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Schedule

Lectures:
Wednesdays 8-10, C
and
Friday 10-12, C

Exercise sessions:

Group Teacher Session 1 Session 2
1 Anton Vavilov Mo 8 Fr 8
2 Razane Tajeddine Mo 12 We 14
3 Henri Simola Mo 12 Fr 12
4 Antti Suominen Tu 8 Fr 8
5 Jan Härkönen Tu 12 Th 12
6 Tommi Anttila Tu 14 Th 12
7 Janne Holopainen We 10 Fr 12

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Grading

Final exam (80%): Written exam Wednesday 20.2., 9-12.

Homework (20%): Presented orally during the second exercise
session every week. Problems presented on course homepage the
previous friday.

In formulas: If you solve xi ∈ [0, 3] problems during week
i ∈ {2, 3, 4, 5, 6}, and you get y ∈ [0, 48] points on the final exam,
then your total score is

y +
6∑

i=2

xi − min
2≤i≤6

xi ∈ [0, 60].
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Literature

Sheldon Ross,
Introduction to Probability and Statistics for Engineers and Scientists
https://www.sciencedirect.com/book/9780123948113/

introduction-to-probability-and-statistics-for-

engineers-and-scientists

(free on Aalto network)

Explorative exercises Updated on course homepage every friday.

Slides Updated on course homepage after every lecture.
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Course content

Thinking statistically (week 1)

Collecting data
Representing data

Probability theory (week 1-4)

Random events
Random variables
Probability distributions

Statistics (week 4-6)

Sampling
Estimating
Testing hypotheses
Linear regression
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Course content

Probability is a field of mathematics, which investigates the
behaviour of mathematically defined random phenomena.

Statistics attempts to describe, model and interpret the behaviour
of observed random phenomena.

In this course, we will learn probability in order to use it as a
modelling device in statistics.
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Learning outcomes

After passing the course the student knows:

1 the basic concepts and rules of probability

2 the basic properties of one- and two-dimensional discrete and
continuous probability distributions

3 common one- and two-dimensional discrete and continuous
probability distributions and knows how to apply them to simple
random phenomena

4 the basic properties of the bivariate normal distribution

5 the basic methods for collecting and describing statistical data

6 how to apply basic methods of estimation and testing in simple
problems of statistical inference

7 the basic concepts of statistical dependence, correlation and linear
regression.
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What is statistics?

Statistics is a collection of tools to study uncertain data.

The observed data itself is not statistics. Statistics is the conclusions
we can draw from our observations, and the techniques to draw
these conclusions.

Applicable whenever there is quantifiable data available.
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Terminology

Population is the set that contains all possible objects of a
statistical experiment.

Unit is an element of population.

Sample is a subset of the population.

Observation is an observed value of a variable attached to each
unit in the sample.

Statistical data is the collection of all observations.

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Collecting data
Representing data

Terminology

Example

Suppose we want to investigate the height of Finns in general, and do so
by measuring 2000 randomly selected Finns.

Population is the set of all Finns (some 5 million or so).

Unit is any Finn (for example Teuvo Hakkarainen)

Sample is some collection of 2000 random Finns.

Observation is the height of any of the Finns we measured (like
179cm).

Statistical data consists of all the heights we measured (a list of
2000 numbers).
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Why statistics?

We want to learn something about an entire population, but can not
afford to collect (or store) all the data we would want.

Want to draw as strong conclusions as we can, from limited data.

Perhaps counterintuitively, to get a useful sample, we want to know
as little as possible about the sample, i.e. the sample should be
selected randomly.
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Biased samples

Example

By polling a sample of the voting population, we are trying to predict the
outcome of the next general election. Which of the following methods of
selection is likely to yield a useful sample?

1 Poll all people of voting age currently sitting in the university library

2 Poll the first 1000 names from the voter registation list.

3 Poll 1000 names selected randomly from the voter registation list
(with any voter having the same probability of being chosen).

4 Have a major radio station ask its listeners to call in and name the
party they plan to vote for.
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Biased samples

Example (Continued)

Poll all people of voting age currently sitting in the university library
- NOT GOOD.

There is good reason to believe that studying at a university and
sitting in a library correlates with political sympathies, so our sample
is not representative.

We call this a biased sample.

Worse still, even though we expect that university studies correlate
with political sympathies, we do not know how they correlate.

So we can not even compensate for the bias.
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Biased samples

Example (Continued)

Have a major radio station ask its listeners to call in and name the
party they plan to vote for. - ALSO NOT GOOD.

Even if the radio listeners might be representative for the
population, the listeners that choose to call in might not be.

Possible sources of bias:

Calling in correlates to having lots of spare time, which might
correlate with political sympathies.
Calling in correlates to having strong opinions, which might correlate
with what the opinions are.
A political party could encourage their sympathisers to call in,
thereby actively injecting a bias.
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Biased samples

Example (Continued)

Poll the first 1000 names from the voter registation list. -
PROBABLY LESS BAD.

We would only question people whose last names are Aalto,
Aaltonen, Aaron, etc.

We do not know if this correlates with political sympaties, but it is
still a bias.

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Collecting data
Representing data

Biased samples

Example (Continued)

Poll 1000 random names from the voter registation list. - GOOD.

No systematic bias.

There can still be a bias “by accident”, but since we choose
randomly, we can compute/approximate the probability that this
bias is significant.

Only when the sample is random with some known probability
distribution, can we use (classical) statistical techniques.

Moral: a statistical conclusion is only meaningful if we know how the
data was collected.
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Biased samples

Even if we make an effort to select “typical” samples, we get worse
data than if we choose randomly.

Example

Example: let’s select the 1000 most “typical” Finns (middle age,
medium income, medium height, medium weight) to be interviewed.

Assume a retailer wants to conduct a poll about whether Finns find
it easy or difficult to buy clothes that fit.

The fact that the interviewed individuals are “typical” probably
means that they are the most likely to answer “yes” than people in
general.

Moral: Don’t try to be smart, because Randomness will always be
smarter.
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What is “typical” anyway?

Assume we have a data set S = {x1, . . . , xn} of n numerical
observations.

Three different notions: mean, median and mode

Mean is the “average” value: x̄ = x1+···+xn
n .

Median is the “center” value: order the sample such that
x1 ≤ x2 ≤ · · · ≤ xn.

If n = 2k − 1 is odd, then the median is xk .
If n = 2k is even, then the median is the average of xk and xk+1.

Mode is the most frequent value. (might not be unique.)

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Collecting data
Representing data

What is “typical” anyway?

Example

S = {−8, 0, 1, 1, 2, 2, 2}
Mean=−8+0+1+1+2+2+2

7 = 0, Median=1, Mode=2

Example

S = {−16, 1, 1, 2, 3, 4, 5}
Mean= −16+1+1+2+3+4+5

7 = 0, Median=2, Mode=1

Example

S = {−8,−1,−1, 1, 2, 3, 4}
Mean= −8−1−1+1+2+3+4

7 = 0, Median=1, Mode=-1
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Mean (or average) value

The mean is useful when outliers play a role.

Require that the numerical values can be added and subtracted
meaningfully.

Example: The average winnings of a lottery ticket is a meaningful
number (usually about half the price of the ticket).

The median and mode winnings are both rather meaningless
numbers (namely 0).
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Mean (or average) value

If xi = a + byi , then x̄ = a + bȳ .

The average of {100, 400,−200, 1000} can be computed as
100 · 1+4−2+10

4 .

The average of {127, 99, 82, 104} can be computed as
100 + 27−1−18+4

4 .
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Mean (or average) value

If a sample is composed of several smaller samples, then the mean of
the whole sample can be computed as a weighted average of the
means of the smaller samples.

Let the sample x consist of r parts x1, x2, . . . , xr , where xi consists
of ni units and n1 + · · · nr = N.

If x̄i denotes the mean of the i :th part, then

x̄ =
n1
N
x̄1 + · · ·+ nr

N
x̄r .

This is not the same as the mean of the averages, because larger
samples must be given larger weight.
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Median value

The median is useful when we want to ignore outliers.

If we want to understand the typical standard of living in a
developing country, it is useful to compare the median income to the
poverty line, but not the mean income.

Does not require that data can be meaningfully added and
subtracted - only that the data be ordered.
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Mode

The mode is useful even for qualitative data.

For example, the mode of the data set {bus, car, bicycle, pedestrian,
pedestrian, car, pedestrian} is pedestrian, but the mean and median
of this data set is meaningless.

Requires that the observations be grouped into not too many sets of
feasible outcomes.

If we measure the height of 1000 Finns with the precision of 1mm,
then the mode will depend very much on the randomness in the
sample.
If the measurements are with the precision of 5cm, then the mode
might be for example (170, 175], which is useful knowledge.
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Sample variance

The sample variance s2(x) of a sample x = {x1, . . . , xn} measures
how “spread out” the observations are.

We define

s2(x) =
1

n − 1

n∑
i=1

(xi − x̄)2.

This definition will make much more sense when we start studying
probability distributions.

We define the sample standard deviation s(x) =
√
s2(x).

The standard deviation is measured in the same unit as the
observations themselves.
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Data frames

A data frame is a table of observations, where rows correspond to
different units, and columns correspond to different variables being
measured.

Different columns can have different type - for example qualitative
and quantitative data can be contained in the same data frame.
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Qualitative variable
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Qualitative variable
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Quantitative variable
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Quantitative variable
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Histograms
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2-dimensional samples

Often, we want to study more than one variable with the same
sample.
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2-dimensional samples

Studying the joint distribution of (X ,Y ) =(height of father, height
of son) gives more information than studying X and Y separately.
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2-dimensional samples

We can also divide two-dimensional data into classes, where two
units (father-son pairs) are in the same class if both X and Y agree
on the two pairs (up to a desired precision, here 1cm).
Then we get a 2-dimensional histogram.
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What is a probability?

What does it mean that “the probability of rain tomorrow is 30%”?

Frequency interpretation: “Of all days when all the known
circumstances are the same as today, in the long run 30% will be
followed by a rainy day.”

Subjective interpretation: “I think it would be fair, that you got
30 tokens from me if it rains tomorrow, and I get 70 tokens from
you if it does not.”

These interpretations are similar but different. Their differences do
not, however, affect mathematics of probabilities.

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Random events
Conditional probability
Random variables
Expectation and variance
The normal distribution

Terminology

Sample space: The set S of all things that can happen.
Outcome: An element s ∈ S .
Event: A subset A ⊆ S .
A occurs if s ∈ S .

Example (Rolling a die)

Sample space {1, 2, 3, 4, 5, 6}.
Example of events:

“Outcome is even”= {2, 4, 6}
“Outcome is > 3”= {4, 5, 6}
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Example (Rolling two dice)
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Example (Rainfall in Espoo tomorrow (mm))
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Set operations

Events can be combined via ordinary set theoretic operations:

“A and B both occur”: A ∩ B (or in Ross: AB)
“A or B occurs” A ∪ B
“A does not occur” Ac (or sometimes Ā)

Any sample space has two particular events: the certain event S and
the impossible event ∅
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Intersection of events
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Union of events
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Complement of events
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Mutually exclusive events

Two events A and B are mutually exclusive if A ∩ B = ∅.
In particular, A and Ac are mutually exclusive for any A.
A set of events A1, . . . ,An are mutually exclusive if Ai ∩ Aj = ∅ for
all i 6= j .

Example (Rolling a die)

A =“Outcome is even”= {2, 4, 6}
Bi =“Outcome is i”= {i}
Then the events B1, . . . ,B6 are mutually exclusive.

A and B1 are mutually exclusive.

A and B2 are not mutually exclusive.
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Set operations
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Set operations

Commutative laws:

A ∩ B = B ∩ A
A ∪ B = B ∪ A

Associative laws:

(A ∩ B) ∩ C = A ∩ (B ∩ C)
(A ∪ B) ∪ C = A ∪ (B ∪ C)

Distributive law:

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)
(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)

Proof via Venn diagrams (on blackboard).
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Axioms of probability

Probabilities is an assignment of numbers between 0 and 1 to
events, that describe how likely the events are.

The certain event S certainly occurs, so should have probability 1.

If A and B are mutually exclusive, then the number of times that
A ∪ B occur is the times that A occur plus the times that B occur.

Thus, probabilities should be “additive”: P(A ∪ B) = P(A) + P(B)
if A and B are mutually exclusive.
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Axioms of probability

Definition

Let S be a sample space, and E a set of events on S . Then a function
P : E → R is called a probability measure if

0 ≤ P(A) ≤ 1 for all events A.

P(S) = 1

If A1,A2, . . . are mutually exclusive, then

P(A1 ∪ A2 ∪ · · · ) = P(A1) + P(A2) + · · · .

It follows that P(∅) = 0.

There can also be other sets that have probability 0.

It aslo follows that, if A ⊆ B, then P(A) ≤ P(B).
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General rules of probability

If A is any event, then A ∪ Ac = S and A ∩ Ac = ∅
So 1 = P(S) = P(A) + P(Ac), or in other words

P(Ac) = 1− P(A).

Example

The probability of snow tomorrow is 20% = 0.2. Thus the probability
that it does not snow tomorrow is 1− 0.2 = 0.8 = 80%.
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General rules of probability

By additivity of mutually exclusive events:
P(E) = P(I ) + P(II )
P(F ) = P(II ) + P(III )
P(E ∪ F ) = P(I ) + P(II ) + P(III )
P(E ∩ F ) = P(II )

So for any events E and F ,

P(E ∪ F ) = P(E ) + P(F )− P(E ∩ F ).

This is the general sum rule for probabilities.
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General rules of probability

Example

According to a survey, 28% of a population smokes cigarettes, and 6%
smoke other tobacco products. Moreover, 3% smoke both cigarettes as
well as other tobacco products. What fraction of the population does not
smoke tobacco at all?

Let E be the event that a random person smokes tobacco, and F
the event that he/she smokes some other tobacco product.

P(E ) = 0.28, P(F ) = 0.06, P(E ∩ F ) = 0.03.

Then the fraction of non-smokers is the probability that a random
person does not smoke, which is

P((E ∪ F )c) = 1− P(E ∪ F ) = 1− P(E )− P(F ) + P(E ∩ F )

= 1− 0.28− 0.06 + 0.03

= 0.69 = 69%.
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Uniform probability measures

If the sample space is finite, then it is sometimes reasonable to
assume that every outcome is equally likely.

Then P({s}) = 1
#S for every s ∈ S , where #S denotes the

cardinality of (number of elements in) the sample space.

This is called the uniform probability measure on S .

Example

If we flip a fair coin, then P(heads) = P(tails) = 1
2 .

If we roll a fair 6-sided die, then
P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1

6 .

It follows that P(E ) = #E
#S for any event E , if P is uniform.
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Product rule

If the sample space S is a cartesian product of other spaces

S = S1 × S2 × · · ·Sn,

then #S = #S1 ·#S2 · · ·#Sn.

Concretely, if an experiment consists of n different steps, and in each
step si different outcomes are possible (regardless of the outcomes of
the previous steps), then the total number of possible outcomes is

s = s1 · · · sn.
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Product rule

Example

Three fair 6-sided dice are rolled. What is the probability that at
least one of them shows a 6?

Easier if we “order” the experiment, so we roll one die at a time.

Easier to compute the probability of the complementary event, i.e.
E = {all dice show a number 1, . . . 5}
#E = 53 and #S = 63.

So the probability that at least one die shows a six is

P(E c) = 1− P(E ) = 1− #E

#S
= 1− 53

63
= 1− 125

216
=

101

216
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Product rule

Example

Two balls are drawn uniformly at random from a bowl with 6 white
balls and 5 black balls. What is the probability that exactly one
black and one white ball is drawn?

Easier to think if we order the experiment.

Let E = {first ball white, second black} and
F = {first ball black, second white}.
#S = 11 · 10, #E = 6 · 5, #F = 5 · 6
The probability that exactly one ball of each colour is drawn is

P(E ∪ F ) = P(E ) + P(F ) =
#E

#S
+

#F

#S
= 2 · 30

110
=

6

11
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Counting linear orders

In how many ways can we order the letters a,b,c in a linear order?

abc, acb, bac, bca, cab, cba.

The first letter could be chosen in 3 ways.

Regardless of the first letter, the second letter can be chosen in 2
ways, and after this, the third letter can be chosen in only one way.

So the number of orders is 3 · 2 · 1 = 6
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Counting linear orders

In how many ways can we order n objects a1, a2, · · · , an in a linear
order?

The first object could be chosen in n ways.

Regardless of the first object, the second object can be chosen in
(n− 1) ways, and after this, the third letter can be chosen in (n− 2)
ways, and so on.

So the number of orders is n! = n · (n − 1) · (n − 2) · · · 2 · 1.

This number is denoted n!, read “n factorial”

By convention, 0! = 1 (“the empty product”)
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Counting linear orders

Example

The balls from our favourite bowl (which contained 6 white balls
and 5 black balls) are picked up in a uniformly random order.

What is the probability that all white balls are drawn before any of
the black balls?

Let E be the set of orders where all white balls come before all black
balls.

Then #E = 6! · 5!, because such an order is obtained by first
ordering the 6 white balls and then the 5 black balls.

The corresponding probability is

#E

#S
=

6!5!

11!
=

5 · 4 · 3 · 2 · 1
11 · 10 · 9 · 8 · 7

=
1

462
.
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Counting linear orders

Example

The balls from our favourite bowl (which contained 6 white balls
and 5 black balls) are picked up in a uniformly random order.

What is the probability that all white balls are drawn before any of
the black balls?

Let E be the set of orders where all white balls come before all black
balls.

Then #E = 6! · 5!, because such an order is obtained by first
ordering the 6 white balls and then the 5 black balls.

The corresponding probability is

#E

#S
=

6!5!

11!
=

5 · 4 · 3 · 2 · 1
11 · 10 · 9 · 8 · 7

=
1

462
.
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Counting combinations

In how many ways can we select a committee of 5 members from a
party of 11?

Call this number
(
11
5

)
If we also order the committee members, and order the
non-members, we would get 11! possible orders total. (First
committe member can be chosen in 11 ways, second committee
member i 10 ways, ... , last committee member in 7 ways, first
non-member in 6 ways, second non-member in 5 ways and so on).

Every committee can be ordered in 5! ways, and the non-members
can be ordered in 6! ways.

We get
(
11
5

)
· 5! · 6! = 11!, so(

11

5

)
=

11!

6! · 5!
= 462.
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Counting combinations

We can generalize this: How many “combinations” (subsets) of k
elements are there in a set B of n elements?

This number is denoted
(
n
k

)
, and read “n choose k”.

The number of ways to select a set A with k elements and then
order both A and B \ A is

(
n
k

)
· k! · (n − k)!, but it is also n! by the

same argument as on the last slide.

We get (
n

k

)
=

n!

k! · (n − k)!
.
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Counting combinations

There are
(
n
k

)
ways to choose k balls from a box containing n balls.

Refining according to whether or not our favourite red ball is chosen:(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
.
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Counting combinations

Clearly,
(
n
0

)
=
(
n
n

)
= 1.

So the binomial coefficients
(
n
k

)
are the entries in the recursively

defined Pascal’s triangle:
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Complementary events

It is often more convenient to compute the probability that
something never happens, or that it always happens, than the
probability that it happens exactly (or at least) 19 times.1

Example

The probability that no two of our of four dice show the same
number is 6·5·4·3

64 = 5
18 .

Example

The probability that Alice, Bob, Camilla, . . . , Yngwie, Zach all have
different birthdays (if they are all born on a non-leap year) is

365 · 364 · · · 340

36526
≈ 0.40.

119 is an arbitrary integer.
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Birthday paradox

Example

The probability that Alice, Bob, Camilla, . . . , Yngwie, Zach all have
different birthdays (if they are all born on a non-leap year) is

365 · 364 · · · 340

36526
≈ 0.40.

This is known as the “birthday paradox”.

More generally, assume we observe a random variable that can take
N different values r times.

If r >
√

ln(4)N ≈ 1.18
√
N, then with probability > 1

2 (quickly
increasing as r grows), two of the observations will have the same
value.
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Conditional probability

If A and B are two events, then they generate four combined events.

P(A) is the fraction of the total probability that lies in the left
column:

P(A) = P(A ∩ B) + P(A ∩ B̄)

=
P(A ∩ B) + P(A ∩ B̄)

P(A ∩ B) + P(A ∩ B̄) + P(Ā ∩ B) + P(Ā ∩ B̄)
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Conditional probability

If we know that B occured, then only the “probabilities” in the
upper row remain, so we get a new conditional probability of A:

P(A|B) =
P(A ∩ B)

P(A ∩ B) + P(Ā ∩ B)
=

P(A ∩ B)

P(B)
.

If P(B) = 0, then P(A|B) is not defined.
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Conditional probability

Example
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General product rule

The formula P(A|B) = P(A∩B)
P(B) can be used to compute probabilities

of joint events:
P(A ∩ B) = P(A|B)P(B)

Interpretation: To decide how likely A ∩ B is, first decide how likely
B is, and multiply this with how likely A would be if we knew that B
occured.
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General product rule

We can do the same to compute the joint probability of more than
two events:

P(A1∩· · ·∩Ak) = P(A1)P(A2|A1)P(A3|A1∩A2) · · ·P(Ak |A1∩· · ·∩Ak−1)

Example

What is the probability that three cards drawn from the same deck
(without replacement) are all spades?

Let Ai be the event “card i is a spade”.

We are interested in A = A1 ∩ A2 ∩ A3.

P(A) = P(A1)P(A2|A1)P(A3|A1 ∩ A2) =
13

52
· 12

51
· 11

50
≈ 0.013
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Statistical independence

Events A and B are independent if

P(A ∩ B) = P(A)P(B).

Collection of events {Ai : i ∈ I} is independent if

P(Ai1 ∩ · · · ∩ Aik ) = P(Ai1) · · ·P(Aik )

for each subcollection {i1, . . . , ik} ⊆ I .

Example

Consecutive coin flips.

Sampling with replacement (pick coupons from an urn such that the
coupon is returned and mixed in before the next pick.)
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Statistical independence

Events A and B are independent if

P(A ∩ B) = P(A)P(B).

If P(A) 6= 0 and P(B) 6= 0, then this is equivalent to
P(A|B) = P(A) and P(B|A) = P(B)

Interpretation: Whether or not B occurred does not affect the
likelihood that A occurs.
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Statistical independence

Example
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Formula of total probability

A collection of events B1, . . . ,Bk is a decomposition of the sample
space S if they are mutually exclusive and B1 ∪ · · · ∪ Bk = S .

If B1, . . . ,Bk is a decomposition of S , and all have positive
probability, then we can compute a probability P(A) as

P(A) =
k∑

i=1

P(A ∩ Bi ) =
k∑

i=1

P(Bi )P(A|Bi ).
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Formula of total probability

Example

Suppose we know that 75% of the female engineering students and
15% of male engineering students have long hair. We also know that
approximately 27% of all engineering students are women.

What is the probability that a random student is long-haired?

H = {“Student has long hair”}.
N = {“Student is female”}.
M = {“Student is male”}.
N and M decompose the sample space, so the formula of total
probability yields

P(H) = P(N)P(H|N) + P(M)P(H|M)

= 0.27 · 0.75 + 0.73 · 0.15

= 0.312
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Bayes’ formula

Do not make the common mistake of confusing the conditional
probabilities P(B|A) and P(A|B)! The probability that a random
professor is male (something like 60%) is not the same as the
probability that a random male is a professor (something like 0.1%).

Can we determine P(B|A) if we know P(A|B)?

Yes, but only if we also know the (unconditional) probabilities of A
and B.

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Random events
Conditional probability
Random variables
Expectation and variance
The normal distribution

Bayes’ formula

Theorem (Bayes’ formula)

If A and B are two events on the same probability space with P(A) 6= 0
and P(A) 6= 0, then

P(B|A) = P(B)
P(A|B)

P(A)
.

Proof.

P(B|A) =
P(B ∩ A)

P(A)
=

P(B ∩ A)

P(B)

P(B)

P(A)
= P(A|B)

P(B)

P(A)
= P(B)

P(A|B)

P(A)
.
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Bayes’ formula

Theorem (Bayes’ formula)

If A and B are two events on the same probability space with P(A) 6= 0
and P(A) 6= 0, then

P(B|A) = P(B)
P(A|B)

P(A)
.

Interpretation: P(B) is a prior (latin: previous) probability,
measuring how much we believe that B occurs.

After observing the event A, we update our beliefs to a posterior

(latin: following) probability, by multiplying our prior by P(A|B)
P(A) .
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Bayes’ formula

Example

What is the probability that a random long-haired engineering
student is female, with the same assumptions as in the previous
example?

H = {“Student has long hair”}.
N = {“Student is female”}.
M = {“Student is male”}.
Recall: P(H|N) = 0.75, P(N) = 0.27, P(H) = 0.312.

Bayes’ formula yields

P(N|H) = P(N)
P(H|N)

P(H)
= 0.27 · 0.75

0.312
≈ 65%.
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Extended Bayes’ formula
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Quality control of factory

Example
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Example
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Quality control of factory

Example
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Testing unlikely events

Example

A deadly disease is carried by 0.1% of the population in a country.

A blood test can determine whether you have the disease. However,
with probability 0.5% a secretary will type in the wrong result from
the test.

If the test tells that you carry the disease, what is the probability
that you actually do?

Let D be the event that you have the disease and let T be the event
that the test is positive.

We know P(D) = 0.001, P(T |D) = 0.995, P(T |D̄) = 0.005.
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Testing unlikely events

Example

Let D be the event that you have the disease and let T be the event
that the test is positive.

We know P(D) = 0.001, P(T |D) = 0.995, P(T |D̄) = 0.005.

Bayes’ extended formula gives

P(D|T ) = P(D)
P(T |D)

P(T |D)P(D) + P(T |D̄)P(D̄)

= 0.001 · 0.995

0.995 · 0.001 + 0.005 · 0.999
≈ 0.17

So even when the test is positive, the probability of having the
disease is only about 0.17.

Moral: If you want to test a very unlikely event, then you need an
extremely strong test.
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Calculation rules of probability - summary
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Random variables

A random variable is a numerical quantity related to a random
phenomenon.

Examples:

Die roll
Sum of two dice
Height of a randomly chosen person
Wind speed
Temperature
Waiting time until the bus arrives

The value X (s) is determined by the realization s ∈ S .

Formally, if S is a probability space, then a random variable is a
function X : S → R.

Often we abuse notation, forget about S , and write X = X (s) ∈ R.
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Random variables

To the same random phenomena one can associate many random
variables.

In probability theory, one studies the behaviour of random variables,
when one knows the probability distribution P on the sample space S

In statistics, one aims at drawing conclusions about P from
observations of random variables on S .
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Random variables

If X is a random variable and [a, b] ⊆ R is an interval, then there is
an event

{a ≤ X ≤ b} = {s ∈ S : a ≤ X (s) ≤ b}.

In particular, for any value a,

{X = a} = {s ∈ S : X (s) = a}

is an event, and has a probability P{X = a}.
If there is a sequence a1, a2, . . . of values that are all the only values
X can take, then X is said to be discrete.
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Discrete random variables

If X is discrete, then the values P{X = a1},P{X = a2}, . . . tell us
everything we need to know about X .

Example

Roll two dice, let X be the sum of their outcomes.

P{X = 2} = P{(1, 1)} = 1/36

P{X = 3} = P{(1, 2), (2, 1)} = 2/36

P{X = 4} = P{(1, 3), (2, 2), (3, 1)} = 3/36

P{X = 5} = P{(1, 4), (2, 3), (3, 2), (4, 1)} = 4/36

P{X = 6} = P{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} = 5/36

P{X = 7} = P{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} = 6/36

P{X = 8} = P{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} = 5/36

P{X = 9} = P{(3, 6), (4, 5), (5, 4), (6, 3)} = 4/36

P{X = 10} = P{(4, 6), (5, 5), (6, 4)} = 3/36

P{X = 11} = P{(5, 6), (6, 5)} = 2/36

P{X = 12} = P{(6, 6)} = 1/36
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Discrete random variables

Example

Roll two dice, let Y be the maximum of their outcomes.

P{Y = 1} = P{(1, 1)} = 1/36

P{Y = 2} = P{(1, 2), (2, 1), (2, 2)} = 3/36

P{Y = 3} = P{(1, 3), (2, 3), (3, 1), (3, 2), (3, 3)} = 5/36

P{Y = 4} = P{(1, 4), (2, 4), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)} = 7/36

P{Y = 5} = P{(1, 5), (2, 5), (3, 5), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)} = 9/36

P{Y = 6} = P{(1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} = 11/36

For a discrete random variable X , we define its probability mass
function p : R→ [0, 1] by p(x) = P(X = x)
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Binomial distribution

Example

Flip a fair coin five times, and let X be the number of times it
comes up “heads”

P{X = 0} = P{ttttt} = 1/32

P{X = 1} = P{htttt, thttt, tthtt, tttht, tttth} = 5/32

P{X = 2} = P{hhttt, hthtt, httht, httth, thhtt, ththt, thtth, tthht, tthth, ttthh} = 10/32

P{X = 3} = P{hhhtt, hhtht, hhtth, hthht, hthth, htthh, thhht, thhth, ththh, tthhh} = 10/32

P{X = 4} = P{hhhht, hhhth, hhthh, hthhh, thhhh} = 5/32

P{X = 5} = P{hhhhh} = 1/32
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Binomial distribution

If the number of feasible outcomes is large, it is inconvenient to list
the probabilities in a table.

Example

Flip a fair coin 5000000 times, and let X be the number of times it
comes up “heads”.

P{X = n} =

(
5000000

n

)
1

25000000
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Binomial distribution

If the number of feasible outcomes is large, it is inconvenient to list
the probabilities in a table.

Example

Flip a fair coin 5000000 times, and let X be the number of times it
comes up “heads”.

P{X = n} =

(
5000000

n

)
1

25000000
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Binomial distribution

Example

Flip a biased coin N times, and let p be the probability that it comes
up “heads”. Let X be the number of times it comes up “heads”.

Then

P{X = n} =

(
N

n

)
pn(1− p)N−n.

This is the binomial distribution Bin(n, p).
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Geometric distribution

There are also discrete random variables that have infinitely many
feasible values.

Example

Flip a biased coin (with probability p of heads) repeatedly.

Let X be the number of flips before the first time heads come up.

Then
P{X = n} = (1− p)n−1p.

This is the geometric distribution Geom(p).
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Geometric distribution

Geometric distributions often occur in applications.

Assume we perform a sequence of tasks, in each of which our
equipment has the same probability p of failing.

Then the number of tasks we can perform before we have to change
equipment has distribution Geom(p).

It follows from the interpretation that if X ∼ Geom(p), then

P(X = n + m|X > m) = P(X = n).

This is called the memoryless property of the geometric distribution.
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Random variables

To any random event E corresponds an indicator variable IE given

by IA =

{
1 if E occurs
0 otherwise

Many random variables can be meaningfully rewritten as sums of
indicator variables.

Example

Let X be the number of rainy days in a year.

Let Ai be the event that the i th day of the year is rainy.

Then

X =
365∑
i=1

IAi .
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Random variables

If X is discrete, and takes values a1, a2, . . . , the

∞∑
i=0

P{X = ai} = P

(∞⋃
i=1

{X = ai}

)
= P(S) = 1.

In particular, at least some value a has P{X = a} > 0.

For a general random variable, this does not need to happen.

Example

Let X ∈ [0, 1] be a random variable such that P{X ∈ [a, b]} = b − a
for every 0 ≤ a ≤ b ≤ 1.

Then P{X = a} = 0 for any a, yet X is a random variable.

This is called the uniform random variable on [0, 1].
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Uniform random variables

Example

For any interval [A,B] ⊆ R, a random variable X is uniformly
distributed on [A,B] if

P{a < X < b} =
b − a

B − A

for all A ≤ a ≤ b ≤ B.
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Distribution functions

Any random variable can be described by its (cumulative)
distribution function (CDF) F : R→ [0, 1]:

F (x) = P{X ≤ x}.

The CDF is more useful than the probability mass function
p(x) = P(X = x), because it is defined for both discrete and
continuous random variables.

With the CDF, we can compute the probability that X lies in any
interval:

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a) = F (b)− F (a).
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Distribution functions

If X is a discrete random variable, then its CDF F (x) is a “step
function”, and its “jumps” are given by the probability mass
function p(x).
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Distribution functions

If X is a not discrete, we can hope that its CDF F is at least
differentiable.
If it is, then X is said to be continuous, and f (x) = d

dx F (x) is its
probability density function (PDF).
All random variables in this course, and almost all that occur in
practice, are either discrete or continuous.

Example (Uniform distribution)

Left: The CDF of the uniform distribution on [a, b].

Right: The corresponding PDF.
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Distribution functions

Assume X is a continuous random variable, with CDF F (x) and
PDF f (x).

F (x) = P(X ≤ x) is a weakly increasing function, so
f (x) = F ′(x) ≥ 0 is non-negative.

1 = P(X ∈ R) = lim
x→∞

P(X < x) = lim
x→∞

F (x) =

∫ ∞
−∞

f (x).

Any non-negative integrable function f : R→ R with∫ ∞
−∞

f (x) = 1

is the PDF of some random variable.
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Distribution functions

Interpretation:

P(a− ε < X < a + ε) ≈ 2εf (a),

so f measures the “intensity” with which X occurs near a.
Often a continuous random variable is described by its PDF, because
it gives a more intuitive picture than the CDF.

Example
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Exponential distribution

Is there a continuous random variable that has the renewal property
(memoryless property)

P(X ≤ y + x |X > y) = P(X ≤ x), for all x ≥ 0,

like the geometric distribution had in the discrete case?

Interpretation: This would be useful to model the life length of
objects (or individuals (like Keith Richards)) that do not “age”, but
only fail/die in “accidents”.

Example

How long until you get a call from a telemarketer?

How long until the next homicide in Helsinki?

Lifetime of certain electronic components.
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Exponential distribution

Memoryless property:

P(X ≤ y + x |X > y) = P(X ≤ x) for all x ≥ 0

The CDF of an memoryless continuous random variable would satisfy

F (x + y)

1− F (y)
= F (x).

Differentiate with respect to x :

f (x + y) = f (x)(1− F (y)).

In particular
f (y) = λ− λF (y)

for all y , where λ = f (0).
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Exponential distribution

F ′(t) = f (t) = λ− λF (t)

is a first order differential equation with constant coefficients.

Its solutions are

F (t) =

∫
λeλtdt

eλt
=

eλt + c

eλt
= 1 +

c

eλt

for arbitrary c .

F (0) = 0 =⇒ c = −1. F increasing =⇒ λ > 0.

So the only memoryless distribution functions on [0,∞) are

F (t) = 1− e−λt .
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Exponential distribution

A random variable with CDF

F (t) = 1− e−λt

is said to be exponentially distributed with rate λ.

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Random events
Conditional probability
Random variables
Expectation and variance
The normal distribution

Jointly distributed random variables

If X and Y are two discrete random variables, they have a joint
probability mass function p : R2 → [0, 1] given by

p(x , y) = P({X = x} ∩ {Y = y}).

If X and Y are two continuous random variables, they have a joint
probability density function p : R2 → R given by

P({X ≤ a} ∩ {Y ≤ b}) =

∫
x<a

∫
y<b

f (x , y)dxdy .

If X and Y are independent, then

p(x , y) = pX (x)pY (y) and f (x , y) = fX (x)fY (y).
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Expected value

If we take many independent samples X1, . . .XN of a random
variable X , what is their mean

X1 + · · ·+ XN

N
?

If X is discrete, with values {a1, a2, a3, . . . } and probability mass
function p, then we expect that ≈ Np(ai ) of the samples take the
value ai .

So

X1 + · · ·+ XN

N
≈ a1Np(a1) + a2Np(a2) + a3Np(a3) + · · ·

N

=
∑
i

aip(ai ).

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Random events
Conditional probability
Random variables
Expectation and variance
The normal distribution

Expected value

We define the expected value of the discrete random variable X as

µ = E (X ) =
∑
i

aip(ai ),

where p(ai ) is the probability that X takes the value ai .

If X can only take finitely many values, then E (X ) always exists.

Otherwise, the expected value is defined if and only if the sum∑
i

aip(ai )

is convergent.
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Expected value

Example

Let X be the outcome of a fair die roll.

E (X ) = 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
=

21

6
= 3.5.
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Expected value

Example (Indicator variable)

Let

IA =

{
1 if A occurs
0 otherwise

be the indicator variable of the event A.

E (IA) = 1P(IA = 1) + 0P(IA = 0)

= 1P(A) + 0P(Ac)

= P(A).
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Expected value

If g : R→ R is a (deterministic) function, and X is a discrete
random variable, then the random variable g(X ) has expected value

E (g(X )) =
∑
i

g(ai )p(ai ),

where p(ai ) is the probability that X takes the value ai .

Example

Let X be the outcome of a fair die roll.

E (X 2) = 1 · 1

6
+ 4 · 1

6
+ 9 · 1

6
+ 16 · 1

6
+ 25 · 1

6
+ 36 · 1

6

=
91

6
≈ 15.67.

This is not the same as E (X )2 = 3.52 = 12.25.
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Expected value

This can be generalized to when the variable g of interest is a
function of more than one other variable.

If g : R2 → R is a (deterministic) function, and X and Y are
discrete random variables, then the random variable g(X ,Y ) has
expected value

E (g(X ,Y )) =
∑
x,y

g(x , y)p(x , y),

where p is the joint probability mass function of X and Y .
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Expected value

How do we define E (X ) if X is continuous?

Discretize! Let ε > 0 be a real number, and consider the discrete
random variable Xε which is X rounded to the nearest integral
multiple of ε.

E (Xε) =
∑
xi

xiP
(
xi −

ε

2
< X < xi −

ε

2

)
≈
∑
xi

xi f (xi )ε

≈
∫

xf (x)dx ,

where the sums are over all multiples of ε.
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Expected value

If X is a continuous random variable with probability density
function f , then we define

E (X ) =

∫
R
xf (x)dx .

Recall that if X was discrete with probability mass function p, then
we defined

E (X ) =
∑
i

aip(ai ).

In fact, these two formulas can be unified in terms of the CDF F (x).
This formula is almost never used in practice, though:

E (X ) = −
∫ 0

−∞
F (x)dx +

∫ ∞
0

(1− F (x))dx
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Expected value

Theorem

If X is a random variable with CDF F (x), then its expected value is

E (X ) = −
∫ 0

−∞
F (x)dx +

∫ ∞
0

(1− F (x))dx .

We will sketch a proof for this for discrete and continuous random
variables.
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Expected value

Proof: X continuous.

If X is non-negative, so F (0) = 0, then we have

E (X ) =

∫ ∞
0

xf (x)dx =

∫ ∞
x=0

∫ x

t=0

dt f (x)dx

=

∫ ∞
t=0

∫ ∞
x=t

f (x)dxdt

=

∫ ∞
t=0

P(X > t)dt =

∫ ∞
t=0

(1− F (t))dt.

If X can also take negative values, we subdivide the integral into a
positive and a negative part.
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Expected value

Proof: X discrete.

If X is non-negative, so F (0) = 0, then we have

E (X ) =
∑
i

aip(ai ) =
∑
i

(∫ ai

t=0

dt

)
p(ai )

=

∫ ∞
t=0

∑
i :ai>t

p(ai )dt

=

∫ ∞
t=0

P(X > t)dt =

∫ ∞
t=0

(1− F (t))dt.

If X can also take negative values, we subdivide the sum into a
positive and a negative part.

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Random events
Conditional probability
Random variables
Expectation and variance
The normal distribution

Expected value

If g : R→ R is a (deterministic) function, and X is a continuous
random variable, then the random variable g(X ) has expected value

E (g(X )) =

∫
R
g(x)f (x)dx .

where f is the probability density function of X .

If g : R2 → R is a (deterministic) function, and X and Y are
discrete random variables, then the random variable g(X ,Y ) has
expected value

E (g(X ,Y )) =

∫
R

∫
R
g(x , y)f (x , y)dxdy ,

where f is the joint probability density function of X and Y .

This is a direct generalization of corresponding results for discrete
variables.
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Law of large numbers

We have argued that we “expect” X1+···+XN

N ≈ E (X ) if the number
N of samples is large. The following theorem makes this precise.

Theorem (Law of large numbers)

Let X1,X2,X3, . . . be independent realizations of the random variable X .
If X has finite expected value µ = E (X ), then

P

(
X1 + · · ·+ XN

N
→ µ

)
= 1.

Proof.

In MS-E1600, Probability Theory.
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Linearity of expected value

Let X and Y be two discrete random variables with joint PMF p.

Then

E (X + Y ) =
∑
(x,y)

(x + y)p(x , y)

=
∑
x

x
∑
y

p(x , y) +
∑
y

y
∑
x

p(x , y)

=
∑
x

xP(X = x) +
∑
y

yP(Y = y)

= E (X ) + E (Y ).

Similar arguments show that E (X + Y ) = E (X ) + E (Y ) for
continuous random variables.

This does not require that X and Y are independent.
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Linearity of expected value

If a ∈ R is a constant, then E (aX ) = aE (X ).

For discrete variables, this is straightforward.

For continuous variables, let f be the PDF of X and g be the PDF
of aX .

Then

g(t) =
d

dt
P(aX < t) = [t = as] =

1

a

d

ds
P(X < s) =

1

a
f (s) =

1

a
f (

t

a
).

So

E (aX ) =

∫
tg(t)dt =

∫
t

a
f (

t

a
)dt = [t = as] =

∫
sf (s)a ds = aE (X ).
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Linearity of expected value

If X and Y are random variables, then E (X + Y ) = E (X ) + E (Y ).

If a ∈ R is a constant, then E (aX ) = aE (X ).

In algebraic terms, this means that the expected value E is a linear
function on the vector space of random variables.
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Linearity of expected value

Example (Binomial variable)

Let X ∼ Bin(n, p). What is E (X )?

X counts how many of the independent events A1,A2, . . . ,An occur,
if each of them occur with probability p.

So X =
∑n

i=1 IAi .

We get

E (X ) =
n∑

i=1

E (IAi ) =
n∑

i=1

P(Ai ) = np.
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Linearity of expected value

Example (Coupon collector)

Suppose there are 20 different types of coupons, each of which are
equally likely to get every time when drawing one at random.

Draw 10 coupons. What is the expected number of types of coupons
drawn?

Let Ai be the event that you get at least one coupon of the i th type,
i = 1, . . . , 20.
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Linearity of expected value

Example (Coupon collector)

Let Ai be the event that you get at least one coupon of the i th type,
i = 1, . . . , 20.

The number of types drawn is X = IA1 + · · ·+ IA20 .

E (X ) =
20∑
i=1

P(Ai ) = 20

(
1−

(
19

20

)10
)

= 8.025.
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Linearity of expected value

Formulas of the form (1−
(
n−1
n

)αn
) occur quite often in probability

theory.

They can be approximated using that(
n − 1

n

)n

=

(
1− 1

n

)n

≈ 1

e

if n is large.
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Linearity of expected value

Example (Coupon collector)

Suppose there are N different types of coupons, each of which are
equally likely to get every time when drawing one at random.

Draw αN coupons. What is the expected number of types of
coupons drawn?

E (X ) = N

(
1−

(
N − 1

N

)αN)
≈ N(1− e−α).

In particular, you need to draw at least ≈ N log(N) coupons before
you can expect to have gotten one of every type.
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Expected value

Example (Exponential distribution)

Let X be exponentially distributed with rate λ.

Recall that this means that

F (t) =

{
1− e−λt if t ≥ 0
0 if t < 0

E (X ) =

∫ ∞
0

1− F (t)dt

=

∫ ∞
0

e−λtdt =
−1

λ

[
e−λt

]∞
0

=
−1

λ
(0− 1) =

1

λ
.
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Expected value

Example (Geometric distribution)

Let X be the number of trials until first success, if each trial
succeeds independently with probability p.

Probability mass function

p(t) = (1− p)t−1p for t = 1, 2, 3, . . . .

With q = 1− p we get

E (X ) =
∞∑
t=1

tp(t) =
∞∑
t=1

tqt−1p = p
∞∑
t=1

d

dq
qt

= p
d

dq

∞∑
t=1

qt = p
d

dq

1

1− q
= p · 1

(1− q)2
=

1

p
.
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Expected value, summary

The binomial distribution has expected value np.

The exponential distribution is continuous, memoryless, and has
expected value 1/λ.

The geometric distribution is discrete, memoryless, and has expected
value 1/p.

Exercise: If X ∼ Unif[a, b], then E (X ) = a+b
2 .
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Variance

In addition to the expected value, it is important to know how
“spread out” a probability distribution is.

There is a big difference between the (deterministic) random variable

X = −1

and

Y =

{
−2 with probability 1000001/1000002
1000000 with probability 1/1000002

,

although they both have expected value −1.
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Variance

The variance of a random variable X is the (deterministic) number

σ2 = Var(X ) = E ((X − µ)2),

where µ = E (X ).

If X is discrete with probability mass function p, then

Var(X ) =
∑
i

p(ai )(a1 − µ)2.

If X is continuous with probability density function f , then

Var(X ) =

∫
R
f (x)(x − µ)2 dx
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Variance

We can also write

Var(X ) = E ((X − µ)2) = E (X 2 + µ2 − 2µX )

= E (X 2) + µ2 − 2µE (X )

= E (X 2)− µ2.

In particular, we see that E (X 2) ≥ µ2 = E (X )2 for all random
variables.

E (X 2) is called the second moment of X .
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Variance

Example (Indicator variable)

Let IA =

{
1 if E occurs
0 otherwise

be the indicator variable of the event A,

with P(A) = p.

Then I 2A = IA, because 12 = 1 and 02 = 0.

E (IA) = P(A) = p, so

Var(IA) = E (I 2A)− E (IA)2 = p − p2 = p(1− p).

So the variance of an indicator variable is p(1− p) ∈ [0, 14 ].
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Variance

The variance
Var(X ) = E ((X − µ)2)

satisfies the following properties for any random variable X and any
constant a:

Var(aX ) = a2Var(X )
Var(a) = 0
Var(X + a) = Var(X )

Var(X ) is zero if and only if P(X 6= µ) = 0.

In such case, we say that X is an almost sure constant.
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Variance

Pro: The variance

Var(X ) = E ((X − µ)2)

is very convenient to work with mathematically.

Con: It can not be meaningfully added or subtracted to X , because
it is measured in different units.

If X is the height of a random person (in meters), then the variance
is measured in m2.

Therefore, statistically it is often more useful to study the standard
deviation σ =

√
Var(X )
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Variance

Example

Let X be the outcome of a fair die roll.

E (X ) =
7

2
and E (X 2) =

91

6
.

So Var(X ) = 91
6 −

(
7
2

)2
= 35

12 , and X has standard deviation

σ =

√
35

12
≈ 1.71.

Interpretation: “The outcome of a die roll is typically about 1.71
away from its average.”
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Variance

In the first lecture, we defined the sample variance

s2(x) =
1

n − 1

n∑
i=1

(xi − x̄)2.

and sample standard deviation of a numerical sample x .

As the names suggest, these notions are strongly related to the
variance

σ2 = E ((X − µ)2)

and standard deviation of a random variable X .

However, they are not the same notions, and should not be
confused.
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Covariance

What is the variance of a sum X + Y of random variables?

Let µ = E (X ) and ν = E (Y )

Var(X + Y ) = E ((X + Y )2)− E (X + Y )2

= E (X 2 + Y 2 + 2XY )− (µ+ ν)2

= E (X 2) + E (Y 2) + 2E (XY )− µ2 − ν2 − 2µν

= Var(X ) + Var(Y ) + 2(E (XY )− µν).

We call the quantity

Cov(X ,Y ) = E (XY )− E (X )E (Y )

the covariance of X and Y .
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Covariance

The covariance Cov(X ,Y ) = E (XY )− E (X )E (Y ) satisfies:

Cov(X ,Y ) = Cov(Y ,X )
If a and b are constants, then
Cov(aX + bY ,Z) = aCov(X ,Z) + bCov(Y ,Z).
Cov(X ,X ) = Var(X ).

This is analogous to the notion of scalar products (or inner
products) in linear algebra!

If µ = E (X ) and ν = E (Y ), then

Cov(X ,Y ) = E [(X − µ)(Y − ν)] .

Interpretation: Cov(X ,Y ) measures “how much X and Y tend to
deviate in the same direction”.
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Covariance

If X and Y are independent and discrete, then
P(X = x ,Y = y) = P(X = x)P(Y = y), so

E (XY ) =
∑
x,y

xyP(X = x ,Y = y)

=
∑
x,y

xyP(X = x)P(Y = y)

=
∑
x

xP(X = x)
∑
y

yP(Y = y) = E (X )E (Y ).

Similar arguments hold for continuous random variables.

So independent random variables have covariance
E (XY )− E (X )E (Y ) = 0.
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Covariance

We saw that

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y ).

In particular, if X and Y are independent, then

Var(X + Y ) = Var(X ) + Var(Y ).

More generally, if X1,X2, . . .Xn are independent, then

Var(
∑
i

Xi ) =
∑
i

Var(Xi ).
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Variance

Example (Uniform random variable)

Let Y ∼ Unif[0, 1].

E (Y ) = 1
2 .

To compute E (Y 2), notice that Y 2 has CDF

F (t) = P(Y 2 < t) = P(Y <
√
t) =

√
t for 0 ≤ t ≤ 1.

So the PDF of Y 2 is f (t) = F ′(t) = 1
2 t
− 1

2

E (Y 2) =

∫ 1

0

tf (t) =

∫ 1

0

1

2
t

1
2 =

[
1

3
t

3
2

]1
0

=
1

3

Var(Y ) = E (Y 2)− E (Y )2 =
1

3
− 1

4
=

1

12
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Variance

Example (Uniform random variable)

Let X ∼ Unif[a, b].

Then Y = X−a
b−a ∼ Unif[0, 1].

So 1
12 = Var(Y ) = 1

(b−a)2 Var(X ).

We get

Var(X ) =
(b − a)2

12
and σ =

b − a

2
√

3
.
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Variance

Example (Exponential random variable)

Let X be exponentially distributed with rate λ, so

F (t) = P(0 ≤ X < t) = 1− e−λt ,

and E (X ) = 1
λ .

Y = X 2 has CDF

P(0 ≤ Y < t) = 1− e−λ
√
t .

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Random events
Conditional probability
Random variables
Expectation and variance
The normal distribution

Variance

Example (Exponential random variable)

E (X 2) = E (Y ) =

∫ ∞
0

(1− F (t))dt =

∫ ∞
0

e−λ
√
tdt

= [t = s2, dt = 2sds]

=

∫ ∞
0

2se−λsds

=

[
−2s

λ
e−λs −

∫
−2

λ
e−λsds

]∞
0

=

[
−2s

λ
e−λs − 2

λ2
e−λsds

]∞
0

=
2

λ2
.
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Variance

Example (Exponential random variable)

E (X ) = 1
λ .

E (X 2) = 2
λ2 .

Var(X ) = E (X 2)− E (X )2 =
2

λ2
− 1

λ2
=

1

λ2
.
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Variance

Example (Binomial)

Let X ∼ Bin(n, p). What is E (X )?

X =
∑n

i=1 IAi , where A1,A2, . . . ,An are independent events with
probability p.

Var(X ) =
n∑

i=1

Var(IAi ) = np(1− p).
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Central limit theorem

What is the average

X̄ =
X1 + · · ·+ XN

N

of N � 0 independent and identically distributed (iid) random
variables X1, . . . ,Xn?

We know that
E (X̄ ) = E (X ) = µ

and

Var(X̄ ) =
1

N2
N · Var(X ) =

σ2

N
.
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Central limit theorem

Can we say something more detailed about the distribution of

X̄ =
X1 + · · ·+ XN

N
?

Figure: The sum of N indicator variables with average p = 0.7.
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Central limit theorem

Can we say something more detailed about the distribution of

X̄ =
X1 + · · ·+ XN

N
?

Figure: The average of N exponentially distributed variables with λ = 1.
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Central limit theorem

Can we say something more detailed about the distribution of

X̄ =
X1 + · · ·+ XN

N
?

It seems like in both case, the distributions look more and more like
a “bell curve” when N grows.
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Central limit theorem

Let

Yn =

∑n
i Xi − nµ√

nσ
.

E(Yn) = 0
Var(Yn) = 1

Is there a distribution to which Yn “converges”?
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Central limit theorem

Let Xi be an indicator variable with E (Xi ) = 0.7.

Yn =

∑n
i Xi − nµ√

nσ
.

We plot the CDF of Yn where n = 1, 4, 9, 16, 25.
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Central limit theorem

Let Xi be exponential with λ = 1.

Yn =

∑n
i Xi − nµ√

nσ
.

We plot the CDF of Yn where n = 1, 4, 9, 16, 25.
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Central limit theorem

Theorem (Central limit theorem, original version)

There exists a probability distribution N (0, 1), called the standard normal
distribution, such that the following holds:

Let X be a random variable (with E (X r ) <∞ for all r ≥ 0),
E (X ) = µ and Var(X ) = σ2.

Let X1,X2,X3, . . . be independent samples of X , and let

Yn =

∑n
i Xi − nµ√

nσ
.

If Z ∼ N (0, 1), then

P(a < Yn < b)→ P(a < Z < b)

for every t.

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Random events
Conditional probability
Random variables
Expectation and variance
The normal distribution

Central limit theorem

In words: The variable

Yn =

∑n
i Xi − nµ√

nσ

is distributed like Z ∼ N (0, 1) if n is large.

Interpretation: The mean X̄ =
∑

Xi

n of n iid samples with mean µ
and standard deviation σ is distributed like

σ√
n
Z + µ ∼ N (µ,

σ2

n
).

The distribution N (µ, σ2) is a fixed distribution, not depending on
the distribution of X !
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The normal distribution

The normal distribution N (µ, σ2) is explicitly given by its PDF

f (x) =
1√
2πσ

e−(x−µ)
2/2σ2

,

and thus has CDF

Φ(x) =
1√
2πσ

∫ x

−∞
e−(t−µ)

2/2σ2

dt.

Do not bother to remember these formulas!
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The normal distribution

The standard normal distribution N (0, 1) is explicitly given by its
PDF

f (x) =
1√
2π

e−x
2/2,

and thus has CDF

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt.

Values of Φ(x) are tabulated in Mellin’s tables.
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Central limit theorem

Yn =

∑n
i Xi − nµ√

nσ

has CDF Fn(x)→ Φ(x) where Φ is the CDF of the standard normal
distribution.

Sketch of proof: Consider the moment generating function E (eYnt).

Use independence to write this as a product of the moment
generating functions of Xi .

Use Taylor expansion in each of the terms to show that

lim
n→∞

E (eYnt) = et
2/2 = E (eZt),

for every t, where Z ∼ N (0, 1).

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Random events
Conditional probability
Random variables
Expectation and variance
The normal distribution

The normal distribution

For normally distributed random variables, the proportion of the
population within a given number of standard variations from the
mean can be seen in the figure below.
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The normal distribution

Examples of normally (or almost normally) distributed variables in
practice:

Most importantly, in statistics:

Any average or sum of observations of a (nice) random variable.

By physical considerations:

Velocity (in any direction) of a molecule in a gas.
Measure error of a physical quantity
Height of a person

By design:

IQ.
Grades in some academic systems (nb: not in this course).
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Standardization of normal distribution
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The normal distribution

Example (A game of dice)
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The normal distribution

Example (A game of dice, continued)

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Random events
Conditional probability
Random variables
Expectation and variance
The normal distribution

The normal distribution

Example (Airline)

An airline sells 300 tickets to a flight
with 290 seats.

Each passenger arrives to the airport
with probability 95%, independently of
the other passengers.

What is the probability that there are
enough seats for everyone who want to
fly?
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The normal distribution

Example (Airline, continued)
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Sample mean

X a random variable with unknown distribution,

E (X ) = µ Var(X ) = σ2.

The sample mean

X̄ =
X1 + · · ·+ XN

N

satisfies

E(X̄ ) = µ.

Var(X̄ ) = σ2

n
.
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Sample mean

µ̂ = X̄ has two important properties as an estimate of µ = E (X ):

Unbiased: E (µ̂) = µ (regardless what µ is).

Consistent: µ̂→ µ with probability one (almost surely, a.s.) as the
number of samples N →∞.

These are two desirable (but not necessary) properties of estimates.
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Estimating E (X )

Example

From a sample X, · · · ,Xn of arbitrary size of a random variable X ,
estimate µ̂ = X1.

Then µ̂ is unbiased, because E (X1) = X .

µ̂ is not consistent, because it does not get closer to µ as N grows.

Bad estimate for large N.
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Estimating E (X )

Example

From a sample X, · · · ,Xn of arbitrary size of a random variable X ,
estimate µ̂ = X1+···+XN

N−1 .

Then µ̂ is biased, because E (µ̂) = N
N−1µ 6= µ (unless µ = 0).

µ̂ is consistent, because

µ̂− µ =
N

N − 1
X̄ − µ = (X̄ − µ) +

1

N − 1
X̄ → 0.

Bad estimate for small N.
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Sample mean

In a certain sense, X̄ is the best possible estimate of E (X ).

This remains true even if some information of the distribution of X
is given.

For example, if we know that X is: normal, exponential, binomial...

By CLT, X̄ has approximate distribution N (µ, σ
2

n ).
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Sample mean

Example

An astronomer wants to measure the
distance d from her observatory to a
distant star.

Each time she measures, she gets a
random result, with mean d and
standard deviation 2 light years.

She wants to keep measuring until she
is reasonably sure (95%) that she can
estimate d reasonably well (error < 0.5
light years).
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Sample mean

Example

Measurements X1, . . .Xn have expected value d .

Sample mean X̄ ∼ N
(
d , 2√

n

2
)

approximately.

P(|X̄ − d | < 0.5) = P(−0.25
√
n <

X̄ − d

2/
√
n
< 0.25

√
n)

≈ Φ(0.25
√
n)− Φ(−0.25

√
n)

= 2Φ(0.25
√
n)− 1.
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Sample mean

Example

Astronomer wants

P(|X̄ − d | < 0.5) ≥ 0.95,

so

2Φ(0.25
√
n)− 1 ≥ 0.95

Φ(0.25
√
n) ≥ 0.975

0.25
√
n ≥ 1.96

n ≥ 62.
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Sample variance

Assume we want to estimate Var(X ) from independent samples
X1, . . .Xn, where X has unknown distribution.

The näıve approximation would be

Var(X ) = E ((X − E (X ))2) ≈ E ((X − X̄ )2)

≈ (X − X̄ )2 =

∑n
i=1(Xi − X̄ )2

n

But |Xi − X̄ | is typically smaller than Xi − E (X ), so the näıve
approximation systematically underestimates Var(X )!

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Sampling statistics
Maximum likelihood estimators
Interval estimates
Hypothesis testing
Covariance and correlation

Sample variance

Second attempt: We want to estimate Var(X ) from independent
samples X1, . . .Xn, where X has unknown distribution.

We defined the sample variance of N samples as

s2 =

∑N
i=1(Xi − X̄ )2

N − 1
.

We will argue that this is a good estimate of Var(X ).
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Sample variance

We can compute

s2 =

∑N
i=1(Xi − X̄ )2

N − 1

=
1

N − 1

N∑
i=1

(
X 2
i + X̄ 2 − 2Xi X̄

)
=

1

N − 1

(
NX̄ 2 +

N∑
i=1

X 2
i − 2X̄

N∑
i=1

Xi

)

=
1

N − 1

(
N∑
i=1

X 2
i − NX̄ 2

)
.
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Sample variance

Now

E (X̄ 2) =
1

N2
E (
∑
i

Xi

∑
j

Xj)

=
1

N2

∑
i

E (Xi

∑
j

Xj))

=
1

N
E (X1

∑
j

Xj))

=
1

N

(
E (X 2) + (N − 1)E (X )2

)
.
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Sample variance

We get

E (s2) =
1

N − 1
E

(
N∑
i=1

X 2
i − NX̄ 2

)

=
1

N − 1

(
NE (X 2)− NE (X̄ 2)

)
=

1

N − 1

(
(N − 1)E (X 2)− (N − 1)E (X )2

)
= E (X 2)− E (X )2

= Var(X ).

So s2 is an unbiased estimator of the variance σ2.
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Distribution of sampling statistics

If λ̂ is a statistic that is meant to estimate a parameter λ of a
random distribution, it is not enough to know E (λ̂).

To know that P(|λ− λ̂| ≥ ε) is small, we would ideally like to know
the distribution of λ̂.

At the very least, would like to know Var(λ̂), so we could use
Chebyshev’s inequality.

Observe, that the probability

P(|λ− λ̂| ≥ ε)

will depend on λ!
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Sampling normal variables

The exact (or even approximate) distribution of estimators can not
be easily described if the distribution of X is unknown.

What if X ∼ N (µ, σ2)?

Clearly, then X̄ ∼ N (µ, σ
2

N ) exactly.

What is the distribution of s2?
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Sampling normal variables

Let Z ∼ N (0, 1)

Let us denote the distribution of Z 2 by χ2
1.
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Sampling normal variables

Amazing property of the normal distribution: |Xi − X̄ | is
independent of X̄ !
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Sampling normal variables

Amazing property of the normal distribution: |Xi − X̄ | is
independent of X̄ !
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Sampling normal variables

Let X1, . . . ,XN be independent samples of X ∼ N (0, 1).

Then X̄ ∼ N (0, 1
N )

So
NX̄ 2 +

∑
i

(Xi − X̄ )2

is a sum of two independent random variables, one of which is χ2
1.
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Sampling normal variables

NX̄ 2 +
∑
i

(Xi − X̄ )2

is a sum of two independent random variables, one of which is χ2
1.∑

X 2
i

is a sum of N independent χ2
1 variables.

So ∑
i

(Xi − X̄ )2 = (N − 1)s2 =
∑

X 2
i − NX̄ 2

is distributed like the sum of N − 1 independent χ2
1 variables.
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Sampling normal variables

Denote the distribution of the sum of n independent χ2
1 variables by

χ2
n.

We call this the chi-squared distribution with n degrees of freedom.

Silly name. Live with it.

So
X 2
1 + · · ·+ X 2

n ∼ χ2
n

We saw that, if s2 was the sample variance of N observations of
N (0, 1), then

(N − 1)s2 ∼ χ2
N−1.
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Sampling normal variables

X 2
1 + · · ·+ X 2

n ∼ χ2
n

Funny (but usually useless) fact: χ2
2 = exp( 1

2 ).
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Sampling normal variables

Let s2 be the sample variance of normal (but not necessarily
standard)

X1, . . . ,XN ∼ N (µ, σ2)

Then

s2 ∼ σ2

N − 1
χ2
N−1

s2 is an unbiased estimate of the variance σ2.

X̄ = µ̂ and s2 = σ̂2 are independent random variables!
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Sampling normal variables

Let X̄ be the sample mean and s2 the sample variance of normal

X1, . . . ,Xn ∼ N (µ, σ2)

Then
X̄ − µ
σ/
√
n
∼ N (1, 0) (n − 1)

s2

σ2
∼ χ2

n−1.

X̄ = µ̂ and s2 = σ̂2 are independent.

So
X̄ − µ
s/
√
n
∼ tn−1,

the Student’s t-distribution with n − 1 degrees of freedom.
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Sampling normal variables

The Student’s t-distribution with n degrees of freedom is by
definition the distribution of

Z√
X/n

, when Z ∼ N (0, 1) and X ∼ χ2
n.

Invented by William Gosset (alias Student) at Guinness breweries.

Used for quality control with limited sample sizes.
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Sampling normal variables

The Student’s t-distribution is what you get when you normalize a
normal distribution with the sample standard deviation, instead of
the real standard deviation:

X̄ − µ
s/
√
n
∼ tn−1

“t∞ = N (0, 1)”.
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The sample variance

s2 is an unbiased estimator of the variance σ2.

However, s is not an unbiased estimator of the standard deviation σ,
because

E (s) = E (
√
s2) 6=

√
E (s2) =

√
σ2 = σ.

Is s still a meaningful estimator of σ? Yes.

In fact, there does not exist any known unbiased estimator of σ!
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Unknown parameters

Consider an unknown source of data, with a distribution f (x) that is
known apart from a few unknown parameters.

Examples:

Indicator variable:

p(0) = 1− p, p(1) = p, p unknown.

Exponential distribution:

f (x) = λe−λx when x > 0, λ unknown.

Normal distribution:

f (x) =
1√
2πσ

e
− (x−µ)2

2σ2 µ and σ unknown.

Based on observed data (x1, . . . xn), how do we guess the
parameters?
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Parameter estimation

Consider an unknown source of data, with a distribution fθ(x) that
is known apart from the parameter θ.

Observations (x1, . . . xn).

An estimate θ̂ = g(x1, . . . xn) is a number, which is a guess for the
value of θ, based on the data.
An estimator is the function g : (x1, . . . xn) 7→ θ̂ which maps the data
to the estimate.

As we have seen earlier, there is often not a single “best” choice for
an estimator of a certain parameter.
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Likelihood function

Stochastic model for the data source: the components of (x1, . . . xn)
are i.i.d. and fθ-distributed variables (X1, . . .Xn).

For a discrete distribution,

P (X1 = x1, . . . ,Xn = xn) = fθ(x1) · · · fθ(xn).

For a continuous distribution,

P
(
X1 = x1 ±

ε

2
, . . . ,Xn = xn ±

ε

2

)
≈ εnfθ(x1) · · · fθ(xn).

The likelihood function

L(θ) = fθ(x1) · · · fθ(xn)

is the probability to observe (approximately) the given values, as a
function of θ.
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Maximum likelihood estimate

The likelihood function

L(θ) = fθ(x1) · · · fθ(xn)

is the probability to observe (approximately) the given values, as a
function of θ.

“The larger L(θ) is, the better the model fθ explains our
observations”.

The maximal likelihood estimate (MLE) θ̂ = θ̂(x) is the value that
maximizes the likelihood function.
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Binomial distributions

Example (Estimating the proportion of faulty products)

A production line produces components, of which the proportion p is
faulty, independent of each other.

Of 200 inspected items, 22 were found to be faulty. Estimate p

The number N of faulty components has the distribution

fp(x) = P(N = x |p) =

(
200

x

)
px(1− p)200−x .

For which value of p is

L(p) =

(
200

22

)
p22(1− p)178

maximized?
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Binomial distributions

Example (Estimating the proportion of faulty products (Continued))

L(p) =

(
200

22

)
p22(1− p)178

is maximized when l(p) = log L(p) is maximized.

`(p) = log

(
200

22

)
+ 22 log p + 178 log(1− p).
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Binomial distributions

Example (Estimating the proportion of faulty products (Continued))

`(p) = log

(
200

22

)
+ 22 log p + 178 log(1− p).

`′(p) =
22

p
− 178

1− p

is zero precisely when

22

p
=

178

1− p
⇐⇒ p =

22

200
.

`′′(x) < 0, so the critical point p̂ = 22
200 is indeed a maximum of `(p).
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Binomial distributions

Theorem

The maximum likelihood estimate for the unknown parameter p of a
Bin(n, p)-distribution, based on an observed point of data x is

p̂ =
x

n

Proof.

Repeat the previous computations with 200 7→ n and 22 7→ x .
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Uniform continuous distributions

Example

A data source generates independent random numbers from the
uniform distribution Unif[0, θ].

Observations (1.2, 4.5, 8.0). What is the ML estimate of θ?

The observations have density function

fθ(x) =

{
1
θ , x ∈ [0, θ]
0, otherwise

The likelihood function becomes

L(θ) = fθ(1.2)fθ(4.5)fθ(8.0) =

{
θ−3, θ ≥ max{1.2, 4.5, 8.0}
0, otherwise
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Uniform continuous distributions

Example

The likelihood function becomes

L(θ) = fθ(1.2)fθ(4.5)fθ(8.0) =

{
θ−3, θ ≥ max{1.2, 4.5, 8.0}
0, otherwise

Clearly, L is maximized at θ̂ = max{1.2, 4.5, 8.0} = 8.0.

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Sampling statistics
Maximum likelihood estimators
Interval estimates
Hypothesis testing
Covariance and correlation

Properties of ML estimators

For indicator variables, the ML estimator p̂ = X̄ is unbiased and
consistent.

For continuous uniform variables Unif[a, b], the ML estimators
â = minXi and b̂ = maxXi are biased, because we known for a fact
that

a ≤ â b̂ ≤ b,

and typically the inequalities are strict.
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Exponential distribution

Let x1, . . . xn be samples of an exponential random variable with
parameter λ.

Then
L(λ) =

∏
i

λe−λxi = λne−λ
∑

i xi .

Maximized when

0 = L′(λ) =

(
−λn

∑
i

xi − nλn−1

)
e−λ

∑
i xi ,

i.e. when
λ =

n∑
i xi

.

So the ML estimator for λ is λ̂ = n∑
i xi

.
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Normal distributions

The normal distribution density function

fµ,σ2(t) =
1√
2πσ

e−
(t−µ)2)

2σ2

is known apart from the parameters µ and σ2.

If we observe x1, . . . xn ∼ N (µ, σ2), the likelihood function is

L(µ, σ2) =
1

(2π)
n
2 σn

e−
∑

i (xi−µ)
2)

2σ2 .

As often, it is easier to work with

`(µ, σ2) = log L(µ, σ2) = −n

2
log(2π)− n log σ −

∑
i (xi − µ)2)

2σ2
.
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Normal distributions

To find the maximum likelihood estimators, we differentiate

`(µ, σ2) = −n

2
log(2π)− n log σ −

∑
i (xi − µ)2)

2σ2
.

with respect to µ and σ:

d

dµ
=

∑
i (xi − µ)

σ2

d`

dσ
=

n

σ
−
∑

i (xi − µ)2)

σ3

Setting both these derivatives to zero, we get the ML estimates

µ̂ =

∑
xi
n

= x̄ σ̂2 =
1

n

∑
i

(xi − µ̂)2 =
1

n

∑
i

(xi − x̄)2
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Normal distributions
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Normal distributions
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Interval estimates

So far, we have estimated unknown parameters θ by a number θ̂,
which is in some sense our “best guess” for what θ is.

We would like to improve this, by also measuring our confidence in
our estimate.

More precisely, we want to say “with confidence 95%, the parameter
θ is contained in the interval a ≤ θ ≤ b”.
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Interval estimates

What does this mean?

“With confidence 95%, the parameter θ is contained in the interval
a ≤ θ ≤ b”.

It does NOT mean that P(a ≤ θ ≤ b) = 95%, because the
statement “a ≤ θ ≤ b” does not contain any randomness.
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Interval estimates

What does this mean?

“With confidence 95%, the parameter θ is contained in the interval
a ≤ θ ≤ b”.

It means:

“The numbers a and b are computed from some random data
x1, . . . xn, in such a way that, with probability at least 95%, the

random interval [a, b] contains θ.”

The interval [a, b] is random, but θ is not!
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Interval estimates

Example (Week 5, Exploratory problem 1)

The mean score on a certain test is known to be 100.

Ten students take the test and get the scores 99, 102, 111, 105,
107, 100, 96, 141, 99, 92.

The mean score is thus

X̄ =

∑
Xi

10
= 105.2.

The sample variance is

S2 =

∑
(Xi − X̄ )2

9
≈ 187.96.
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Interval estimates

Example (Week 5, Exploratory problem 1, Continued)

The mean score on a certain test is known to be 100.

The sample variance is

S2 =

∑
(Xi − X̄ )2

9
≈ 187.96.

Can we compute an interval [a, b] such that we can say with 95%
confidence that the standard deviation σ satisfies a ≤ σ ≤ b?

Since we do not know the distribution function of the scores, the
only thing we can use is Chebyshev’s inequality:

P (|X − µ| ≥ rσ) ≤ 1

r2
.
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Interval estimates

Example (Week 5, Exploratory problem 1, Continued, Extracurricular)

Chebyshev’s inequality:

P (|X − µ| ≥ rσ) ≤ 1

r2
.

So the probability that some of our 10 observations is larger than
100 + rσ is at most 10 · 1

r2 .

In particular, the probability that some of our 10 observations is
larger than 100 + 15σ is at most

10 · 1

152
< 5%.
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Interval estimates

Example (Week 5, Exploratory problem 1, Continued, Extracurricular)

So the probability that some of our 10 observations is larger than
100 + 15σ is at most

10 · 1

152
< 5%.

So with confidence 95%, we can say that the highest score is smaller
than 100 + 15σ.

As the highest score was 141, we get an interval estimate

σ ≥ 41

15
≈ 2.73

with confidence 95%.

This kind of bounds, where we use no knowledge about the
distribution, is rather unusual, and only give very weak bounds.
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2)

We are now informed that the test scores

99, 102, 111, 105, 107, 100, 96, 141, 99, 92

were indeed normally distributed, N (100, σ).

When µ is known, the maximum likelihood estimate of σ2 is

σ̂2 =

∑
(xi − µ)2

n
=

∑
(xi − 100)2

10

=
12 + 22 + 112 + 52 + 72 + 02 + 42 + 412 + 12 + 82

10
= 196.2

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Sampling statistics
Maximum likelihood estimators
Interval estimates
Hypothesis testing
Covariance and correlation

Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2, Continued)

Test scores

99, 102, 111, 105, 107, 100, 96, 141, 99, 92

When µ = 100 is known, the maximum likelihood estimate of σ2 is

σ̂2 =

∑
(xi − µ)2

n
= 196.2

This is different from the maximum likelihood estimate of σ2 when
µ is unknown, which is

σ̂2 =

∑
(xi − x̄)2

n
=

n − 1

n
S2 ≈ 169.2
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Interval estimates in normal distributions

If a parmeter θ = f (η) is a function of another parameter η, then
the maximum likelihood estimators are also related by θ̂ = f (η̂)

In particular, the maximim likelihood estimator for the standard

deviation is σ̂ =
√
σ̂2.

Example (Week 5, Exploratory problem 2, Continued)

Test scores

99, 102, 111, 105, 107, 100, 96, 141, 99, 92

When µ = 100 is known, the maximum likelihood estimate of σ is

σ̂ =

√∑
(xi − µ)2

n
=
√

196.2 ≈ 14.0.
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Notation for interval estimates

We are interested in “extremal values” of probability distributions,
values x such that P(X > x) = α.

Compact notation: zα ∈ R is the value such that P(Z > zα) = α if
Z ∼ N (0, 1).

In other words,
Φ(zα) = 1− α.
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Notation for interval estimates

If we care about “two-sided intervals with confidence level α”, we
must study both the points zα/2 and z1−α/2 = −zα/2.
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Notation for interval estimates

Compact notation: χ2
α,n ∈ R is the value such that

P(X > χ2
α,n) = α if X ∼ χ2

n.
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Notation for interval estimates

Compact notation: tα,n ∈ R is the value such that P(T > tα,n) = α
if T ∼ tn.
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2′)

We are now informed that the test scores

99, 102, 111, 105, 107, 100, 96, 141, 99, 92

were indeed normally distributed, N (100, σ).

What is a 95% confidence interval for the standard deviation σ?

We computed the sample variance S2 ≈ 187.96.

Recall that, for normal samples, (n−1)S2

σ2 ∼ χ2
n−1.
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2′)

Recall that, for normal samples, (n−1)S2

σ2 ∼ χ2
n−1.

So

95% = P

(
χ2
0.975,n−1 <

(n − 1)S2

σ2
< χ2

0.025,n−1

)
= P

(
(n − 1)S2

χ2
0.025,n−1

< σ2 <
(n − 1)S2

χ2
0.975,n−1

)
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Table of Chi-squared values

https://www.medcalc.org/manual/chi-square-table.php
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2′)

We computed the sample variance S2 ≈ 187.96, and have n = 10.

So a 95% confidence interval for σ2 is[
(n − 1) · S2

χ2
0.025,n−1

,
(n − 1) · S2

χ2
0.975,9

]
=

[
9 · 187.96

19.023
,

9 · 187.96

2.700

]
≈ [88.9, 626.5]

This is called a two-sided confidence interval, as we are bounding σ2

both from above and below.

A two-sided 95% confidence interval for σ is[√
88.9,

√
626.5

]
=
[√

88.9,
√

626.5
]
≈ [9.4, 25.0]
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2′)

We could also be interested in one-sided intervals, where we bound
σ only from below.

We also have

95% = P

(
0 <

(n − 1)S2

σ2
< χ2

0.05,n

)
= P

(
(n − 1)S2

χ2
0.05,n−1

< σ2

)

So a one-sided 95% confidence interval for σ2 is[
(n − 1) · S2

χ2
0.05,n−1

,∞

]
=

[
9 · 187.96

16.919
,∞
]
≈ [100,∞]
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2′)

An upper 95% confidence interval for σ is[√
100,∞

]
= [10,∞],

if the data was known to be normal with expected value 100.

This is much stronger than the 95% confidence interval

[2.73,∞] ,

that we got without the assumption of normal data.
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2′)

We could also be interested in one-sided intervals, where we bound
σ only from above.

We also have

95% = P

(
χ2
0.95,n <

(n − 1)S2

σ2

)
= P

(
σ2 <

(n − 1)S2

χ2
0.95,n−1

)

So a one-sided 95% confidence interval for σ2 is[
0,

(n − 1) · S2

χ2
0.95,n−1

]
=

[
0,

9 · 187.96

3.325
,∞
]
≈ [0, 509]

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Sampling statistics
Maximum likelihood estimators
Interval estimates
Hypothesis testing
Covariance and correlation

Interval estimates in normal distributions

Example (Week 5, Exploratory problem 3)

Authorities think the test results

99, 102, 111, 105, 107, 100, 96, 141, 99, 92

are suspiciously good, and are getting suspicious, as to whether the
mean score (i.e. expected value) of the test is really 100.

How likely is it (assuming µ = 100) to see results that are as least as
good as the ones observed?
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 3)

Test results

99, 102, 111, 105, 107, 100, 96, 141, 99, 92

The assumption µ = 100 is not enough to compute the probability
of a certain mean.

However, assuming normality, we know that

X̄ − µ
s/
√
n
∼ tn−1.
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 3, Continued)

So

1− α = P

(
−tα/2,n−1 <

X̄ − µ
s/
√
n
< tα/2,n−1

)
= P

(
X̄ −

tα/2,n−1S√
n

< µ < X̄ −
tα/2,n−1S√

n

)
.

So a 95% confidence interval for µ is[
X̄ − t0.025,n−1S√

n
, X̄ +

t0.025,n−1S√
n

]
≈

[
105.2− t0.025,9

√
187.96√

10
, 105.2 +

t0.025,9
√

187.96√
10

]
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Interval estimates in normal distributions
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 3, Continued)

So a 95% confidence interval for µ is[
105.2− t0.025,9

√
187.96√

10
, 105.2 +

t0.025,9
√

187.96√
10

]

≈

[
105.2− 2.262

√
187.96√

10
, 105.2 +

2.262
√

187.96√
10

]
≈ [95.4, 115.0] .

This interval contains the claimed value µ = 100, so we should not
doubt this on the 95% confidence level.
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Interval estimates in normal distributions: Summary

Approximate µ by X̄ , which has (scaled) normal or Student t
distribution, depending on whether σ is known or approximated.

Approximate σ by S , which is (scaled) χ2
n−1-distributed.
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Paul the Octupus
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Null hypothesis H0
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p-value of a test statistic
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Roadmap to a statistical test.

Choose a null hypothesis H0 and a counterhypothesis H1.

H0: “the suspect is not guilty”.
H0: “the medicine is not better than placebo”
H0: “the octopus can not predict the future”

Choose a test statistic T .

Compute the distribution function of T , assuming that H0 is true.

Check if the observations are exceptional or not, according to this
distribution.

Not exceptional data → accept null hypothesis.
Exceptional data → reject null hypothesis, accept counterhypothesis.
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Roadmap to a statistical test.

Check if the observations are exceptional or not, according to the
distribution of T assuming H0.

Concretely, the p-value is

p = P(observations are at least as exceptional as this|H0).

The test has predetermined significance level α (typically
0.05, 0.01, 0.005).

The null hypothesis is:

Accepted if p ≥ α.
Rejected if p < α.
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Error types

The significance level α indicates the probability of rejection error
(before seeing the data).

The significance level says nothing about the probability of an
acceptance error.
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Choosing the right significance level
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Choosing the right significance level
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Choosing the right significance level
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Choosing the right significance level

Ragnar Freij-Hollanti MS-A0503



Thinking statistically
Probability theory

Statistics

Sampling statistics
Maximum likelihood estimators
Interval estimates
Hypothesis testing
Covariance and correlation

Choosing the right significance level

If many experiments are conducted, then one can expect some of
them to give an “exceptional” outcome.

For a result to be worth reporting, the significance level should be
such that the probability of any rejection error in the test is ≤ α.

The outcomes about jelly beans can at best be an indicator that
green jelly beans might be interesting to study further with a
stronger test.
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Testing the mean value

Example (Coffee machine)
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