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Agenda for today

1 Motivation for Gaussian processes

2 Course content, format, and evaluation

3 Warm up for Gaussian processes: Review of the multivariate Gaussian
distribution

4 First assignment
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Gaussian processes in a nutshell

It’s all about learning functions from data

Suppose we are given a data set D = {xn, yn}Nn=1

Gaussian processes (GPs) can
... fit non-linear functions to data
... make predictions for new inputs
... provide sensible uncertainties
... adjust model complexity to data (nonparametric)
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Functions with different domains

The real line

Higher dimensions

A sphere

Finland

A human brain
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Multitude of Gaussian processes applications

Regression (supervised learning)

Time series analysis
EEG brain imaging
Survival analysis for cancer data
Predicting rainfall
Robot dynamics
...

Classification (supervised learning)

Recognizings handwritten digits
Brain decoding
...

Dimensionality reduction (unsupervised learning)

Optimization of black box functions (Bayesian optimization)

Numerical integration (Bayesian quadrature)

Solving differential equations (probabilistic numerics)
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Course content

The goal of the course is to introduce you to Gaussian processes,
applications and some recent research directions

We will cover

1 ... Gaussian process regression & classification

2 ... model section for Gaussian processes

3 ... approximate inference & how to speed up GP inference

4 ... spatio-temporal modelling

5 ... some advanced topics based on your interests

Michael Riis Andersen Gaussian processes 9/1-19 6 / 28



Format of the course

The course will be based on

shorts lectures

exercises (based on python notebooks)

project work + presentation in groups of 1-3 persons (optional)

To pass the course, you need to

complete and hand in exercises

do project work (only for extra ECTS points)

3 ECTS / 5 ECTS
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Course plan

Lectures

Lecture 1: Warm up: Properties of the multivariate normal distribution

Lecture 2: Linear Gaussian models and intro to Gaussian processes

Lecture 3: Kernels and model selection

Lecture 4: Inducing points method (.. or how to make GPs faster)

Lecture 5: Spectral kernels (.. or how to make GPs more flexible)

Lecture 6: Spatio-temporal models

Assignments

Assignment #1 due 23rd of January (midnight)

Assignment #2 due 6th of February (midnight)

Assignment #3 due 20th of February (midnight)
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The properties of the multivariate
Gaussian distribution
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The multivariate Gaussian distribution

Definition A random vector x = [x1, x2, · · · , xD ] is said to have the
multivariate Gaussian distribution if all linear combinations of x are Gaussian
distributed:

y = aTx = a1x1 + a2x2 + · · ·+ aDxD ∼ N (m, v)

for all a ∈ RD , where a 6= 0

The multivariate Gaussian density for a variable x ∈ RD :

N
(
x
∣∣µ,Σ) = (2π)−

D
2
∣∣Σ∣∣− 1

2 exp

[
−1

2
(x − µ)T Σ−1 (x − µ)

]
Completely described by its parameters:

µ ∈ RD is the mean vector

Σ ∈ RD×D is the covariance matrix (positive definite)

(Σ)ij is the covariance between the i ’th and j ’th elements in x
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Interpretation of the covariance matrix - 2D examples

The diagonal of the covariance controls the scaling/marginal variances

µ =

[
0
0

]
Σ =

[
a 0
0 b

]
(1)

Questions to be discussed with your neighbor:

1 If Σ is diagonal, then x1 and x2 are uncorrelated? True or false?
2 If Σ is diagonal, then x1 and x2 are independent? True or false?
3 What is the volume (integral) of density?
4 Which of the four densities has the highest peak and why?
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The density at the mode

The density is given by

N
(
x
∣∣µ,Σ) = (2π)−

D
2
∣∣Σ∣∣− 1

2 exp

[
−1

2
(x − µ)T Σ−1 (x − µ)

]
The mode (highest density value) is achieve at x = µ

N
(
µ
∣∣µ,Σ) = (2π)−

D
2
∣∣Σ∣∣− 1

2

The determinant of the covariance is∣∣Σ∣∣ =
∣∣ [a ρ
ρ b

] ∣∣ = ab − ρ2 (2)

Therefore

N
(
µ
∣∣µ,Σ) = (2π)−

D
2
∣∣Σ∣∣− 1

2 = (2π)−
D
2

1√
ab − ρ2

Michael Riis Andersen Gaussian processes 9/1-19 12 / 28



Interpretation of the covariance matrix

The off-diagonals control the covariances:

(Σ)ij = cov (xi , xj) = E [xixj ]− µiµj (3)

µ =

[
0
0

]
Σ =

[
1 ρ
ρ 1

]
(4)

Question:

Which of the four densities has the highest peak and why?
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Interpretation of the covariance matrix

Covariance matrices must be symmetric:

(Σ)ij = cov (xi , xj) = cov (xj , xi ) = (Σ)ji (5)

Consider the following set of covariance matrices:

Σ =

[
a c
c b

]
(6)

c is the covariance between x1 and x2. Can c take any values?

∣∣ρ∣∣ =
∣∣ c
√
a
√
b

∣∣ ≤ 1 ⇒
∣∣c∣∣ ≤ √a√b (7)

Σ must be positive definite
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Interpretation of the covariance matrix

Determine which of the following 5 matrices are valid covariance matrices
and match them to the set of samples below.

Σ1 =

[
3 −2
−2 3

]
Σ2 =

[
3 2

1.5 3

]
Σ3 =

[
1 1
1 3

]
Σ4 =

[
1 −2
−2 3

]
Σ5 =

[
3 1.5

1.5 1

]

Discuss with your neighbor for 3 minutes
Michael Riis Andersen Gaussian processes 9/1-19 15 / 28



The multivariate Gaussian: Basic properties

Gaussian distributions are closed under addition:

x1 ∼ N (m1,V1) , x2 ∼ N (m2,V2) ⇒ x1 + x2 ∼ N (m1 + m2,V1 + V2)

For any finite number of independent variables:

xi ∼ N (mi ,Vi ) ⇒
∑
i

xi ∼ N

(∑
i

mi ,
∑
i

Vi

)

Gaussian distributions are closed under affine transformations:

x ∼ N (m,V ) , ⇒ Ax + b ∼ N
(
Am + b,AVAT

)

Hence, manipulating Gaussian distributions often boils down to linear
algebra
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Discuss with your neighbor...

... how to use the following two results

xi ∼ N (mi ,Vi ) ⇒
∑
i

xi ∼ N

(∑
i

mi ,
∑
i

Vi

)
x ∼ N (m,V ) ⇒ Ax + b ∼ N

(
Am + b,AVAT

)
,

to calculate the distribution of Y in the following linear model?

Y = µ + Xw + ε,

where

w ∼ N (m,V ) ε ∼ N
(
0, σ2I

)

Michael Riis Andersen Gaussian processes 9/1-19 17 / 28



Sampling from the multivariate Gaussian distribution

x ∼ N (m,V ) ⇒ Ax + b ∼ N
(
Am + b,AVAT

)
Suppose we know how to generate samples from a standardized univariate
Gaussian distribution

How can we use the above result to generate samples from an arbitrary
multivariate Gaussian distribution y ∼ N (m,V )?

1 Compute the matrix square root of V = LLT

2 Generate a sample of x such that xi ∼ N (0, 1), i.e. x ∼ N (0, I )
3 Compute y = Lx + m

Why does it work?

y = Lx + m ∼ N
(
L0 + m,LILT

)
= N (m,V ) (8)
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The multivariate Gaussian: Marginalization

Gaussian densities are closed on marginalization

Let x1 and x2 be a partitioning of x = x1 ∪ x2, then

p(x1, x2) = N
([

x1
x2

] ∣∣ [m1

m2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(9)

then

p(x1) =

∫
p(x1, x2)dx2 = N (x1|m1,Σ11) (10)

and

p(x2) =

∫
p(x1, x2)dx1 = N (x2|m2,Σ22) (11)

The same is true for any partitioning
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Marginalization example in 2D

x ∼ N
([

0
2

]
,

[
1 1
1 3

])

x1 ∼ N (0, 1)

x2 ∼ N (2, 3)
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Conditioning

Gaussian densities are closed under conditioning!

Recall the definition of conditioning:

p(A|B) =
p(A ∩ B)

p(B)

Let x1 and x2 be a partitioning of x = x1 ∪ x2, then

p(x1, x2) = N
([

x1
x2

] ∣∣ [m1

m2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
The conditional of x1 is given x2 by:

p(x1|x2) = N
(
x1|Σ12Σ

−1
22 [x2 − µ2] + m1,Σ11 −Σ12Σ

−1
22 Σ21

)
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Conditioning example in 2D

2D example

µ =

[
0
2

]
Σ =

[
1 0.8

0.8 1

]
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Conditioning example in 2D

2D example

µ =

[
0
2

]
Σ =

[
1 0.8

0.8 1

]
Assume we observe x2 = 1
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Conditioning example in 2D

2D example

µ =

[
0
2

]
Σ =

[
1 0.8

0.8 1

]
Assume we observe x2 = 1

The conditional disitribution

p(x1|x2) = N

(
x1| −

√
2

2
,

1

2

)
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Conditioning example in 2D
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Visualizing samples in higher dimensions

Visualizations in 2D

Σ =

[
1 0.8

0.8 1

]
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Visualizing samples in higher dimensions

Visualizations in 5D

Σ =


1 0.81 0.82 0.83 0.84

0.81 1 0.81 0.82 0.83

0.82 0.81 1 0.81 0.82

0.83 0.82 0.81 1 0.81

0.84 0.83 0.82 0.81 1


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Visualizing samples in higher dimensions

Visualizations in 10D

Σ =



1 0.81 0.82 . . . 0.89

0.81 1 0.81
...

0.82 0.81 1
...

...
. . .

...
0.89 . . . . . . . . . 1


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Back to conditioning

So far, we have seen samples from the distribution p (x) = N
(
x
∣∣0,Σ)

We can also write p (x) = p(x1, x2:10)

We now observe x1 = 0

Let’s sample from the conditional distribution p(x2:10
∣∣x1 = 0)
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Back to conditioning II

Let’s now consider a case with x ∈ R100 dimensions with 5 observations

Informally: We can think functions as vectors with infinite dimensions

Using conditining in Gaussian distributions, we can do non-linear regression!
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The end of todays lecture

Next time

We will introduce Gaussian processes more formally

Read Chapter 1 & 2 in Gaussian processes for Machine Learning by
Carl Rasmussen (http://www.gaussianprocess.org/gpml)

First assignment

Warm up for Gaussian processes

Reviews the basics of Bayesian inference

Reviews the multivariate Gaussian density

Must be handed in through MyCourses
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