

CS-E4530 Computational Complexity Theory

Lecture 2: Turing Machines, Decision Problems, Languages

Aalto University School of Science Department of Computer Science

Spring 2019

Agenda

- Modelling computation
- Turing machines
- Formal languages and decision problems
- Time and space complexity, complexity class P

1 Modelling Computation

- To discuss what can and cannot be done with computation, we must define what computation is
- The choice of model is important and delicate...
 - We must capture all possible computation: abacuses, sliderules, modern computers, future computers, computation in nature, ...
 - We must also capture the notion of computational efficiency in a robust and universal way
- ... but does not really matter:
 - Formally: all known models are equivalent
 - Informally: any sensible model can simulate all computation (Church-Turing thesis)
 - A lot of computational complexity can be understood without formally discussing the model

History (1/2)

- The nature of computation was studied already before the existence of the modern computer
 - Motivation: foundations of mathematics
- Computation and algorithm were understood as mechanical rules for manipulating numbers
 - Muhammad ibn Musa al-Khwarizmi: one of the first published algorithms, origin of the word 'algorithm'
 - Charles Babbage and Ada Lovelace: first mechanical computer and first algorithm intended for a machine

History (2/2)

• Around 1930s, many models proposed:

Kurt Gödel: recursive functions Alonzo Church: lambda calculus

Emil Post: rewriting systems

► Alan Turing: *Turing machines*

All of these are equivalent – can simulate each other

Gödel

Post

Church

Turing

2 Turing Machines

Informal introduction (1/3)

A Turing machine is an abstract machine:

- It has a register with finite number of possible states
- It has k tapes that serve as the memory
- Each tape has infinitely many cells that can store a symbol
- First tape is a read-only input tape, last tape is output tape
- Each tape has a read/write head
- The head is is positioned over a single cell

Informal Introduction (2/3)

- Computation is performed step-by-step
- First, Turing machine reads its current configuration:
 - The current state
 - The symbols in cells below each head
- Based on the read information and a program, move to a new configuration:
 - Change to a new state
 - Write a new symbol below each head
 - Move each head left or right (or keep it in place)

Informal Introduction (3/3)

- Initialising computation:
 - We write the input on the first tape
 - We initialise other tapes with special blank symbol
- Perform a sequence of steps until computation stops
 - Special halting state
- Read the output from the output tape

Formal Definition

Definition (Turing Machine, TM)

A Turing machine M is a tuple (Γ, Q, δ) , consisting of:

- A finite set Γ of symbols, called the *alphabet* of M. We assume Γ contains symbols 0 and 1 and special symbols
 - ▶ □ (blank), and
 - ► (tape end)
- A finite set Q of states of M. We assume Q contains
 - a special state q₀ called the start state, and
 - a special state q_h called the halting state
- A function $\delta: Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times \{\mathsf{L},\mathsf{S},\mathsf{R}\}^k$, where $k \geq 2$, called the *transition function* of M

Configurations

• The contents of each tape is an finite string:

- ► Cells numbered 0, 1, 2, ... (0 is the leftmost position)
- ▶ Cell number 0 always holds the symbol >
- ➤ Other cells initialised to □: only a finite number of other symbols during a finite execution

A configuration of Turing machine M is defined by:

- ▶ The current state $q \in Q$
- The contents of the tapes (finite strings)
- Positions of the heads on tapes (natural numbers)
- ▶ Formally: configuration is an element $c \in Q \times (\Gamma^*)^k \times \mathbb{N}^k$

Transition Function

- The transition function is the 'program' of TM
- Let TM be in a configuration with
 - ▶ state $q \in Q$
 - symbols $a = (a_1, a_2, \dots, a_k)$ under the k heads
- For transition function $\delta(q,a)=(p,b,D)$, where
 - ▶ $b = (b_1, b_2, ..., b_{k-1}) ∈ Γ^{k-1}$, and
 - ▶ $D = \{D_1, D_2, \dots, D_k\} \in \{\mathsf{L}, \mathsf{S}, \mathsf{R}\}^k$

the machine moves to a new state such that

- ▶ the new state will be $p \in Q$,
- ▶ TM writes symbols $b_1, b_2, ..., b_{k-1}$ on tapes 2, 3, ..., k, and
- TM moves head on tape i according to D_i (L = left, S = stay in place, R = right)

Transition Function

- \bullet Convenient to add additional requirements for the transition function δ
- Does not move from halting state
 - ▶ If TM is in state q_h , don't change configuration
- Always moves right on ⊳
 - If there is symbol ▷ on tape i, then the move command for tape i is R
- For convenience, we may assume that the transition function only writes symbols 0 and 1 on the output tape

Starting and Halting

- On input $x = x_1 x_2 ... x_k \in \{0, 1\}^*$, a TM *M starts*:
 - ▶ With initial state $q_0 \in Q$
 - ▶ With tape 1 initialised with $\triangleright x_1x_2...x_k$
 - With other tapes empty (i.e., initialised with ⊳□□...)
 - With all heads in position 1
- TM *M* halts with output $y = y_1 y_2 \dots y_k \in \{0, 1\}^*$ if;
 - M is in state q_h
 - ▶ The content of output tape is $\triangleright y_1y_2...y_k$

Execution

Execution of a TM M on input x is the sequence of configurations:

- Begins with the starting configuration on input x
- Subsequent configurations obtained via the transition function
- Execution ends when the machine reaches a configuration with the halting state q_h (execution halts), or the execution is infinite (execution does not halt or diverges)

Output of machine M:

- If M halts on input x with output y, we write M(x) = y to denote the output of M in input x
- Alternatively, the machine may not halt

Computing a Function

Definition (Computing a function)

Let $f \colon \{0,1\}^* \to \{0,1\}^*$ be a function. We say that a Turing machine M computes the function f if M halts on all inputs and M(x) = f(x) for all $x \in \{0,1\}^*$.

Diagram Notation for Transition Function

Consider a *single-tape* Turing machine $M_{inc}=(\Gamma,Q,\delta)$ with $\Gamma=\{0,1,\Box,\triangleright\}$ and $Q=\{q_0,q,q_h\}$, and the following transition function δ :

$t \in Q$	$a \in \Gamma$	$\delta(q,a)$
q_0	0	$(q_0, 0, R)$
q_0	1	$(q_0, 1, R)$
q_0		(q,\Box,L)
q_0	\triangleright	(q_0,\triangleright,R)
q	0	$(q_h,1,S)$
q	1	(q, 0, L)
q		(q,\Box,S)
q	\triangleright	(q_h,\triangleright,R)
q	V	(q_h, \triangleright, K)

Diagram representation:

The machine is designed to compute the successor n+1 of a natural number n given in binary.¹

¹Actually, the machine design is not quite correct. Can you spot the error?

Example: Palindromes

- Define a function $P: \{0,1\}^* \to \{0,1\}$ as follows:
 - P(x) = 1 if x is a palindrome, that is, if x read from the right is the same as x read from the left
 - P(x) = 0 otherwise

Basic idea for a Turing machine that computes P:

- Copy input to a working tape
- Move the input tape head to the beginning of the input
- Move input tape head to the right and working tape head to the left. If the heads see different symbols at any point, write 0 on the output tape and halt.
- If working tape head reaches ▷, write 1 on the output tape and halt.

3 Formal Languages and Decision Problems

Basic concepts and notation:

- Alphabet: a finite set of symbols S
- **String:** a finite sequence $x = x_1 x_2 \dots x_k$ of symbols from S
 - Example: $S = \{0, 1\}, x = 0101101$
 - \triangleright ϵ = empty string of length 0
- (Formal) Language: a set of strings over some alphabet S
- |x| = length of string x
- $x^k = x$ concatenated with itself k times
 - Example: $1^7 = 11111111, (01)^3 = 010101$
- S^k = all strings of length k over alphabet S
- S* = all strings over alphabet S
 - ▶ Example: $\{0,1\}^*$ = all binary strings

Representing Decision Problems

- For technical convenience, we focus on decision problems
- A decision problem for property P asks if for any given instance x, instance x has property P.
- If the instances of a decision problem P are encoded as strings over some alphabet S, then P can be represented by its characteristic funtion $f_P \colon S^* \to \{0,1\} \pmod{1}$
- Equivalently, the problem can be represented by its set of "yes"-instances, i.e. the language

$$L_P = \{ x \in S^* \mid f_P(x) = 1 \}.$$

 Because of this equivalence, the terms "language" and "decision problem" are used interchangeably.

Deciding Languages by Turing Machines

Definition

Turing machine M decides a language L if:

- for any $x \in L$, M(x) = 1
- for any $x \notin L$, M(x) = 0

Turing machine M accepts (semidecides) a language L if:

- for any $x \in L$, M(x) = 1
- for any $x \notin L$, M does not halt on input x
- If a language (problem) is decided by some Turing machine, it is called decidable. (Or historically "recursive".)
- If a language (problem) is accepted by some Turing machine, it is called semidecidable. (Or historically "recursively enumerable".)
- A language (problem) which is not decidable is undecidable. An undecidable language (problem) may still be semidecidable.

4 Time and Space Complexity, Complexity Class P

Definition (Running time)

Let M be a Turing machine that halts on all inputs. We say that M runs in time T(n) if for all inputs $\{0,1\}^*$, the machine M halts after at most T(|x|) steps.

Definition (Space usage)

Let M be a Turing machine that halts on all inputs. We say that M uses S(n) space if for all inputs $\{0,1\}^*$, the machine M visits at most S(|x|) cells on the non-input tapes of M.

Robustness of the Definitions

- Time and space complexity should not significantly depend on:
 - Number of tapes
 - Size of the alphabet
- We will outline proofs that this is the case
 - Focus on time
 - Similar things hold for space

Time-Constructible Functions

Definition (Time-constructible function)

Let $T\colon \mathbb{N} \to \mathbb{N}$ be a function. We say that T is *time-constructible* if $T(n) \geq n$ and there is a TM M that computes the function $x \mapsto \llcorner T(|x|) \lrcorner$ in time T(n), where $\llcorner n \lrcorner$ denotes the binary representation of the number n.

- Roughly: T(n) can be computed in time T(n)
- Essentially all sensible functions we care about are time-constructible, so this is mostly a technicality
- Needed for certain proofs to go through

Alphabet Size Does Not Matter

Theorem

Let $f\colon\{0,1\}^*\to\{0,1\}^*$, and let $T\colon\mathbb{N}\to\mathbb{N}$ be time-constructible. If f can be computed by a TM M with alphabet Γ in time T(n), then there is a TM M' that computes f using alphabet $\{0,1,\rhd,\Box\}$ in time $4\log_2|\Gamma|T(n)$.

• Basic idea: encode the alphabet Γ in binary using $\log_2 |\Gamma|$ bits

Number of Tapes Does Not Matter

- Alternative definition: single-tape Turing machines
 - Only single read/write tape
 - Input is written on the tape at start
 - End computation with output written on the tape

Theorem

Let $f: \{0,1\}^* \to \{0,1\}^*$, and let $T: \mathbb{N} \to \mathbb{N}$ be time-constructible. If f can be computed by a TM M with k tapes in time T(n), then there is a single-tape TM M' that computes f in time $5kT(n)^2$.

Basic idea:

- ▶ Encode *i*th tape in position i, i+k, i+2k,...
- Use special symbols to denote head positions
- Each pass: read the whole tape, update heads and writes

Time Complexity Classes

Definition (Class DTIME)

Let $T\colon \mathbb{N} \to \mathbb{N}$ be a function. The class $\mathsf{DTIME}(T(n))$ is the set of languages L for which there exists a Turing machine M and a constant c>0 such that M decides L and runs in time $c\cdot T(n)$.

• Note the constant "slack factor" c. This is to simplify proofs, and also because the multi-tape Turing machine model is robust w.r.t. almost all changes in detail up to a constant factor. (However going from $k \geq 2$ tapes to a single tape induces a quadratic overhead.)

Polynomial Time

Definition (Class P)

$$\mathsf{P} = \bigcup_{d=1}^{\infty} \mathsf{DTIME}(n^d)$$

- In other words, P is the class of all languages that can be decided by a polynomial-time Turing machine
 - Alphabet size and number of tapes do not matter

Polynomial Time: Discussion

- Strong Church-Turing Thesis: any physically realisable system can be simulated by a Turing machine with polynomial overhead
 - Implies that P captures everything computable in polynomial time
 - ▶ **Not entirely uncontroversial:** randomised algorithms, quantum algorithms, exotic physics...

Polynomial Time: Discussion

- Class P tries to model tractable problems
 - $O(n^{100})$ is polynomial, but not practical
 - $ightharpoonup O(n^3)$ is not really practical either!
 - $O(2^{n/100})$ is often practical, but not polynomial
- What about average-case complexity, approximations and randomisation?

Polynomial Time: Discussion

- Turing machines not great for discussing differences between polynomial-time problems
 - e.g. $\Theta(n^2)$ vs. $\Theta(n^3)$
 - Polynomial overheads from moving heads, simulation
 - ▶ Need more *fine-grained* models for this!
- Still makes sense to study P:
 - Many real-world problems are outside P
 - Understanding this source of difficulty is useful

Lecture 2: Summary

- Turing machines
- Decision problems and (un)decidability
- Running time and space usage
- Classes $\mathsf{DTIME}(T(n))$ and P

https://www.youtube.com/watch?v=cYw2ewoO6c4