CS-E4530 Computational Complexity Theory

Lecture 2: Turing Machines, Decision Problems, Languages
Aalto University
School of Science
Department of Computer Science
Spring 2019

Agenda

- Modelling computation
- Turing machines
- Formal languages and decision problems
- Time and space complexity, complexity class P

1 Modelling Computation

- To discuss what can and cannot be done with computation, we must define what computation is
- The choice of model is important and delicate...
- We must capture all possible computation: abacuses, sliderules, modern computers, future computers, computation in nature, ...
- We must also capture the notion of computational efficiency in a robust and universal way
- ... but does not really matter:
- Formally: all known models are equivalent
- Informally: any sensible model can simulate all computation (Church-Turing thesis)
- A lot of computational complexity can be understood without formally discussing the model

History (1/2)

- The nature of computation was studied already before the existence of the modern computer
- Motivation: foundations of mathematics
- Computation and algorithm were understood as mechanical rules for manipulating numbers
- Muhammad ibn Musa al-Khwarizmi: one of the first published algorithms, origin of the word 'algorithm'
- Charles Babbage and Ada Lovelace: first mechanical computer and first algorithm intended for a machine

History (2/2)

- Around 1930s, many models proposed:
- Kurt Gödel: recursive functions
- Alonzo Church: lambda calculus
- Emil Post: rewriting systems
- Alan Turing: Turing machines
- All of these are equivalent - can simulate each other

Gödel

Post

Church

Turing

2 Turing Machines

Informal introduction (1/3)

- A Turing machine is an abstract machine:
- It has a register with finite number of possible states
- It has k tapes that serve as the memory
- Each tape has infinitely many cells that can store a symbol
- First tape is a read-only input tape, last tape is output tape
- Each tape has a read/write head
- The head is is positioned over a single cell

Informal Introduction (2/3)

- Computation is performed step-by-step
- First, Turing machine reads its current configuration:
- The current state
- The symbols in cells below each head
- Based on the read information and a program, move to a new configuration:
- Change to a new state
- Write a new symbol below each head
- Move each head left or right (or keep it in place)

Informal Introduction (3/3)

- Initialising computation:
- We write the input on the first tape
- We initialise other tapes with special blank symbol \square
- Perform a sequence of steps until computation stops
- Special halting state
- Read the output from the output tape

Formal Definition

Definition (Turing Machine, TM)

A Turing machine M is a tuple (Γ, Q, δ), consisting of:

- A finite set Γ of symbols, called the alphabet of M. We assume Γ contains symbols 0 and 1 and special symbols
- \square (blank), and
- \triangleright (tape end)
- A finite set Q of states of M. We assume Q contains
- a special state q_{0} called the start state, and
- a special state q_{h} called the halting state
- A function $\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k-1} \times\{\mathrm{L}, \mathrm{S}, \mathrm{R}\}^{k}$, where $k \geq 2$, called the transition function of M

Configurations

- The contents of each tape is an finite string:
- Cells numbered $0,1,2, \ldots$ (0 is the leftmost position)
- Cell number 0 always holds the symbol \triangleright
- Other cells initialised to \square : only a finite number of other symbols during a finite execution
- A configuration of Turing machine M is defined by:
- The current state $q \in Q$
- The contents of the tapes (finite strings)
- Positions of the heads on tapes (natural numbers)
- Formally: configuration is an element $c \in Q \times\left(\Gamma^{*}\right)^{k} \times \mathbb{N}^{k}$

Transition Function

- The transition function is the 'program' of TM
- Let TM be in a configuration with
- state $q \in Q$
- symbols $a=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ under the k heads
- For transition function $\delta(q, a)=(p, b, D)$, where
- $b=\left(b_{1}, b_{2}, \ldots, b_{k-1}\right) \in \Gamma^{k-1}$, and
- $D=\left\{D_{1}, D_{2}, \ldots, D_{k}\right\} \in\{\mathrm{L}, \mathrm{S}, \mathrm{R}\}^{k}$
the machine moves to a new state such that
- the new state will be $p \in Q$,
- TM writes symbols $b_{1}, b_{2}, \ldots, b_{k-1}$ on tapes $2,3, \ldots, k$, and
- TM moves head on tape i according to D_{i}
($\mathrm{L}=$ left, $\mathrm{S}=$ stay in place, $\mathrm{R}=$ right)

Transition Function

- Convenient to add additional requirements for the transition function δ
- Does not move from halting state
- If TM is in state q_{h}, don't change configuration
- Always moves right on \triangleright
- If there is symbol \triangleright on tape i, then the move command for tape i is R
- For convenience, we may assume that the transition function only writes symbols 0 and 1 on the output tape

Starting and Halting

- On input $x=x_{1} x_{2} \ldots x_{k} \in\{0,1\}^{*}$, a TM M starts:
- With initial state $q_{0} \in Q$
- With tape 1 initialised with $\triangleright x_{1} x_{2} \ldots x_{k}$
- With other tapes empty (i.e., initialised with $\triangleright \square \square \ldots$)
- With all heads in position 1
- TM M halts with output $y=y_{1} y_{2} \ldots y_{k} \in\{0,1\}^{*} \mathbf{i f}$;
- M is in state q_{h}
- The content of output tape is $\triangleright y_{1} y_{2} \ldots y_{k}$

Execution

- Execution of a TM M on input x is the sequence of configurations:
- Begins with the starting configuration on input x
- Subsequent configurations obtained via the transition function
- Execution ends when the machine reaches a configuration with the halting state q_{h} (execution halts), or the execution is infinite (execution does not halt or diverges)
- Output of machine M :
- If M halts on input x with output y, we write $M(x)=y$ to denote the output of M in input x
- Alternatively, the machine may not halt

Computing a Function

Definition (Computing a function)

Let $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be a function. We say that a Turing machine M computes the function f if M halts on all inputs and $M(x)=f(x)$ for all $x \in\{0,1\}^{*}$.

Diagram Notation for Transition Function

Consider a single-tape Turing machine $M_{i n c}=(\Gamma, Q, \delta)$ with $\Gamma=\{0,1, \square, \triangleright\}$ and $Q=\left\{q_{0}, q, q_{h}\right\}$, and the following transition function δ :

$t \in Q$	$a \in \Gamma$	$\delta(q, a)$
q_{0}	0	$\left(q_{0}, 0, R\right)$
q_{0}	1	$\left(q_{0}, 1, R\right)$
q_{0}	\square	(q, \square, L)
q_{0}	\triangleright	$\left(q_{0}, \triangleright, R\right)$
q	0	$\left(q_{h}, 1, S\right)$
q	1	$(q, 0, L)$
q	\square	(q, \square, S)
q	\triangleright	$\left(q_{h}, \triangleright, R\right)$

Diagram representation:

The machine is designed to compute the successor $n+1$ of a natural number n given in binary. ${ }^{1}$
${ }^{1}$ Actually, the machine design is not quite correct. Can you spot the error?

Example: Palindromes

- Define a function $P:\{0,1\}^{*} \rightarrow\{0,1\}$ as follows:
- $P(x)=1$ if x is a palindrome, that is, if x read from the right is the same as x read from the left
- $P(x)=0$ otherwise
- Basic idea for a Turing machine that computes P :
- Copy input to a working tape
- Move the input tape head to the beginning of the input
- Move input tape head to the right and working tape head to the left. If the heads see different symbols at any point, write 0 on the output tape and halt.
- If working tape head reaches \triangleright, write 1 on the output tape and halt.

3 Formal Languages and Decision Problems

Basic concepts and notation:

- Alphabet: a finite set of symbols S
- String: a finite sequence $x=x_{1} x_{2} \ldots x_{k}$ of symbols from S
- Example: $S=\{0,1\}, x=0101101$
- $\varepsilon=$ empty string of length 0
- (Formal) Language: a set of strings over some alphabet S
- $|x|=$ length of string x
- $x^{k}=x$ concatenated with itself k times
- Example: $1^{7}=1111111,(01)^{3}=010101$
- $S^{k}=$ all strings of length k over alphabet S
- $S^{*}=$ all strings over alphabet S
- Example: $\{0,1\}^{*}=$ all binary strings

Representing Decision Problems

- For technical convenience, we focus on decision problems
- A decision problem for property P asks if for any given instance x, instance x has property P.
- If the instances of a decision problem P are encoded as strings over some alphabet S, then P can be represented by its characteristic funtion $f_{P}: S^{*} \rightarrow\{0,1\} \quad(1 \sim$ "yes", $0 \sim$ "no")
- Equivalently, the problem can be represented by its set of "yes"-instances, i.e. the language

$$
L_{P}=\left\{x \in S^{*} \mid f_{P}(x)=1\right\} .
$$

- Because of this equivalence, the terms "language" and "decision problem" are used interchangeably.

Deciding Languages by Turing Machines

Definition

Turing machine M decides a language L if:

- for any $x \in L, M(x)=1$
- for any $x \notin L, M(x)=0$

Turing machine M accepts (semidecides) a language L if:

- for any $x \in L, M(x)=1$
- for any $x \notin L, M$ does not halt on input x
- If a language (problem) is decided by some Turing machine, it is called decidable. (Or historically "recursive".)
- If a language (problem) is accepted by some Turing machine, it is called semidecidable. (Or historically "recursively enumerable".)
- A language (problem) which is not decidable is undecidable. An undecidable language (problem) may still be semidecidable.

4 Time and Space Complexity, Complexity Class P

Definition (Running time)

Let M be a Turing machine that halts on all inputs. We say that M runs in time $T(n)$ if for all inputs $\{0,1\}^{*}$, the machine M halts after at most $T(|x|)$ steps.

Definition (Space usage)
Let M be a Turing machine that halts on all inputs. We say that M uses $S(n)$ space if for all inputs $\{0,1\}^{*}$, the machine M visits at most $S(|x|)$ cells on the non-input tapes of M.

Robustness of the Definitions

- Time and space complexity should not significantly depend on:
- Number of tapes
- Size of the alphabet
- We will outline proofs that this is the case
- Focus on time
- Similar things hold for space

Time-Constructible Functions

Definition (Time-constructible function)

Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be a function. We say that T is time-constructible if $T(n) \geq n$ and there is a TM M that computes the function
$x \mapsto\llcorner T(|x|)\lrcorner$ in time $T(n)$, where $\llcorner n\lrcorner$ denotes the binary representation of the number n.

- Roughly: $T(n)$ can be computed in time $T(n)$
- Essentially all sensible functions we care about are time-constructible, so this is mostly a technicality
- Needed for certain proofs to go through

Alphabet Size Does Not Matter

Theorem

Let $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, and let $T: \mathbb{N} \rightarrow \mathbb{N}$ be time-constructible. If f can be computed by a $T M M$ with alphabet Γ in time $T(n)$, then there is a $T M M^{\prime}$ that computes f using alphabet $\{0,1, \triangleright, \square\}$ in time $4 \log _{2}|\Gamma| T(n)$.

- Basic idea: encode the alphabet Γ in binary using $\log _{2}|\Gamma|$ bits

Number of Tapes Does Not Matter

- Alternative definition: single-tape Turing machines
- Only single read/write tape
- Input is written on the tape at start
- End computation with output written on the tape

Theorem

Let $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, and let $T: \mathbb{N} \rightarrow \mathbb{N}$ be time-constructible. If f can be computed by a TM M with k tapes in time $T(n)$, then there is a single-tape TM M' that computes f in time $5 k T(n)^{2}$.

- Basic idea:
- Encode i th tape in position $i, i+k, i+2 k, \ldots$
- Use special symbols to denote head positions
- Each pass: read the whole tape, update heads and writes

Time Complexity Classes

Definition (Class DTIME)

Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be a function. The class $\operatorname{DTIME}(T(n))$ is the set of languages L for which there exists a Turing machine M and a constant $c>0$ such that M decides L and runs in time $c \cdot T(n)$.

- Note the constant "slack factor" c. This is to simplify proofs, and also because the multi-tape Turing machine model is robust w.r.t. almost all changes in detail up to a constant factor. (However going from $k \geq 2$ tapes to a single tape induces a quadratic overhead.)

Polynomial Time

Definition (Class P)

$$
\mathrm{P}=\bigcup_{d=1}^{\infty} \operatorname{DTIME}\left(n^{d}\right)
$$

- In other words, P is the class of all languages that can be decided by a polynomial-time Turing machine
- Alphabet size and number of tapes do not matter

Polynomial Time: Discussion

- Strong Church-Turing Thesis: any physically realisable system can be simulated by a Turing machine with polynomial overhead
- Implies that P captures everything computable in polynomial time
- Not entirely uncontroversial: randomised algorithms, quantum algorithms, exotic physics...

Polynomial Time: Discussion

- Class P tries to model tractable problems
- $O\left(n^{100}\right)$ is polynomial, but not practical
- $O\left(n^{3}\right)$ is not really practical either!
- $O\left(2^{n / 100}\right)$ is often practical, but not polynomial
- What about average-case complexity, approximations and randomisation?

Polynomial Time: Discussion

- Turing machines not great for discussing differences between polynomial-time problems
- e.g. $\Theta\left(n^{2}\right)$ vs. $\Theta\left(n^{3}\right)$
- Polynomial overheads from moving heads, simulation
- Need more fine-grained models for this!
- Still makes sense to study P:
- Many real-world problems are outside P
- Understanding this source of difficulty is useful

Lecture 2: Summary

- Turing machines
- Decision problems and (un)decidability
- Running time and space usage
- Classes DTIME (T(n)) and P

> https://www.youtube.com/watch?v=cYw2ewo06c4

