A

Aalto University
School of Science

CS-E4530 Computational Complexity Theory

Lecture 2: Turing Machines, Decision Problems, Languages

Aalto University
School of Science
Department of Computer Science

Spring 2019

Agenda

@ Modelling computation

@ Turing machines

@ Formal languages and decision problems

@ Time and space complexity, complexity class P

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
A School of Science Department of Computer Science
2/32

1 Modelling Computation

@ To discuss what can and cannot be done with computation,
we must define what computation is

@ The choice of model is important and delicate...
» We must capture all possible computation: abacuses, sliderules,
modern computers, future computers, computation in nature, ...
» We must also capture the notion of computational efficiency in a
robust and universal way

@ ... but does not really matter:
» Formally: all known models are equivalent
» Informally: any sensible model can simulate all computation
(Church-Turing thesis)
> A lot of computational complexity can be understood without
formally discussing the model

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
School of Science Department of Computer Science

3/32

History (1/2)

@ The nature of computation was studied already before the
existence of the modern computer

» Motivation: foundations of mathematics

@ Computation and algorithm were understood as mechanical
rules for manipulating numbers
» Muhammad ibn Musa al-Khwarizmi: one of the first published
algorithms, origin of the word ‘algorithm’
» Charles Babbage and Ada Lovelace: first mechanical computer
and first algorithm intended for a machine

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
School of Science Department of Computer Science
4/32

History (2/2)

@ Around 1930s, many models proposed:
» Kurt Godel: recursive functions
Alonzo Church: lambda calculus
Emil Post: rewriting systems
Alan Turing: Turing machines
All of these are equivalent — can simulate each other

vV vy Vvyy

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
A School of Science Department of Computer Science
532

2 Turing Machines

rexd anly hesd

| [
e [>]ololo] 1|c-|1|u|c-|c-|1lc-|:u|-::|n| |

C

n:arllm'behead ,

mont 2T ao]1 |nh1||::-| lof4] |! | HERES

ek h'I1|E Faad '-

33‘5'”‘|IJFIIIIIIIIIIIIIIIL

Register :_q_T

Aalto University
School of Science

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science
632

Informal introduction (1/3)

@ A Turing machine is an abstract machine:
> It has a register with finite number of possible states

» It has k tapes that serve as the memory
» Each tape has infinitely many cells that can store a symbol
» First tape is a read-only input tape, last tape is output tape

» Each tape has a read/write head
» The head is is positioned over a single cell

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
A School of Science Department of Computer Science
7/132

Informal Introduction (2/3)

@ Computation is performed step-by-step

@ First, Turing machine reads its current configuration:
» The current state
» The symbols in cells below each head

@ Based on the read information and a program, move to a new
configuration:
» Change to a new state
» Write a new symbol below each head
» Move each head left or right (or keep it in place)

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
School of Science Department of Computer Science
832

Informal Introduction (3/3)

@ Initialising computation:

» We write the input on the first tape
» We initialise other tapes with special blank symbol [

@ Perform a sequence of steps until computation stops
» Special halting state

@ Read the output from the output tape

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
932

Formal Definition

Definition (Turing Machine, TM)
A Turing machine M is a tuple (I, Q,), consisting of:

@ Afinite set I" of symbols, called the alphabet of M. We assume I
contains symbols 0 and 1 and special symbols

» [(blank), and
> [> (tape end)
@ A finite set Q of states of M. We assume Q contains
> a special state gq called the start state, and
> a special state g, called the halting state
@ Afunction §: Q x I* — Q xT*~! x {L,S,R}*, where k > 2,
called the transition function of M

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
1032

Configurations

@ The contents of each tape is an finite string:
» Cells numbered 0,1,2,... (0 is the leftmost position)
» Cell number 0 always holds the symbol >
» Other cells initialised to [J: only a finite number of other symbols
during a finite execution

@ A configuration of Turing machine M is defined by:
» The current state g € Q
The contents of the tapes (finite strings)
Positions of the heads on tapes (natural numbers)
Formally: configuration is an element ¢ € Q x (I™*)* x N¥

vV vVvYyy

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
11/32

Transition Function

@ The transition function is the ‘program’ of TM

@ Let TM be in a configuration with

> stateg e Q
» symbols a = (ay,as,...,ax) under the k heads

@ For transition function 8(g,a) = (p,b,D), where
> b= (b],bg,...,bk_l) (S Fkil, and
» D={Dy,D,,...,D;} € {L,S,R}*
the machine moves to a new state such that
» the new state will be p € Q,
» TM writes symbols by,b;,...,br_ on tapes 2,3,...,k, and
» TM moves head on tape i according to D;
(L = left, S = stay in place, R = right)

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
12/32

Transition Function

@ Convenient to add additional requirements for the transition
function

@ Does not move from halting state
» If TM is in state gn, don’t change configuration
@ Always moves right on >

» If there is symbol > on tape i, then the move command for tape i
is R

@ For convenience, we may assume that the transition function only
writes symbols O and 1 on the output tape

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
13/32

Starting and Halting

@ Oninput x =xxy...x; € {0,1}*,a TM M starts:
With initial state ¢g € Q

With tape 1 initialised with >xx; ... xg

With other tapes empty (i.e., initialised with > .)
With all heads in position 1

vV vy vy

@ TM M halts with output y = y;y»...yx € {0,1}* if;
» M is in state gn
» The content of output tape is >y y2 ...y

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
14/32

Execution

@ Execution of a TM M on input x is the sequence of
configurations:
» Begins with the starting configuration on input x
» Subsequent configurations obtained via the transition function
» Execution ends when the machine reaches a configuration with
the halting state g (execution halts), or the execution is infinite
(execution does not halt or diverges)

@ Output of machine M:
» If M halts on input x with output y, we write M(x) = y to denote
the output of M in input x
» Alternatively, the machine may not halt

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
School of Science Department of Computer Science
15/32

Computing a Function

Definition (Computing a function)

Letf: {0,1}* — {0,1}* be a function. We say that a Turing machine
M computes the function f if M halts on all inputs and M (x) = f (x) for
all x € {0, 1}*.

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
School of Science Department of Computer Science
16/32

Diagram Notation for Transition Function

Consider a single-tape Turing machine M;,. = (T, Q,8) with
I'={0,1,0,0} and QO = {q0,9, g1}, and the following transition

function 6:

teQ acl |d(q,a)
0 0 (90,0,R)
q 1 (q0,1,R)
q0 U (¢,0,L)
40 > (90,>,R)
q 0 (qn, 1,5)
q 1 (¢,0,L)
q O (q,D S)
q > (gn,>,R)

Diagram representation:
0/0,R 0/0,8

The machine is designed to compute the successor n+ 1 of a natural
number 7 given in binary.

' Actually, the machine design is not quite correct. Can you spot the error?

Aalto University
School of Science

CS-E4530 Computational Complexity Theory / Lecture 2
Department of Computer Science
17/32

Example: Palindromes

o Define a function P: {0,1}* — {0, 1} as follows:
» P(x) = 1ifxis a palindrome, that is, if x read from the right is the
same as x read from the left
» P(x) = 0 otherwise

@ Basic idea for a Turing machine that computes P:

» Copy input to a working tape

» Move the input tape head to the beginning of the input

» Move input tape head to the right and working tape head to the
left. If the heads see different symbols at any point, write O on the
output tape and halt.

» If working tape head reaches >, write 1 on the output tape and
halt.

School of Science Department of Computer Sci

Aalto University CS-E4530 Computational Cemple ity Theory / Leclu re 2
18 32

3 Formal Languages and Decision Problems

Basic concepts and notation:
@ Alphabet: a finite set of symbols S
@ String: a finite sequence x = xx; ... x; of symbols from S

» Example: S ={0,1}, x= 0101101
» & =empty string of length 0

(Formal) Language: a set of strings over some alphabet S

|x| = length of string x

x* = x concatenated with itself k times

» Example: 17 = 1111111, (01)* = 010101

S* = all strings of length k over alphabet S
S* = all strings over alphabet S
» Example: {0, 1}* = all binary strings

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
19/32

Representing Decision Problems

@ For technical convenience, we focus on decision problems

@ A decision problem for property P asks if for any given instance x,
instance x has property P.

@ If the instances of a decision problem P are encoded as strings
over some alphabet S, then P can be represented by its
characteristic funtion fp: S* — {0,1} (1 ~ “yes”, 0 ~ “no”)

@ Equivalently, the problem can be represented by its set of
“yes’-instances, i.e. the language

Lp={xeS"|fp(x) =1}

@ Because of this equivalence, the terms “language” and “decision
problem” are used interchangeably.

School of Science Department of Computer Sci

Aalto University CS-E4530 Computational Cemple ity Theory / Leclu re 2
20 32

Deciding Languages by Turing Machines
Definition
Turing machine M decides a language L if:
o foranyxe L, M(x) =1
@ foranyx ¢ L, M(x) =0
Turing machine M accepts (semidecides) a language L if:
o foranyxe L, M(x) =1

e forany x ¢ L, M does not halt on input x

@ If a language (problem) is decided by some Turing machine, it is
called decidable. (Or historically “recursive”.)

@ If a language (problem) is accepted by some Turing machine, it is
called semidecidable. (Or historically “recursively enumerable”.)

@ A language (problem) which is not decidable is undecidable. An
undecidable language (problem) may still be semidecidable.

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
School of Science Department of Computer Science
21/32

4 Time and Space Complexity, Complexity Class P

Definition (Running time)

Let M be a Turing machine that halts on all inputs. We say that M runs
in time T'(n) if for all inputs {0, 1}*, the machine M halts after at most
T(|x|) steps.

Definition (Space usage)

Let M be a Turing machine that halts on all inputs. We say that M uses
S(n) space if for all inputs {0, 1}*, the machine M visits at most S(|x|)
cells on the non-input tapes of M.

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
School of Science Department of Computer Science
22/32

Robustness of the Definitions

@ Time and space complexity should not significantly depend
on:

» Number of tapes
» Size of the alphabet

@ We will outline proofs that this is the case

» Focus on time
» Similar things hold for space

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
23/32

Time-Constructible Functions

Definition (Time-constructible function)

Let T: N — N be a function. We say that T is time-constructible if
T(n) > n and there is a TM M that computes the function

x+— LT (|x|)2in time T(n), where Ln_ denotes the binary
representation of the number n.

@ Roughly: 7(n) can be computed in time T'(n)

@ Essentially all sensible functions we care about are
time-constructible, so this is mostly a technicality

@ Needed for certain proofs to go through

School of Science Department of Computer Sci

Aalto University CS-E4530 Computation: al Complexity Theory / Leclu re 2
24 32

Alphabet Size Does Not Matter

Theorem

Letf: {0,1}* —{0,1}*, and letT: N — N be time-constructible. If f
can be computed by a TM M with alphabet T in time T (n), then there
is a TM M’ that computes f using alphabet {0, 1,>,00} in time

4log, |T'|T(n).

@ Basic idea: encode the alphabet I" in binary using log, |I'| bits

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
School of Science Department of Computer Science

25/32

Number of Tapes Does Not Matter

@ Alternative definition: single-tape Turing machines
» Only single read/write tape
» Input is written on the tape at start
» End computation with output written on the tape

Theorem

Letf: {0,1}* —{0,1}*, and letT: N — N be time-constructible. If f
can be computed by a TM M with k tapes in time T (n), then there is a
single-tape TM M’ that computes f in time SkT (n)>.

@ Basic idea:
» Encode ith tape in position i,i + k,i + 2k, ...
» Use special symbols to denote head positions
» Each pass: read the whole tape, update heads and writes

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
School of Science Department of Computer Science

26/32

Time Complexity Classes

Definition (Class DTIME)

Let T: N — N be a function. The class DTIME(T'(n)) is the set of
languages L for which there exists a Turing machine M and a constant
¢ > 0 such that M decides L and runs in time ¢ - T'(n).

@ Note the constant “slack factor” c. This is to simplify proofs, and
also because the multi-tape Turing machine model is robust w.r.t.
almost all changes in detail up to a constant factor. (However
going from k > 2 tapes to a single tape induces a quadratic
overhead.)

Aalto University CS-E4530 Computational Cemple ity Theory / Leclu re 2
School of Science Department of Computer Sci
27 32

Polynomial Time

Definition (Class P)

P = |J DTIME(n)
d=1

@ In other words, P is the class of all languages that can be
decided by a polynomial-time Turing machine

> Alphabet size and number of tapes do not matter

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
28/32

Polynomial Time: Discussion

@ Strong Church-Turing Thesis: any physically realisable system
can be simulated by a Turing machine with polynomial overhead
> Implies that P captures everything computable in polynomial time
> Not entirely uncontroversial: randomised algorithms, quantum
algorithms, exotic physics...

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
20/32

Polynomial Time: Discussion

@ Class P tries to model tractable problems
» 0(n'%) is polynomial, but not practical
» O(n?) is not really practical either!
> 0(2"/1%) is often practical, but not polynomial

@ What about average-case complexity, approximations and
randomisation?

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
3032

Polynomial Time: Discussion

@ Turing machines not great for discussing differences
between polynomial-time problems
> e.g. O(n?) vs. O(n’)
» Polynomial overheads from moving heads, simulation
» Need more fine-grained models for this!

o Still makes sense to study P:

» Many real-world problems are outside P
» Understanding this source of difficulty is useful

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
School of Science Department of Computer Science
31/32

Lecture 2: Summary

e Turing machines

@ Decision problems and (un)decidability
@ Running time and space usage

e Classes DTIME(T(n)) and P

https://www.youtube.com/watch?v=cYw2ewo06c4

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 2
32/32

https://www.youtube.com/watch?v=cYw2ewoO6c4

