-constructible function)
Let T : N→ N be a function. We say that T is time-constructible if
T(n)≥ n and there is a TM M that computes the function
x 7→ xT(|x|)y in time T(n), where xny denotes the binary
representation of the number n.

Roughly: T(n) can be computed in time T(n)

Essentially all sensible functions we care about are
time-constructible, so this is mostly a technicality

Needed for certain proofs to go through

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

25/32

Alphabet Size Does Not Matter

Theorem
Let f : {0,1}∗→{0,1}∗, and let T : N→ N be time-constructible. If f
can be computed by a TM M with alphabet Γ in time T(n), then there
is a TM M′ that computes f using alphabet {0,1,B,�} in time
4log2 |Γ|T(n).

Basic idea: encode the alphabet Γ in binary using log2 |Γ| bits

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

26/32

Number of Tapes Does Not Matter

Alternative definition: single-tape Turing machines
I Only single read/write tape
I Input is written on the tape at start
I End computation with output written on the tape

Theorem
Let f : {0,1}∗→{0,1}∗, and let T : N→ N be time-constructible. If f
can be computed by a TM M with k tapes in time T(n), then there is a
single-tape TM M′ that computes f in time 5kT(n)2.

Basic idea:
I Encode ith tape in position i, i+ k, i+2k, . . .
I Use special symbols to denote head positions
I Each pass: read the whole tape, update heads and writes

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

27/32

Time Complexity Classes

Definition (Class DTIME)

Let T : N→ N be a function. The class DTIME(T(n)) is the set of
languages L for which there exists a Turing machine M and a constant
c > 0 such that M decides L and runs in time c ·T(n).

Note the constant “slack factor” c. This is to simplify proofs, and
also because the multi-tape Turing machine model is robust w.r.t.
almost all changes in detail up to a constant factor. (However
going from k ≥ 2 tapes to a single tape induces a quadratic
overhead.)

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

28/32

Polynomial Time

Definition (Class P)

P =
∞⋃

d=1

DTIME(nd)

In other words, P is the class of all languages that can be
decided by a polynomial-time Turing machine

I Alphabet size and number of tapes do not matter

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

29/32

Polynomial Time: Discussion

Strong Church-Turing Thesis: any physically realisable system
can be simulated by a Turing machine with polynomial overhead

I Implies that P captures everything computable in polynomial time
I Not entirely uncontroversial: randomised algorithms, quantum

algorithms, exotic physics...

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

30/32

Polynomial Time: Discussion

Class P tries to model tractable problems
I O(n100) is polynomial, but not practical
I O(n3) is not really practical either!
I O

(
2n/100

)
is often practical, but not polynomial

What about average-case complexity, approximations and
randomisation?

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

31/32

Polynomial Time: Discussion

Turing machines not great for discussing differences
between polynomial-time problems

I e.g. Θ(n2) vs. Θ(n3)
I Polynomial overheads from moving heads, simulation
I Need more fine-grained models for this!

Still makes sense to study P:
I Many real-world problems are outside P
I Understanding this source of difficulty is useful

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science

32/32

Lecture 2: Summary

Turing machines

Decision problems and (un)decidability

Running time and space usage

Classes DTIME(T(n)) and P

https://www.youtube.com/watch?v=cYw2ewoO6c4

https://www.youtube.com/watch?v=cYw2ewoO6c4

