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Schedule

@ Lectures:
Wednesdays 8-10,
and
Friday 10-12, C

o Exercise sessions

C

Group  Teacher Session 1 | Session 2
1 Anton Vavilov Mo 8 Fr 8

2 Razane Tajeddine Mo 12 We 14
3 Henri Simola Mo 12 Fr 12
4 Antti Suominen Tu 8 Fr 8

5 Jan Harkonen Tu 12 Th 12
6 Tommi Anttila Tu 14 Th 12
7 Janne Holopainen We 10 Fr 12
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Grading

o Final exam (80%): Written exam Wednesday 20.2., 9-12.

o Homework (20%): Presented orally during the second exercise
session every week. Problems presented on course homepage the
previous friday.

@ In formulas: If you solve x; € [0, 3] problems during week
i€{2,3,4,5,6}, and you get y € [0, 48] points on the final exam,
then your total score is

6
y+ Z;X; —,min xi € [0,60].
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Literature

@ Sheldon Ross,
Introduction to Probability and Statistics for Engineers and Scientists
https://www.sciencedirect.com/book/9780123948113/
introduction-to-probability-and-statistics—-for-
engineers-and-scientists
(free on Aalto network)

o Explorative exercises Updated on course homepage every friday.

o Slides Updated on course homepage after every lecture.
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Course content

@ Thinking statistically (week 1)

o Collecting data
o Representing data

o Probability theory (week 1-4)
o Random events
e Random variables
o Probability distributions
@ Statistics (week 4-6)
Sampling
o Estimating
o Testing hypotheses
o Linear regression
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Course content

o Probability is a field of mathematics, which investigates the
behaviour of mathematically defined random phenomena.

@ Statistics attempts to describe, model and interpret the behaviour
of observed random phenomena.

@ In this course, we will learn probability in order to use it as a
modelling device in statistics.

Ragnar Freij-Hollanti MS-A0503



Learning outcomes

After passing the course the student knows:

o
2]

© 0060

the basic concepts and rules of probability

the basic properties of one- and two-dimensional discrete and
continuous probability distributions

common one- and two-dimensional discrete and continuous
probability distributions and knows how to apply them to simple
random phenomena

the basic properties of the bivariate normal distribution
the basic methods for collecting and describing statistical data

how to apply basic methods of estimation and testing in simple
problems of statistical inference

the basic concepts of statistical dependence, correlation and linear
regression.
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Thinking statistically Collecting data

Representing data

What is statistics?

@ Statistics is a collection of tools to study uncertain data.

@ The observed data itself is not statistics. Statistics is the conclusions
we can draw from our observations, and the techniques to draw
these conclusions.

@ Applicable whenever there is quantifiable data available.
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Thinking statistically Collecting data

Representing data

Terminology

Population is the set that contains all possible objects of a
statistical experiment.

(]

Unit is an element of population.

Sample is a subset of the population.

Observation is an observed value of a variable attached to each
unit in the sample.

Statistical data is the collection of all observations.
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Thinking statistically

Collecting data
Representing data

Terminology

Suppose we want to investigate the height of Finns in general, and do so
by measuring 2000 randomly selected Finns.

Population is the set of all Finns (some 5 million or so).

°
@ Unit is any Finn (for example Teuvo Hakkarainen)
@ Sample is some collection of 2000 random Finns.
°

Observation is the height of any of the Finns we measured (like
179cm).

Statistical data consists of all the heights we measured (a list of
2000 numbers).
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Thinking statistically Collecting data

Representing data

Why statistics?

@ We want to learn something about an entire population, but can not
afford to collect (or store) all the data we would want.

@ Want to draw as strong conclusions as we can, from limited data.

@ Perhaps counterintuitively, to get a useful sample, we want to know
as little as possible about the sample, i.e. the sample should be
selected randomly.
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Thinking statistically Collecting data

Representing data

Biased samples

Example

By polling a sample of the voting population, we are trying to predict the
outcome of the next general election. Which of the following methods of
selection is likely to yield a useful sample?

@ Poll all people of voting age currently sitting in the university library
@ Poll the first 1000 names from the voter registation list.

© Poll 1000 names selected randomly from the voter registation list
(with any voter having the same probability of being chosen).

@ Have a major radio station ask its listeners to call in and name the
party they plan to vote for.
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Thinking statistically Collecting data

Representing data

Biased samples

Example (Continued)

@ Poll all people of voting age currently sitting in the university library
- NOT GOOD.

@ There is good reason to believe that studying at a university and
sitting in a library correlates with political sympathies, so our sample
is not representative.

@ We call this a biased sample.

@ Worse still, even though we expect that university studies correlate
with political sympathies, we do not know how they correlate.

@ So we can not even compensate for the bias.
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Thinking statistically Collecting data

Representing data

Biased samples

Example (Continued)

@ Have a major radio station ask its listeners to call in and name the
party they plan to vote for. - ALSO NOT GOOD.

@ Even if the radio listeners might be representative for the
population, the listeners that choose to call in might not be.

@ Possible sources of bias:
o Calling in correlates to having lots of spare time, which might
correlate with political sympathies.
o Calling in correlates to having strong opinions, which might correlate
with what the opinions are.
o A political party could encourage their sympathisers to call in,
thereby actively injecting a bias.
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Thinking statistically Collecting data

Representing data

Biased samples

Example (Continued)
@ Poll the first 1000 names from the voter registation list. -
PROBABLY LESS BAD.
@ We would only question people whose last names are Aalto,
Aaltonen, Aaron, etc.
@ We do not know if this correlates with political sympaties, but it is
still a bias.
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Thinking statistically Collecting data

Representing data

Biased samples

Example (Continued)

Poll 1000 random names from the voter registation list. - GOOD.
No systematic bias.

There can still be a bias “by accident”, but since we choose
randomly, we can compute/approximate the probability that this
bias is significant.

Only when the sample is random with some known probability
distribution, can we use (classical) statistical techniques.

Moral: a statistical conclusion is only meaningful if we know how the
data was collected.
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Thinking statistically

Collecting data
Representing data

Biased samples

@ Even if we make an effort to select “typical” samples, we get worse
data than if we choose randomly.

e Example: let's select the 1000 most “typical” Finns (middle age,
medium income, medium height, medium weight) to be interviewed.

@ Assume a retailer wants to conduct a poll about whether Finns find
it easy or difficult to buy clothes that fit.

@ The fact that the interviewed individuals are “typical” probably
means that they are the most likely to answer “yes” than people in
general.

@ Moral: Don’t try to be smart, because Randomness will always be
smarter.
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Thinking statistically Collecting data

Representing data

What is “typical’ anyway?

@ Assume we have a data set S = {x1,...,x,} of n numerical
observations.

@ Three different notions: mean, median and mode
® Mean is the “average” value: x = Mt

@ Median is the “center” value: order the sample such that
x1 <xp < < X

o If n =2k — 1 is odd, then the median is xx.
o If n =2k is even, then the median is the average of xx and xyi1.

o Mode is the most frequent value. (might not be unique.)
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Thinking statistically

Collecting data
Representing data

What is “typical’ anyway?

°eS= {_8)071715272’2}
® Mean==8+0HL1124242 — 0 Median=1, Mode=2

Example
e S= {_163 17 172733435}
o Mean= —10HHI2E3HAES — 0 Median=2, Mode=1

Example
°S=1{-8-1,-1,1,2,3,4}
o Mean= =8=1=1tLt2E344 — 0 Median=1, Mode=-1
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Thinking statistically Collecting data

Representing data

Mean (or average) value

@ The mean is useful when outliers play a role.

@ Require that the numerical values can be added and subtracted
meaningfully.

@ Example: The average winnings of a lottery ticket is a meaningful
number (usually about half the price of the ticket).

@ The median and mode winnings are both rather meaningless
numbers (namely 0).
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Thinking statistically Collecting data

Representing data

Mean (or average) value

o If x; = a+ by;, then X = a + by.
@ The average of {100,400, —200,1000} can be computed as
100 - 1+4—2410
sRoseR,
@ The average of {127,99,82,104} can be computed as
100_|_ 27—1—-18+4
=R
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Thinking statistically Collecting data

Representing data

Mean (or average) value

o If a sample is composed of several smaller samples, then the mean of
the whole sample can be computed as a weighted average of the
means of the smaller samples.

@ Let the sample x consist of r parts xi, X, ..., x,, where x; consists
of n; unitsand ny +---n, = N.

o If x; denotes the mean of the i:th part, then

- n _ + + ny _
X=—x1+ 4+ —X.
Nt N
@ This is not the same as the mean of the averages, because larger

samples must be given larger weight.
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Thinking statistically Collecting data

Representing data

Median value

@ The median is useful when we want to ignore outliers.

@ If we want to understand the typical standard of living in a
developing country, it is useful to compare the median income to the
poverty line, but not the mean income.

@ Does not require that data can be meaningfully added and
subtracted - only that the data be ordered.
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Thinking statistically

Collecting data
Representing data

@ The mode is useful even for qualitative data.

o For example, the mode of the data set {bus, car, bicycle, pedestrian,
pedestrian, car, pedestrian} is pedestrian, but the mean and median
of this data set is meaningless.

@ Requires that the observations be grouped into not too many sets of
feasible outcomes.

o If we measure the height of 1000 Finns with the precision of 1mm,
then the mode will depend very much on the randomness in the
sample.

o If the measurements are with the precision of 5cm, then the mode
might be for example (170, 175], which is useful knowledge.
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Thinking statistically Collecting data

Representing data

Sample variance

(]

The sample variance s?(x) of a sample x = {x1,..., x,} measures
how “spread out” the observations are.
We define
1 n
2 Y
s°(x) = Xi — X
()= 5 > 06— %)

This definition will make much more sense when we start studying
probability distributions.

We define the sample standard deviation s(x) = \/s2(x).

The standard deviation is measured in the same unit as the
observations themselves.
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Thinking statistically Collecting data
Represeﬁting data

Data frames

@ A data frame is a table of observations, where rows correspond to
different units, and columns correspond to different variables being

measured.
Obs. | X1 | Xa |- Xom
1 Xin | Xz | o0 | Xum
2 Xou | Xop | oo+ | Xum
3 X].l X3.2 T Xl.m
n Xog | Xop | - | Xom

Table: Data frame with n observations and m variables.

o Different columns can have different type - for example qualitative
and quantitative data can be contained in the same data frame.
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Thinking statistically Collecting data

Representing data

Qualitative variable

Values are dividend into groups, which are often numbered by
integers.

Example: How do you usually travel to your workplace?

e 1 ="Bus"

s 2 = "Bike"

e 3 = "Other"
Remark

The average of a numbered qualitative variable usually has no
sensible interpretation.
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Thinking statistically Collecting data

Representing data

Qualitative variable

Obs. | Way to travel
1 Bus
2
3
4
5

Other
Other
Bus
Bike

Table: Data frame with 5 observations and qualitative variable "Way to
travel”.

Average of numbered variable would be
1
5

but this does not make sense, because average of "bus” and
" other” would be "bike".
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Thinking statistically Collecting data

Representing data

Quantitative variable

Values of a quantitative variable are real numbers.

We can convert any quantitative variable into qualitative variable
by classifying the data.

Example

Working time (min/day) of a randomly selected Finn is
quantitative variable with values on [0, 1440].
This can be divided into classes, e.g.

o Ly = (0,60]
o Ly = (60,120]
L]

o Ly = (1380, 1440]
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Thinking statistically Collecting data

Representing data

Quantitative variable

Obs. | Time (min/day) | Group
1 516 L9
2 513 L9
3 497 L9
4 477 L8
5 423 L8

Table: Data frame with 5 observations and quantitative variable time.
The last column shows the classified values.

Average of these 5 observations is

1
3(516 + 513 + 497 + 477 + 423) = 485.2,

which is approximately 8 hours and 5 minutes.
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Thinking statistically Collecting data

Representing data

Histograms

Example. The finnish age structure 31.12.2015.
n =5 487 308 data points

Makes no sense to draw every single point
Instead we will divide the points into classes

Age (v) Count

0-14 896 023
15-24 640 387
25-44 1 363 155
4564 1 464 640
65—74 642 428

75— 480 675
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Thinking statistically Collecting data

Representing data

Histograms

Histogram is usually drawn as:
¢ One bar per class.
e Bar width = the class width (unit = year)

* Bar height = the proportion of points in the class divided by
the bar width (unit = % per year)

Example:

e 1st bar contains the finnish with age 0-14 years
¢ 1st bar width = 15 years

¢ Data points in class 1: 896023 and proportion
896023/5487308 =~ 16.3%

s Bar height = 16.3/15 ~ 1.09 (unit = % per year).
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Thinking statistically

Collecting data
Representing data

Histograms

Example. The finnish age structure 31.12.2015
[Source: Tilastokeskus]

@ _
=
o
> _ Ika (v) Lukum3ara
5 ® 0-14 896 023
E < 15-24 640 337
é o | 25-44 1363 155
45-64 1464 640
3 6574 642 428
" 75— 480 675
= 16.3% [11.7%4 24.8% 26.7% 1.7%, 8.8%
o
T T T T T T 1
0 15 25 45 65 75 110
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Thinking statistically

Collecting data
Representing data

2-dimensional samples

@ Often, we want to study more than one variable with the same
sample.

Table: 1000 observation pairs from Pearson’s father-son height data.
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Thinking statistically Collecting data

Representing data

2-dimensional samples

e Studying the joint distribution of (X, Y) =(height of father, height
of son) gives more information than studying X and Y separately.

Height
<
& o
° K
¢ o
. g o R o
21 o 3 %° ) o
o @ Do og8 °
%o So% b o
2
%

R

o

&

o
o

& B

L)
)
a

=

o

Father
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Thinking statistically

Collecting data
Representing data

2-dimensional samples

@ We can also divide two-dimensional data into classes, where two
units (father-son pairs) are in the same class if both X and Y agree
on the two pairs (up to a desired precision, here 1cm).

@ Then we get a 2-dimensional histogram.
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Random events
Conditional probability
Probability theory Random variables
Expectation and variance
The normal distribution

What is a probability?

@ What does it mean that “the probability of rain tomorrow is 30%"?

o Frequency interpretation: “Of all days when all the known
circumstances are the same as today, in the long run 30% will be
followed by a rainy day.”

@ Subjective interpretation: “| think it would be fair, that you got
30 tokens from me if it rains tomorrow, and | get 70 tokens from
you if it does not.”

@ These interpretations are similar but different. Their differences do
not, however, affect mathematics of probabilities.
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Random events
Conditional probability
Probability theory Random variables
Expectation and variance
The normal distribution

Terminology

Sample space: The set S of all things that can happen.
Outcome: An element s € S.

Event: A subset AC S.

A occursif s € S.

Example (Rolling a die)
@ Sample space {1,2,3,4,5,6}.
@ Example of events:

o “Outcome is even”" = {2,4,6}
o “Outcome is > 3"= {4,5,6}
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Random events
Conditional probability
Probability theory

The normal dlstnhlltu)n

Example (Rolling two dice)

¢ Realization (i, /), where / and j are
outcomes of 1. and 2. roll respectively.
e Sample space is

HE

Events are all subsets of 5, e.g.,
o A = "outcomes are the same”
= {(1,1),(2,2).(3.3), (4, 4). (5.5), (6.6)}.
e B = "outcome of the 1. roll is 1"

={(1,1).(1,2),(1,3),(1,4),(1,5), (1. 6)}.
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Random events
Conditional probability
Probability theory Random variables
Expectation and variance
The normal distribution

Example (Rainfall in Espoo tomorrow

e Realizations are real numbers x > 0. ‘

e Sample space S ={x e R:x > 0}. 4 d
44

Events are e.g.

* A ="rainfall tomorrow is more than 10 mm” = (10, cc)

¢ B ="no rain tomorrow” = {0}
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Random events
Conditional probability
Probability theory Random variables
Expectation and variance
The normal distribution

Set operations

@ Events can be combined via ordinary set theoretic operations:
e “A and B both occur’: AN B (or in Ross: AB)
“A or B occurs” AUB
o “A does not occur” A (or sometimes A)
@ Any sample space has two particular events: the certain event S and
the impossible event ()
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Random events

Conditional probability
Probability theory Random variables

Expectation and variance

The normal distribution

Intersection of events

Event "A and B occur” includes those
realizations that belong to sets A and B:

ANB={seS:seAandsc B}

Example (Dice)
e A ="Outcomeis > 3" = {4,5,6}
e B ="Outcome is even” = {2, 4,6}
e AN B ="Outcome is > 3 and even" = {4,6}

Ragnar Freij-Hollanti MS-A0503



Random events
Conditional probability
Probability theory Random variables

The normal |I|~tr|b||t|Dn

Union of events

Event " A or B occurs” includes those
realizations that belong to set A or B:

AUB={seS:scAorsecB}.

Example (Dice)
e A ="Outcome is > 3" = {4,5,6}

e B ="Outcome is even" = {2,4,6}
e AUB ="Outcome is > 3 or even” = {2,4,5,6}
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Random events
Conditional probability
Probability theory Random variable
Expectation and variance
The normal distribution

Complement of events

Event " A does not occur’” includes
those realizations that do not belong to
set A:

Ac={seS:s¢gA}.

Example (Dice)

¢ A ="Outcome is > 3" = {4,5,6}
e A€ ="Outcome is < 3" ={1,2,3}
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Random events

Conditional probability

Probability theory Random variables
Expectation and variance
The normal distribution

Mutually exclusive events

@ Two events A and B are mutually exclusive if AN B = ().

@ In particular, A and A€ are mutually exclusive for any A.

o A set of events Ay,. .., A, are mutually exclusive if A;NA; =0 for
all i # .

Example (Rolling a die)

A ="Outcome is even' = {2,4,6}
B; ="Outcome is i"= {i}

Then the events By, ..., Bg are mutually exclusive.
A and Bj are mutually exclusive.

A and B, are not mutually exclusive.
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Random events
Conditional probability
Probability theory Random variables
Expectation and variance
The normal distribution

Set operations

Interpretation Set theory expression

Certain event S
Impossible event 0
A occurs A

A and B occur ANB

A or B occur AUB
A does not occur A€

B occurs but A does not B\ A

A and B are mutually exclusive ANB=10
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Random events

Conditional probability
Probability theory Random varial

Expectation a

The normal distribution

Set operations

o Commutative laws:
e ANB=BnNA
e AUB=BUA
@ Associative laws:
e (ANB)NC=ANn(BNC)
e (AUB)UC=AU(BUC)
@ Distributive law:
o (AUB)NC=(ANC)Uu(BNC)
e (ANB)UC=(AUC)N(BUC)
@ Proof via Venn diagrams (on blackboard).
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Random events
Conditional probability
Probability theory Random variables
Expectation and variance
The normal distribution

Axioms of probability

@ Probabilities is an assignment of numbers between 0 and 1 to
events, that describe how likely the events are.

@ The certain event S certainly occurs, so should have probability 1.

o If A and B are mutually exclusive, then the number of times that
AU B occur is the times that A occur plus the times that B occur.

@ Thus, probabilities should be “additive": P(AU B) = P(A) + P(B)
if A and B are mutually exclusive.
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Random events

Conditional probability

Probability theory Random variables
Expectation and variance
The normal distribution

Axioms of probability

Let S be a sample space, and E a set of events on S. Then a function
P : E — R is called a probability measure if

0 < P(A) <1 for all events A.
P(S)=1

If A1, Ay, ... are mutually exclusive, then

P(ALUAU---) = P(A1) + P(A2) +--- .

It follows that P(f)) = 0.
There can also be other sets that have probability 0.
It aslo follows that, if A C B, then P(A) < P(B).
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Random events
al

Probability theory
Expectation and variance
The normal distribution

General rules of probability

e If Alis any event, then AUA =S and ANA° =)
e So 1= P(S) = P(A) + P(A°), or in other words

P(AS) =1 — P(A).

The probability of snow tomorrow is 20% = 0.2. Thus the probability
that it does not snow tomorrow is 1 — 0.2 = 0.8 = 80%.
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Probability theory

General rules of probability

e By additivity of mutually exclusive events:
P(E) = P(I)+ P(II)

P(F) = P(Il)+ P(Ill)

P(EUF) = P(I)+ P(Il)+ P(IIT)
P(ENF)=P(Il)

@ So for any events E and F,

P(EUF)=P(E)+ P(F)— P(ENF).

o This is the general sum rule for probabilities.
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Random events
Conditional probability
Probability theory Random variables
Expectation and variance
The normal distribution

General rules of probability

Example

According to a survey, 28% of a population smokes cigarettes, and 6%
smoke other tobacco products. Moreover, 3% smoke both cigarettes as
well as other tobacco products. What fraction of the population does not
smoke tobacco at all?

@ Let E be the event that a random person smokes tobacco, and F
the event that he/she smokes some other tobacco product.

e P(E)=0.28, P(F)=10.06, P(EN F)=0.03.
@ Then the fraction of non-smokers is the probability that a random
person does not smoke, which is

P((EUF)?)=1—P(EUF)=1—P(E)— P(F)+ P(ENF)
—1-0.28—0.06 + 0.03
— 0.69 = 69%.
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Probability theory
Expectation a
The normal distribution

Uniform probability measures

@ If the sample space is finite, then it is sometimes reasonable to
assume that every outcome is equally likely.

e Then P({s}) = % for every s € S, where #S denotes the
cardinality of (number of elements in) the sample space.

@ This is called the uniform probability measure on S.

o If we flip a fair coin, then P(heads) = P(tails) = 1.

o If we roll a fair 6-sided die, then
P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = %.

o It follows that P(E) = % for any event E, if P is uniform.
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Random events
Conditional probability
Probability theory Random variables
Expectation and variance
The normal distribution

Product rule

o If the sample space S is a cartesian product of other spaces
5251 X52 X "-5,-,,

then #S = #5S; - #5, -+ - #S,.

@ Concretely, if an experiment consists of n different steps, and in each
step s; different outcomes are possible (regardless of the outcomes of
the previous steps), then the total number of possible outcomes is

S=51--5,.
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Random events
Conditional probability
Probability theory Random variables
Expectation and variance
The normal distribution

Product rule

@ Three fair 6-sided dice are rolled. What is the probability that at
least one of them shows a 67

o Easier if we “order” the experiment, so we roll one die at a time.

@ Easier to compute the probability of the complementary event, i.e.
E = {all dice show a number 1,...5}

o #E =53 and #S = 65.
@ So the probability that at least one die shows a six is
#E 53 125 101
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Random events

Conditional probability

Probability theory Random variables
Expectation and variance
The normal distribution

Product rule

@ Two balls are drawn uniformly at random from a bowl with 6 white
balls and 5 black balls. What is the probability that exactly one
black and one white ball is drawn?

o Easier to think if we order the experiment.

o Let E = {first ball white, second black} and
F = {first ball black, second white}.

@ #5=11-10, #E=6-5, #F =5-6
@ The probability that exactly one ball of each colour is drawn is
#E #F _ 30 6
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Counting linear orders

In how many ways can we order the letters a,b,c in a linear order?
abc, achb, bac, bca, cab, cba.

The first letter could be chosen in 3 ways.

Regardless of the first letter, the second letter can be chosen in 2
ways, and after this, the third letter can be chosen in only one way.

So the number of orders is3:2-1=6
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Counting linear orders

@ In how many ways can we order n objects aj, az,--- ,a, in a linear
order?

(]

The first object could be chosen in n ways.

Regardless of the first object, the second object can be chosen in
(n— 1) ways, and after this, the third letter can be chosen in (n —2)
ways, and so on.

So the number of ordersisn! =n-(n—1)-(n—2)---2-1.

This number is denoted n!, read “n factorial”

By convention, 0! = 1 (“the empty product”)
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Counting linear orders

@ The balls from our favourite bowl (which contained 6 white balls
and 5 black balls) are picked up in a uniformly random order.

@ What is the probability that all white balls are drawn before any of
the black balls?
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Counting linear orders

@ The balls from our favourite bowl (which contained 6 white balls
and 5 black balls) are picked up in a uniformly random order.

@ What is the probability that all white balls are drawn before any of
the black balls?

@ Let E be the set of orders where all white balls come before all black
balls.

@ Then #E = 6! - 5!, because such an order is obtained by first
ordering the 6 white balls and then the 5 black balls.

@ The corresponding probability is

#E _ 65! 54321 1
#S 111 11-10-9-8-7 462’
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Counting combinations

@ In how many ways can we select a committee of 5 members from a
party of 117

@ Call this number (151)

o If we also order the committee members, and order the
non-members, we would get 11! possible orders total. (First
committe member can be chosen in 11 ways, second committee
member i 10 ways, ... , last committee member in 7 ways, first
non-member in 6 ways, second non-member in 5 ways and so on).

@ Every committee can be ordered in 5! ways, and the non-members
can be ordered in 6! ways.

o We get (151) -5l.6! =11!, so

11 11!
= = 462.
(5) 6151 1°
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Counting combinations

@ We can generalize this: How many “combinations” (subsets) of k
elements are there in a set B of n elements?

e This number is denoted (}), and read “n choose k.

@ The number of ways to select a set A with k elements and then
order both Aand B\ A'is (}) - k! (n— k)!, but it is also n! by the
same argument as on the last slide.

(&)= ooy

o We get
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Counting combinations

@ There are (Z) ways to choose k balls from a box containing n balls.

Ljé ()
Il
fed ® -l &
(% ("

) )

@ Refining according to whether or not our favourite red ball is chosen:

-G+
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Counting combinations

o Clearly, (g) = (2) =1.
@ So the binomial coefficients (}) are the entries in the recursively
defined Pascal’s triangle:
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Complementary events

@ It is often more convenient to compute the probability that
something never happens, or that it always happens, than the
probability that it happens exactly (or at least) 19 times.?

Example

@ The probability that no two of our of four dice show the same

6543 _ 5

number is >%7 = 15-

@ The probability that Alice, Bob, Camilla, ..., Yngwie, Zach all have
different birthdays (if they are all born on a non-leap year) is

365 - 364 - - - 340

3652 =~ 0.40.

119 is an arbitrary integer.
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Birthday paradox

@ The probability that Alice, Bob, Camilla, ..., Yngwie, Zach all have
different birthdays (if they are all born on a non-leap year) is

365 - 364 - - - 340

3652 ~ 0.40.

@ This is known as the “birthday paradox”.

@ More generally, assume we observe a random variable that can take
N different values r times.

o If r > /In(4)N ~ 1.18V/N, then with probability > 1 (quickly
increasing as r grows), two of the observations will have the same
value.
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Conditional probability

@ P(A) is the fraction of the total probability that lies in the left
column:

P(A) = P(ANB) + P(AN B)
- P(ANB) + P(AN B)
 P(ANB)+ P(ANB)+ P(ANB) + P(AN B)
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Conditional probability

o If we know that B occured, then only the “probabilities” in the
upper row remain, so we get a new conditional probability of A:
P(ANB P(ANB
P(A|B) = (AnB)  _ PANB)
P(ANnB)+ P(ANB) P(B)

e If P(B) =0, then P(A|B) is not defined.
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Conditional probability

83 of 200 members of the parliament are women.
SDP has 35 members in the parliament, 22 of which are women.
e Randomly chosen member of the parliament is a member of
SDP with probability

35
P("SDP") = o5 = 0.175.

e What is the probability that a randomly chosen female
member of the parliament is a member of SDP?

P("SDP" and "female")
P(“female”)
~22/200
= 83/200

P(“SDP"|“female”) =

~ 0.265.
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General product rule

@ The formula P(A|B) = szgf) can be used to compute probabilities
of joint events:

P(AN B) = P(AIB)P(B)

@ Interpretation: To decide how likely AN B is, first decide how likely
B is, and multiply this with how likely A would be if we knew that B
occured.
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General product rule

@ We can do the same to compute the joint probability of more than
two events:

P(Alﬂ- . -ﬂAk) = P(Al)P(Ag‘Al)P(A3‘A1ﬂA2) cee P(Ak|Alﬂ- . -ﬂAkfl)

@ What is the probability that three cards drawn from the same deck
(without replacement) are all spades?

@ Let A; be the event “card i is a spade”.
@ We are interested in A = A; N Ay N As.
°

B 120 003
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Statistical independence

@ Events A and B are independent if
P(ANB) = P(A)P(B).
@ Collection of events {A; : i € I} is independent if
P(Ain---NA,)=P(A,) - P(A),)

for each subcollection {i,...,ix} C /.

@ Consecutive coin flips.

@ Sampling with replacement (pick coupons from an urn such that the
coupon is returned and mixed in before the next pick.)

Ragnar Freij-Hollanti MS-A0503



Probability theory

The normal I| tnhlltlun

Statistical independence

@ Events A and B are independent if
P(ANB) = P(A)P(B).

o If P(A) # 0 and P(B) # 0, then this is equivalent to
P(A|B) = P(A) and P(BJA) = P(B)

o Interpretation: Whether or not B occurred does not affect the
likelihood that A occurs.
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Statistical independence

Let us pick a card randomly.
e A ="card is spade’ Q
e B ="card is ace”

Are A and B dependent or independent?

Let's check if P(AN B) = P(A) P(B).
e PA=B=1
* P(B) =g = 15.
e P(ANB) = P("card is ace of spades”) = %
Since P(AN B) = P(A) P(B), we see that A and B are
independent.
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Formula of total probability

@ A collection of events By, ..., By is a decomposition of the sample
space S if they are mutually exclusive and By U---U By = S.

o If By,..., By is a decomposition of S, and all have positive
probability, then we can compute a probability P(A) as

k
P(A) = ZP AOB)_ZP )P(A|B).
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Formula of total probability

@ Suppose we know that 75% of the female engineering students and
15% of male engineering students have long hair. We also know that
approximately 27% of all engineering students are women.

What is the probability that a random student is long-haired?
H = {"Student has long hair" }.

N = {“Student is female” }.

M = {"Student is male" }.

N and M decompose the sample space, so the formula of total
probability yields

P(H) = P(N)P(H|N) + P(M)P(H|M)
=0.27-0.754+0.73-0.15
=0.312
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Bayes' formula

@ Do not make the common mistake of confusing the conditional
probabilities P(B|A) and P(A|B)! The probability that a random
professor is male (something like 60%) is not the same as the
probability that a random male is a professor (something like 0.1%).

e Can we determine P(B|A) if we know P(A|B)?

@ Yes, but only if we also know the (unconditional) probabilities of A
and B.
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Bayes' formula

Theorem (Bayes' formula)

If A and B are two events on the same probability space with P(A) # 0
and P(A) # 0, then

P(B|A) = P(B) P;?X?.
P(BNA) P(BNA)P(B) P(B) P(A|B)
PEA =P =~ @y Py - P R@) ~ By
O
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Bayes' formula

Theorem (Bayes' formula)

If A and B are two events on the same probability space with P(A) # 0
and P(A) # 0, then

P(AIB)
P(A)

P(B|A) = P(B)

o Interpretation: P(B) is a prior (latin: previous) probability,
measuring how much we believe that B occurs.
@ After observing the event A, we update our beliefs to a posterior

(latin: following) probability, by multiplying our prior by P,(;(\L“f).
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Bayes' formula

@ What is the probability that a random long-haired engineering
student is female, with the same assumptions as in the previous
example?

e H = {"Student has long hair" }.
o N = {“Student is female" }.
e M = {"“Student is male" }.
@ Recall: P(H|N) =0.75, P(N) =0.27, P(H) = 0.312.
@ Bayes' formula yields
P(H|N 0.75
P(N|H) = P(N) F(,UL)) =027 = ~ 65%.
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Suppose that By, ..., B, form a decomposition of the sample space and
that probabilities P(A|B;) and P(B;) # 0 are known. Can we determine
inverse conditional probabilities P(B;|A) from these?

Fact (Extended Bayes' formula)

IfP(A) # 0, then

P(A|B;)P(B;)

"B = S P(al) P8y

i=1,...,n.

Proof.
Recall formula of total probability: P(A) = >-7_; P(A|B;) P(B;). Now the
Bayes' formula proved earlier implies
P(A|B;) P(B)) P(A|Bi)P(B))
P(B:|A) = = —; .
B =""p@  ~ SLP@B)PE)
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Quality control of factory

Factory manufactures same product in two product lines. Finished
products are mixed and packed into boxes.

e Line 1 manufactures 3 products/min, 5 % of which are faulty.

e Line 2 manufactures 5 products/min, 8 % of which are faulty.

We randomly inspect a product from a randomly selected box.
e What is the probability that the product is from line 1?7

e What is the probability that the product is from line 1, given that it
is faulty?
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Quality control of factory

e Line 1 manufactures 3 products/min, 5 % of which are faulty.

e Line 2 manufactures 5 products/min, 8 % of which are faulty.

Known probabilities:

e B; = "Product is from line 1", P(B;) = 3/8

e B, = "Product is from line 2", P(B,) =5/8

e A ="Product is faulty”, P(A|B;) = 0.05, P(A|B,) = 0.08
Events B; and B, form a decomposition of the sample space so that
extended Bayes' formula yields

P(A|B1) P(B1)
P(A|B1) P(B1) + P(A|B2) P(B2)
0.05-3/8

0.05-3/8+0.08-5/8 = 273

P(Bi]A) =
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Quality control of factory

Factory manufactures same product in two product lines. Finished
products are mixed and packed into boxes.

e Line 1 manufactures 3 products/min, 5 % of which are faulty.

e Line 2 manufactures 5 products/min, 8 % of which are faulty.

Prior probabilities of the product under inspection are:
e Product is from line 1 with probability 3/8 = 37.5 %
e Product is from line 2 with probability 5/8 = 62.5 %

Posterior probabilities of the product under inspection (after observation
that the product is faulty) are:

e Product is from line 1 with probability ~ 27.3 %

e Product is from line 2 with probability ~ 72.7 %
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Testing unlikely events

@ A deadly disease is carried by 0.1% of the population in a country.

@ A blood test can determine whether you have the disease. However,
with probability 0.5% a secretary will type in the wrong result from
the test.

o If the test tells that you carry the disease, what is the probability
that you actually do?

@ Let D be the event that you have the disease and let T be the event
that the test is positive.

o We know P(D) = 0.001, P(T|D) = 0.995, P(T|D) = 0.005.
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Testing unlikely events

@ Let D be the event that you have the disease and let T be the event
that the test is positive.

o We know P(D) = 0.001, P(T|D) = 0.995, P(T|D) = 0.005.

@ Bayes' extended formula gives

_ P(T|D)
P(DIT) = P(D) P(T|D)P(D) + P(T|D)P(D)
=0.001 - 0.995 ~0.17

0.995 - 0.001 + 0.005 - 0.999
@ So even when the test is positive, the probability of having the
disease is only about 0.17.

@ Moral: If you want to test a very unlikely event, then you need an
extremely strong test.
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Calculation rules of probability - summary

Sum rule

P(AuB)=P(A)+P(B)—P(ANB)
=P(A) + P(B) (if A and B are mutually exclusive)

Product rule

P(AN B) = P(A) P(B|A)
=P(A)P(B) (if A and B are independent)

Total probability
P(A) = ZP(B,-) P(A|B;) (if Bj's form a decomposition)

Bayes' formula

_ P(AIB)P(B)
P(6lA) = "R
Extended Bayes' formula
P(Bi|A) = _PlAIB)P(B)) (if B;'s form a decomposition)

22 P(AIB) P(B))
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Random variables

@ A random variable is a numerical quantity related to a random
phenomenon.
@ Examples:

Die roll
o Sum of two dice

o Height of a randomly chosen person
o Wind speed
)
]

Temperature
Waiting time until the bus arrives

The value X(s) is determined by the realization s € S.

(]

Formally, if S is a probability space, then a random variable is a
function X : S — R.

e Often we abuse notation, forget about S, and write X = X(s) € R.
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Random variables

@ To the same random phenomena one can associate many random
variables.

@ In probability theory, one studies the behaviour of random variables,
when one knows the probability distribution P on the sample space S

@ In statistics, one aims at drawing conclusions about P from
observations of random variables on S.
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Random variables

e If X is a random variable and [a, b] C R is an interval, then there is

an event
{a<X<b}={seS:a<X(s) < b}

@ In particular, for any value a,
{X=a}={seS:X(s)=a}

is an event, and has a probability P{X = a}.

o If there is a sequence aj, a,... of values that are all the only values
X can take, then X is said to be discrete.
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Discrete random variables

e If X is discrete, then the values P{X = a1}, P{X = ay},... tell us
everything we need to know about X.

@ Roll two dice, let X be the sum of their outcomes.

P{X =2} = P{(1,1)} =1/36
P{X =3} = P{(1,2), (2, 1)} =2/36
P{X =4} = P{(1,3),(2,2), 3, D} =3/36
P{X =5} = P{(1,4),(2,3),(3,2), (4, 1)} =4/36
P{X =6} = P{(1,5),(2,4),(3,3),(4,2), (5, 1)} =5/36
P{X =7} = P{(1,6), (2,5), (3,4), (4, 3), (5,2), (6, 1)} =6/36
P{X =8} = P{(2,6),(3,5), (4.4),(5,3),(6,2)} =5/36
P{X =9} = P{(3,6), (4,5), (5,4), (6,3)} = 4/36
P{X =10} = P{(4,6),(5,5), (6,4)} =3/36
P{X =11} = P{(5,6),(6,5)} =2/36
P{X =12} = P{(6,6)} =1/36
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Discrete random variables

@ Roll two dice, let Y be the maximum of their outcomes.

P{Y =1} = P{(1,1)} =1/36
P{Y =2} = P{(1,2),(2,1), (2,2)} =3/36
P{Y =3} = P{(1,3),(2,3),(3,1),(3,2),(3,3)} =5/36
P{Y =4} = P{(1,4),(2,4),(3,4), (4,1), (4,2), (4,3), (4,4} =7/36
P{Y =5} = P{(1,5), (2,5), (3,5), (4,5), (5,1), (5, 2), (5,3), (5, 4), (5,5} =9/36
P{Y =6} = P{(1,6), (2,6), (3, 6), (4,6), (5, 6), (6, 1), (6,2), (6, 3), (6,4), (6,5), (6,6)} =11/36

e For a discrete random variable X, we define its probability mass
function p : R — [0, 1] by p(x) = P(X = x)
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Binomial distribution

@ Flip a fair coin five times, and let X be the number of times it
comes up “heads”

P{X = 0} = P{ttttt} =1/32
P{X = 1} = P{htttt, thttt, tthtt, tttht, tttth} =5/32
P{X = 2} = P{hhttt, hthtt, httht, httth, thhtt, ththt, thtth, tthht, tthth, ttthh} =10/32
P{X = 3} = P{hhhtt, hhtht, hhtth, hthht, hthth, htthh, thhht, thhth, ththh, tthhh} =10/32
P{X = 4} = P{hhhht, hhhth, hhthh, hthhh, thhhh} =5/32
P{X =5} = P{hhhhh} =1/32
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Binomial distribution

@ If the number of feasible outcomes is large, it is inconvenient to list
the probabilities in a table.

@ Flip a fair coin 5000000 times, and let X be the number of times it
comes up “heads”.
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Binomial distribution

@ If the number of feasible outcomes is large, it is inconvenient to list
the probabilities in a table.

@ Flip a fair coin 5000000 times, and let X be the number of times it
comes up “heads”.

25000000

5000000 1
n

P{X:n}:(
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Binomial distribution

@ Flip a biased coin N times, and let p be the probability that it comes
up “heads”. Let X be the number of times it comes up “heads”.

@ Then
P{X = n} = (’V) p(1— )V

e This is the binomial distribution Bin(n, p).

Binomial (10, 0.3) Binomial (10, 0.5) Binomial (10, 0.6)
030 025
025 020
020 015
015
010
010
005 005 |
00 | 1 L ool 1 1
0 1 2 3 45 6 7 8 9 10 0 1 2 8 4 5 6 7 8 9 10
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Geometric distribution

@ There are also discrete random variables that have infinitely many
feasible values.

@ Flip a biased coin (with probability p of heads) repeatedly.
@ Let X be the number of flips before the first time heads come up.
@ Then

PIX = n} = (1-p)"p.

e This is the geometric distribution Geom(p).
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Geometric distribution

Geometric distributions often occur in applications.

@ Assume we perform a sequence of tasks, in each of which our
equipment has the same probability p of failing.

Then the number of tasks we can perform before we have to change
equipment has distribution Geom(p).

o It follows from the interpretation that if X ~ Geom(p), then
P(X =n+m|X > m) = P(X = n).

This is called the memoryless property of the geometric distribution.
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Random variables

@ To any random event E corresponds an indicator variable Ig given

by |4 — 1 if E occurs
YA 0 otherwise

@ Many random variables can be meaningfully rewritten as sums of
indicator variables.

o Let X be the number of rainy days in a year.
o Let A; be the event that the /" day of the year is rainy.

o Then
365

X =Y la.
i=1
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Random variables

o If X is discrete, and takes values aj, as, ..., the
Y P{X=a}=P (U{X = a,-}) = P(S) =1.
i=0 i=1

@ In particular, at least some value a has P{X = a} > 0.
@ For a general random variable, this does not need to happen.

@ Let X € [0,1] be a random variable such that P{X € [a,b]} = b—a
forevery 0 <a< b<1.

@ Then P{X = a} =0 for any a, yet X is a random variable.

@ This is called the uniform random variable on [0, 1].
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Uniform random variables

e For any interval [A, B] C R, a random variable X is uniformly
distributed on [A, B] if

b—a
B-A

P{a< X < b} =

forall A< a< b<B.
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Distribution functions

@ Any random variable can be described by its (cumulative)
distribution function (CDF) F : R — [0, 1]:

F(x) = P{X < x}.

@ The CDF is more useful than the probability mass function
p(x) = P(X = x), because it is defined for both discrete and
continuous random variables.

o With the CDF, we can compute the probability that X lies in any
interval:

P(a< X < b)=P(X < b) — P(X < a) = F(b) — F(a).
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Distribution functions

e If X is a discrete random variable, then its CDF F(x) is a “step
function”, and its “jumps” are given by the probability mass
function p(x).

Px)

@l Wi =

1 2 3

FIGURE &1 Graph of p(x), Example 4.2a.

Fx)

Ml= oI =

FIGURE 42 Graph of F ().
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Distribution functions

e If X is a not discrete, we can hope that its CDF F is at least
differentiable.
e If it is, then X is said to be continuous, and f(x) = L F(x) is its

probability density function (PDF).
@ All random variables in this course, and almost all that occur in
practice, are either discrete or continuous.

Example (Uniform distribution)

F(x)

@ Left: The CDF of the uniform distribution on [a, b].
@ Right: The corresponding PDF.
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Distribution functions

@ Assume X is a continuous random variable, with CDF F(x) and
PDF f(x).

e F(x) = P(X < x) is a weakly increasing function, so
f(x) = F’(x) > 0 is non-negative.

X—> 00 X—>00

1=P(X eR)= lim P(X <x)= lim F(X):/OO f(x).

@ Any non-negative integrable function f : R — R with

/Zq@_1

is the PDF of some random variable.
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Distribution functions

@ Interpretation:
Pla—e < X < a+e) =~ 2ef(a),

so f measures the “intensity” with which X occurs near a.
@ Often a continuous random variable is described by its PDF, because
it gives a more intuitive picture than the CDF.

0.40 104 ,
I
035 1
.
08 H
030 H
1
I
025+ 054 .
® = .
Z 020 e

g 8 '
0.15 4 044 !
.
0.10 CDF(x) 1
02 1
I
0.5 ,
.

0.00 — T T3 00 — T

3 -2 -1 0 1 2 3 32 -1 0 1 2 3
x x

Ragnar Freij-Hollanti



Random events
Conditional probability
Probability theory Random variables
Expectation and variance
The normal distribution

Exponential distribution

@ Is there a continuous random variable that has the renewal property
(memoryless property)

P(X <y+x|X>y)=P(X <x), forall x>0,

like the geometric distribution had in the discrete case?

@ Interpretation: This would be useful to model the life length of
objects (or individuals (like Keith Richards)) that do not “age”, but
only fail/die in “accidents”.

@ How long until you get a call from a telemarketer?
@ How long until the next homicide in Helsinki?

o Lifetime of certain electronic components.

Ragnar Freij-Hollanti MS-A0503



Probability theory

Exponential distribution

@ Memoryless property:
PX<y+x|X>y)=P(X <x)forall x>0
@ The CDF of an memoryless continuous random variable would satisfy

F(x+y)
1-F(y)

o Differentiate with respect to x:

fix+y) = f(x)(1 = F(y)).

= F(x).

@ In particular
fly) =A=AF(y)
for all y, where A = £(0).
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Exponential distribution

F'(t) = f(t) = XA — AF(t)
is a first order differential equation with constant coefficients.

@ lts solutions are

A Atdt At
F(t):f e)\ _ette g, ©
e t e)\t e)\t

for arbitrary c.
e F(0) =0== c=—1. F increasing = A > 0.
@ So the only memoryless distribution functions on [0, c0) are

F(t)=1—e .
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Exponential distribution

@ A random variable with CDF
F(t)y=1—e ™

is said to be exponentially distributed with rate \.
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Jointly distributed random variables

o If X and Y are two discrete random variables, they have a joint
probability mass function p : R? — [0, 1] given by

pix,y) = PX =x}n{Y =y}).

e If X and Y are two continuous random variables, they have a joint
probability density function p : R> — R given by

PH{X <aln{Y <b}) = /< /<b f(x,y)dxdy.

e If X and Y are independent, then

p(x,y) = px(x)py(y) and f(x,y) = fx(x)fy(y).
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Expected value

o If we take many independent samples Xj, ... Xy of a random
variable X, what is their mean

Xi+--+ XN7
— N
o If X is discrete, with values {aj, a,, as, ... } and probability mass

function p, then we expect that =~ Np(a;) of the samples take the
value a;.

e So

X1+ -+ Xy ale(al)+32Np(az)+33NP(33)+"'
N N

Za,-p(a,-).
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Expected value

@ We define the expected value of the discrete random variable X as
p=EX)=Y_aip(a),

where p(a;) is the probability that X takes the value a;.
e If X can only take finitely many values, then E(X) always exists.

@ Otherwise, the expected value is defined if and only if the sum
Z aip(ai)

is convergent.
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Expected value

@ Let X be the outcome of a fair die roll.

1 1 1
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Expected value

Example (Indicator variable)

o Let

[ 1 if A occurs
A=Y 0 otherwise

be the indicator variable of the event A.

E(la) = 1P(la = 1) + 0P(/a = 0)
= 1P(A) + 0P(A)
= P(A).
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Expected value

e If g: R — R is a (deterministic) function, and X is a discrete
random variable, then the random variable g(X) has expected value

E(g(X Zg

where p(a;) is the probability that X takes the value a;.

@ Let X be the outcome of a fair die roll.

o
1 1 1 1 1 1
E(X*)=1--44--2+49--2416-=-+25.= 2
(X9) 6+ 6+96+66+56+366
91
= = ~ 15.67.
6

o This is not the same as E(X)? = 3.5% = 12.25.
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Expected value

@ This can be generalized to when the variable g of interest is a
function of more than one other variable.

o If g: R?2 — R is a (deterministic) function, and X and Y are
discrete random variables, then the random variable g(X, Y) has
expected value

E(g(X,Y)) = g(xy)p(x.y),

where p is the joint probability mass function of X and Y.
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Expected value

@ How do we define E(X) if X is continuous?

@ Discretize! Let € > 0 be a real number, and consider the discrete
random variable X, which is X rounded to the nearest integral
multiple of e.

E(Xe):ZX;P(X;—§<X<X;—§)

~ / xF(x)dx,

where the sums are over all multiples of e.
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Expected value

e If X is a continuous random variable with probability density
function f, then we define

E(X)= / xf(x)dx.
R
@ Recall that if X was discrete with probability mass function p, then

we defined
E(X) =" aip(ai).
i

@ In fact, these two formulas can be unified in terms of the CDF F(x).
This formula is almost never used in practice, though:

E(X) = —/0 F(x)dx—f—/ooo(l—F(x))dx

— 00
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Expected value

If X is a random variable with CDF F(x), then its expected value is

0 o)
E(X) = _/ F(x)dx+/0 (1 — F(x))dx.

—0o0

@ We will sketch a proof for this for discrete and continuous random
variables.
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Expected value

Proof: X continuous.

e If X is non-negative, so F(0) = 0, then we have

E(X)—/Oooxf(x)dx_/xoj)/txodtf(x)dx

:/ / f(x)dxdt
t=0 J x=t

_ /too P(X > t)dt = /m(1 ~ F(t)dt.

=0 t=0

@ If X can also take negative values, we subdivide the integral into a
positive and a negative part.

O
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Expected value

Proof: X discrete.

e If X is non-negative, so F(0) = 0, then we have

E(X) = Zi:a;p(a,-) - (/t dt) p(ar)

; =0
= /:; Z p(a;)dt

irai>t

_ /too P(X > t)dt = /Oo(1 ~ F(t))dt.

=0 t=0

o If X can also take negative values, we subdivide the sum into a
positive and a negative part.

Ragnar Freij-Hollanti MS-A0503
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Expected value

o If g: R — R is a (deterministic) function, and X is a continuous
random variable, then the random variable g(X) has expected value

E(g(X)) = / g(x)f (x)dx.

where f is the probability density function of X.

o If g: R?2 — R is a (deterministic) function, and X and Y are
discrete random variables, then the random variable g(X, Y) has
expected value

E(g(X.Y)) = / / g(x.y)F(x,y)dxdy,

where f is the joint probability density function of X and Y.

@ This is a direct generalization of corresponding results for discrete
variables.
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Law of large numbers

o We have argued that we “expect” XX ~ E(X) if the number
N of samples is large. The following theorem makes this precise.

Theorem (Law of large numbers)

Let X1, X5, X3,... be independent realizations of the random variable X.
If X has finite expected value n = E(X), then

X; .ot X
P(W+NHO:L

N
In MS-E1600, Probability Theory. O
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Linearity of expected value

@ Let X and Y be two discrete random variables with joint PMF p.
@ Then

EX+Y)=Y (x+y)p(x.y)
(x.¥)

=D x> ploy)+ >y plxy)
=Y xP(X=x)+ Y _yP(Y =vy)
= E(X) + E(Y).

e Similar arguments show that E(X 4+ Y) = E(X) + E(Y) for
continuous random variables.

@ This does not require that X and Y are independent.

Ragnar Freij-Hollanti MS-A0503
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Linearity of expected value

If a € R is a constant, then E(aX) = aE(X).

For discrete variables, this is straightforward.

@ For continuous variables, let f be the PDF of X and g be the PDF
of aX.
@ Then
d 1d 1 1 _t
= —P(aX =[t= =-—P(X = =f(s)= =f(-).
g(t) = S P(aX < t) = [t = as] = S - P(X < 5) = _f(5) = f(5)
e So
E(aX) :/tg(t)dt:/gf(é)dt: [t = as] :/sf(s)a ds = aE(X).
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Linearity of expected value

e If X and Y are random variables, then E(X + Y) = E(X) + E(Y).
o If a € R is a constant, then E(aX) = aE(X).

@ In algebraic terms, this means that the expected value E is a linear
function on the vector space of random variables.
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Linearity of expected value

Example (Binomial variable)
o Let X ~ Bin(n, p). What is E(X)?

@ X counts how many of the independent events A;, Ay, ..., A, occur,
if each of them occur with probability p.

0 So X =" la.
o We get

E(X) =2 E(la) =D _P(A) = np.
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Linearity of expected value

Example (Coupon collector)

@ Suppose there are 20 different types of coupons, each of which are
equally likely to get every time when drawing one at random.

@ Draw 10 coupons. What is the expected number of types of coupons
drawn?

o Let A; be the event that you get at least one coupon of the it type,
i=1,...,20.

Ragnar Freij-Hollanti MS-A0503
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Linearity of expected value

Example (Coupon collector)

o Let A; be the event that you get at least one coupon of the it type,
i=1,...,20.
@ The number of types drawn is X = la, + - -+ + la,,-

E(X) = ZP _2o< (;—z)lo> = 8.025.
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Linearity of expected value

n—1
n

o Formulas of the form (1 — (2-1)") occur quite often in probability

theory.
@ They can be approximated using that

() -y
n n e

if nis large.
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Linearity of expected value

Example (Coupon collector)

@ Suppose there are N different types of coupons, each of which are
equally likely to get every time when drawing one at random.

@ Draw alN coupons. What is the expected number of types of
coupons drawn?

E(X) = N (1 - ("T)aN> ~ N( — e,

@ In particular, you need to draw at least &~ N log(/N) coupons before
you can expect to have gotten one of every type.
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Expected value

Example (Exponential distribution)
@ Let X be exponentially distributed with rate .
@ Recall that this means that

{ 1—e M ft>0

F=1 o if £ <0

_ -1, o
)\tdt A [ At:lo

/ — F(t)dt
¢

SO-1=3
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Expected value

Example (Geometric distribution)

@ Let X be the number of trials until first success, if each trial
succeeds independently with probability p.

@ Probability mass function
p(t)=(1—p)tpfort=1,23,....

o With g =1 — p we get
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Expected value, summary

@ The binomial distribution has expected value np.

@ The exponential distribution is continuous, memoryless, and has
expected value 1/\.

@ The geometric distribution is discrete, memoryless, and has expected
value 1/p.

e Exercise: If X ~ Unif[a, b], then E(X) = 2£2.
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Variance

@ In addition to the expected value, it is important to know how
“spread out” a probability distribution is.

@ There is a big difference between the (deterministic) random variable

X=-1
and
Y — -2 with probability 1000001/1000002
~ | 1000000 with probability 1/1000002 ’

although they both have expected value —1.
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Variance

@ The variance of a random variable X is the (deterministic) number
02 = Var(X) = E((X — n)?),

where p = E(X).
e If X is discrete with probability mass function p, then

Var(X) = Zp

e If X is continuous with probability density function f, then

Var(X) = /R f(x)(x — p)? dx
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Variance

@ We can also write

Var(X) = E((X — p)?) = E(X* + 2% — 2uX)

= E(X?) + p* — 2uE(X)
= E(X?) — 2.
e In particular, we see that E(X?) > p? = E(X)? for all random

variables.

o E(X?) is called the second moment of X.
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Variance

Example (Indicator variable)

1 if E occurs

0 otherwise
with P(A) = p.

@ Then /3 = I, because 12 =1 and 02 = 0.

e E(l4) = P(A) =p, so

o Let /4 = be the indicator variable of the event A,

Var(la) = E(I3) — E(la)* = p— p* = p(1 — p).

@ So the variance of an indicator variable is p(1 — p) € [0, 7].

Ragnar Freij-Hollanti MS-A0503
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Variance

@ The variance
Var(X) = E((X — n)?)
satisfies the following properties for any random variable X and any
constant a:
o Var(aX) = a*Var(X)
e Var(a) =0
e Var(X + a) = Var(X)
e Var(X) is zero if and only if P(X # u) =0.
@ In such case, we say that X is an almost sure constant.
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Variance

@ Pro: The variance
Var(X) = E((X — u)?)

is very convenient to work with mathematically.
@ Con: It can not be meaningfully added or subtracted to X, because
it is measured in different units.
o If X is the height of a random person (in meters), then the variance
is measured in m?.
@ Therefore, statistically it is often more useful to study the standard
deviation o = /Var(X)
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Variance

@ Let X be the outcome of a fair die roll.

o
E(X) = ; and E(X?) = %

@ So Var(X) =% — (%)2 = 32, and X has standard deviation

35
= /2 ~171.
7 12

@ Interpretation: “The outcome of a die roll is typically about 1.71
away from its average.”
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Variance

@ In the first lecture, we defined the sample variance

) = g Dol 2

and sample standard deviation of a numerical sample x.

@ As the names suggest, these notions are strongly related to the
variance

o? = E((X - u))
and standard deviation of a random variable X.

@ However, they are not the same notions, and should not be
confused.
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Covariance

@ What is the variance of a sum X + Y of random variables?
o Let p=E(X) and v = E(Y)

Var(X +Y) = E(X + Y)?) — E(X + Y)?

E(X?+ Y2 +2XY) — (u+v)?

E(X?)+ E(Y?) +2E(XY) — pi? — v* — 2uv
Var(X) + Var(Y) + 2(E(XY) — pv).

o We call the quantity
Cov(X,Y) = E(XY)— E(X)E(Y)

the covariance of X and Y.
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Covariance

@ The covariance Cov(X,Y) = E(XY) — E(X)E(Y) satisfies:
e Cov(X,Y) = Cov(Y,X)
e If a and b are constants, then
Cov(aX + bY, Z) = aCov(X, Z) + bCov(Y, Z).
e Cov(X, X) = Var(X).
e This is analogous to the notion of scalar products (or inner
products) in linear algebral!

o If u=E(X) and v = E(Y), then
Cov(X,Y)=E[(X —u)(Y —-v)].

@ Interpretation: Cov(X, Y) measures “how much X and Y tend to
deviate in the same direction”.
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Covariance

e If X and Y are independent and discrete, then
PX=x,Y=y)=P(X=x)P(Y =y), so

E(XY) = nyP(X =x,Y =y)
= nyP )P(Y =)
- pr(x =x) Y _yP(Y =y) = E(X)E(Y).

x y
@ Similar arguments hold for continuous random variables.

@ So independent random variables have covariance
E(XY)— E(X)E(Y)=0.
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Covariance

o We saw that
Var(X 4+ Y) = Var(X) + Var(Y) + 2Cov(X, Y).
@ In particular, if X and Y are independent, then
Var(X + Y) = Var(X) + Var(Y).

@ More generally, if X1, X5, ... X, are independent, then

Var(z Xi) = Z Var(X;).
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Variance

Example (Uniform random variable)
o Let Y ~ Unif[0, 1].
° E(Y)=1.
e To compute E(Y?), notice that Y2 has CDF

F(t)y=P(Y?<t)=P(Y <Vt)=+Vt for 0<t<1.

So the PDF of Y2 is f(t) = F'(t) = 1t~2

E(Y2)_/01tf(t)_/01;t§ _ {
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Variance

Example (Uniform random variable)
e Let X ~ Unif|a, b].
o Then Y = %=2 ~ Unif[0, 1].

b—a
® So g5 = Var(Y) = 255 Var(X).
o We get
(b — a)? b—a
Var(X) = ——— and o = .
X) =" T
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Variance

Example (Exponential random variable)
@ Let X be exponentially distributed with rate A, so

Ft)y=PO0< X <t)=1—e7,

and E(X) = 5.
@ Y = X2 has CDF

PO<Y <t)=1—e
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Variance

Example (Exponential random variable)

E(X?) = E(Y) = /000(1 — F(t))dt = /Ooo e MWVidt
= [t = s°, dt = 2sds]

/ 2se Mds
[ /e_’\sds}

2s _x 2
{)\ e Sfpe Sds]0 = —.

Ragnar Freij-Hollanti MS-A0503



Probability theory Random varia
Expectation and variance
The normal distribution

Variance

Example (Exponential random variable)

o E(X) =1
(*] E(XZ) = %
Var(X) = E(X2) _ E(X)2 _ % . % . %
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Variance

Example (Binomial)
@ Let X ~ Bin(n, p). What is E(X)?
e X = 27:1 la;, where Aq, Ay, ..., A, are independent events with
probability p.

Var(X) = ZVar(IAi) = np(1l —p).
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We play 100 rounds of dice. What are the expectation, variance
and standard deviation of cumulated returns? Since
u=E(Xj)=3.5and E(X,?) = %, the variance of returns for one
round is
2 » 91 2
Var(Xi) = E(X7) —p° = T (3.5)° = 2.92.

Linearity of expectation yields E(Y) = 100 x 3.5 = 350.
Since the rolls of a die are independent, we have that the variance

of Y is

100 100
Var(Y) = Var (Z X,) = ZVar(X,) ~ 292,
i=1 i=1
Consequently the standard deviation of Y is

SD(Y) =~ v/292 ~ 17.08.

Ragnar Freij-Hollanti MS-A0503



Probability theory Random varia
Expectation and variance
The normal distribution

Variance

Fact (Chebyshev's inequality)

If the expectation and standard deviation of random variable X are
p = E[X] and o = \/Var(X), then for all r > 1 it holds that

1
P (|X—,u| > ra) < .

r
Interpretation

It is highly unlikely that the value of a random variable deviates
from its expectation much more than a few standard deviations.
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Variance

Proof.
We present the proof for continuous random variable X with

density (x).
Let's calculate:

P(\X—,u\ zra) = f(x)dx

</J'£\(Iu—rur.,u+ru)

PRY:
< / x—p)” ,uz) x) dx
JB\(p—roptro) (."(T)

< /' (x — p)? F(x) dx — Var(X) _ 1

(ro)?

For discrete random variable the proof is similar.
[

Ragnar Freij-Hollanti MS-A0503



Probability theory Random varia
Expectation and variance
The normal distribution

Variance

Returns from 100 rounds,
X =10 X, has i

expectation ER
i = E[X] =350 and N

standard deviation

o = /Var(X) =~ 17.08. :

J i @ [t £ I

The probability that the returns deviate a lot from the expectation

is small — from Chebyshev's inequality we obtain for instance that
1 1
P|X - =>52) <P(|X - > < = =-=0.1L
(| 350/ > 5 )_ (\ 350|_3a)_32 5~0
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Central limit theorem

@ What is the average

o Xit ot Xy
X=—F""7-——

N
of N > 0 independent and identically distributed (iid) random
variables Xi,..., X,?

@ We know that _
E(X)=E(X)=p

and
Va (X)—iN Va (X)—‘i2
r = N2 r = N.
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Central limit theorem

@ Can we say something more detailed about the distribution of
X1+ + Xn,

)_<:
N

(10,0.7) (20,07)
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025 !
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Figure: The sum of N indicator variables with average p = 0.7.
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Central limit theorem

@ Can we say something more detailed about the distribution of
X1+ + Xn,

)_<:
N

Figure: The average of N exponentially distributed variables with A = 1.
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Central limit theorem

@ Can we say something more detailed about the distribution of

o Xi+--+ Xy
X="—""7
N
@ It seems like in both case, the distributions look more and more like
a "bell curve” when N grows.
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Central limit theorem

o Let

o E(Y,)=0
e Var(Y,) =1
@ Is there a distribution to which Y, “converges”?
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The normal distribution

Central limit theorem

@ Let X; be an indicator variable with E(X;) = 0.7.

>0 Xi —np
Y,=="——.
Vno
@ We plot the CDF of Y,, where n=1,4,9, 16, 25.
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Central limit theorem

@ Let X; be exponential with A = 1.

i Xi—
= T
@ We plot the CDF of Y, where n =1,4,9, 16, 25.

(]
Yn
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Central limit theorem

Theorem (Central limit theorem, original version)
There exists a probability distribution N'(0,1), called the standard normal
distribution, such that the following holds:
o Let X be a random variable (with E(X") < oo for all r > 0),
E(X) = p and Var(X) = o2.
o Let Xy, X5, X3,... be independent samples of X, and let

v _ 2i Xi—
" N

o If Z ~N(0,1), then
Pla<Y,<b)— Pla<Z<b)

for every t.
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Central limit theorem

@ In words: The variable

X Xi—np

Vno
is distributed like Z ~ N(0,1) if n is large.

o Interpretation: The mean X = Zan of n iid samples with mean p

and standard deviation o is distributed like

Yn

0,2
Z+p~ Np—).

7

e The distribution A (u,0?) is a fixed distribution, not depending on
the distribution of X!
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The normal distribution

@ The normal distribution N'(u, 02) is explicitly given by its PDF

f(x) = e—(x—u)z/%z’

2ro

and thus has CDF

1 X 2 2
O(x) = — e (t=1) /207 gy
( ) V2mo /_oo

@ Do not bother to remember these formulas!
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The normal distribution

@ The standard normal distribution A/(0,1) is explicitly given by its
PDF

and thus has CDF

1 X
d(x) = E/ e_t2/2dt.

@ Values of ®(x) are tabulated in Mellin's tables.
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Central limit theorem

> Xi— np
Y,=="——
Vno
has CDF F,(x) — ®(x) where ® is the CDF of the standard normal
distribution.
o Sketch of proof: Consider the moment generating function E(e¥t).

@ Use independence to write this as a product of the moment
generating functions of X;.

@ Use Taylor expansion in each of the terms to show that

lim E(e¥t) = et'/2 = E(e?),

n— o0

for every t, where Z ~ N(0,1).

Ragnar Freij-Hollanti MS-A0503



Random events
Conditional probability
Probability theory Random variables
Expectation and variance
The normal distribution

The normal distribution

@ For normally distributed random variables, the proportion of the
population within a given number of standard variations from the

mean can be seen in the figure below.

MNormal Curve

Slandard Deviation

TN

8. 175 18.1
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The normal distribution

Examples of normally (or almost normally) distributed variables in
practice:
@ Most importantly, in statistics:
o Any average or sum of observations of a (nice) random variable.
@ By physical considerations:
e Velocity (in any direction) of a molecule in a gas.
o Measure error of a physical quantity
o Height of a person
o By design:
o 1Q.

o Grades in some academic systems (nb: not in this course).
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Standardization of normal distribution

If X has N(u, o2) distribution, then

has the standard normal distribution N(0, 1) and the probability of
event {a < X < b} is

afu<Xfu<bfy)

o o o

P(a<X<b):P(
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The normal distribution

Example (A game of dice)

What is the probability, after playing 100
rounds, for an outcome

(a) in the range of 316-384 EUR?
(b) above 500 EUR?

280 300 320 340 360 380 400 420

Ragnar Freij-Hollanti MS-A0503



Random events
Conditional probability
Probability theory Random variables
Expectation and variance
The normal distribution

The normal distribution

Example (A game of dice, continued)

The outcome of one round has the expectation px = 3.5 the standard deviation
Ox =~ 1.7.
Apply normal approximation:

Si00 =350  Sjgo — 100px  d 7
17 V100ox
P(316 < Sjp0 < 384) = P (—2 < 210 U7 5“’0 3% 2)
~ P(— 2<z<2)= —2P(Z < -2) ~ 95.4%.

S100 — 350
P(S100 > 500) = P (“"’T > 8.82)

~ P(Z>882) = P(Z< -882) ~ 6x10 .
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The normal distribution

Example (Airline)

@ An airline sells 300 tickets to a flight
with 290 seats.

@ Each passenger arrives to the airport
with probability 95%, independently of
the other passengers.

@ What is the probability that there are
enough seats for everyone who want to

270 275 280 285 290 295 300
fly?
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The normal distribution

Example (Airline, continued)

Number of people arriving at the airport in for the flight N = X3 + - - - + X300. The
Bernoulli random variables X; have the expectation px = 0.95 and standard deviation

ox = ix(1— px) = 0.22,
Apply normal approximation:

N—285 N —300ux d 7
3.77 v/3000x ’

N — 285
3.77
~ P(Z < 1.46)
= 1-P(Z<-146) ~ 92.8%.

P(N < 290) = P(N <290.5) = P ( < 1.46)

(Precise probability: pbinom(290,300,0.95) = 93.5%)
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Sample mean

@ X a random variable with unknown distribution,

EX)=u Var(X) = o2,
@ The sample mean
X — Xi+-+ Xy
N
satisfies
o E(X)=p.
o Var(X) = "nQ.

Ragnar Freij-Hollanti MS-A0503



Sampling statistics
Maximum likelihood estimators

Statistics Hypothesis testing
Covariance and correlation

Sample mean

e /i = X has two important properties as an estimate of y = E(X):
o Unbiased: E(fi) = p (regardless what p is).

o Consistent: i — p with probability one (almost surely, a.s.) as the
number of samples N — oo.

@ These are two desirable (but not necessary) properties of estimates.
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Estimating E(X)

@ From a sample X -- -, X, of arbitrary size of a random variable X,
estimate /i = Xj.

@ Then fi is unbiased, because E(X;) = X.

@ [i is not consistent, because it does not get closer to p as N grows.

o Bad estimate for large N.
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Estimating E(X)

@ From a sample X --- | X, of arbitrary size of a random variable X,
. A Xy X
estimate ji = S0,
@ Then i is biased, because E(f1) = %u = 1 (unless © = 0).

@ [i is consistent, because

@ Bad estimate for small .
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Sample mean

@ In a certain sense, X is the best possible estimate of E(X).

@ This remains true even if some information of the distribution of X
is given.

o For example, if we know that X is: normal, exponential, binomial...

@ By CLT, X has approximate distribution N(1, "72)
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Sample mean

@ An astronomer wants to measure the
distance d from her observatory to a
distant star.

@ Each time she measures, she gets a
random result, with mean d and
standard deviation 2 light years.

@ She wants to keep measuring until she
is reasonably sure (95%) that she can
estimate d reasonably well (error < 0.5
light years).
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Statistics

Sample mean

@ Measurements Xi, ... X, have expected value d.

@ Sample mean X NN( 7\/52) approximately.
°

P(|X — d| < 0.5) = P(—0.25v/n < /fd<025f)

~ #(0.25y/n) — ©(—0.25/n)
= 20(0.25y/n) — 1.
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Statistics

Sample mean

@ Astronomer wants

P(|X — d| < 0.5) > 0.95,

SO

29(0.25y/n) — 1 > 0.95
®(0.251/n) > 0.975
0.25v/n > 1.96
n> 62.
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Sample variance

@ Assume we want to estimate Var(X) from independent samples
Xi,...X,, where X has unknown distribution.

@ The naive approximation would be

Var(X) = E((X — E(X))?) ~ E((X — X)?)

e But |X; — X| is typically smaller than X; — E(X), so the naive
approximation systematically underestimates Var(X)!
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Sample variance

@ Second attempt: We want to estimate Var(X) from independent
samples Xi, ... X,, where X has unknown distribution.

@ We defined the sample variance of N samples as

N _
S2 _ Zi:l(Xf — X)2
N—-1 '

@ We will argue that this is a good estimate of Var(X).

Ragnar Freij-Hollanti MS-A0503



Statistics

Sample variance

@ We can compute

o inaX = X)?
N_
N
= (X? + X? —2X:X)
N— 1,;
=v—1 1<NX2+ZX2—2XZX>

=

1 N
=1 (Zxﬁ — N>‘<2> :
i=1
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o Now

Statistics Hypothesis testing
Covariance and correlation
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Sample variance

o We get

N
1 _
E(s?) = w1 <§ XP - NX2>
i=1

1 2 v 2
= = (NE(X?) - NE(X?))

1 2 2
= 7 (N = DE(X?) = (N = DE(X)?)
= E(X?) — E(X)?
= Var(X).

@ So s? is an unbiased estimator of the variance o2.
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Distribution of sampling statistics

o If \ is a statistic that is meant to estimate a parameter A of a
random distribution, it is not enough to know E(\).

o To know that P(|A — A > €) is small, we would ideally like to know
the distribution of A.

o At the very least, would like to know Var(s\), so we could use
Chebyshev's inequality.

@ Observe, that the probability
P(IA =4 > ¢)

will depend on A!
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Sampling normal variables

@ The exact (or even approximate) distribution of estimators can not
be easily described if the distribution of X is unknown.

e What if X ~ N (p1,02)?
o Clearly, then X ~ N (u, "WQ) exactly.
e What is the distribution of s27?
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Sampling normal variables

Let Z ~ N(0,1)
Let us denote the distribution of Z2 by x3.

Normal Distribution Ghi-Bquared Distribution
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Sampling normal variables

@ Amazing property of the normal distribution: |X; — X| is
independent of X!

A
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Sampling normal variables

® Amazing property of the normal distribution: | Xi — )_ﬂ is
independent of X!

N
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Sampling normal variables

@ Let Xj,..., Xy be independent samples of X ~ N(0,1).
e Then X ~ N (0, %)
@ So

NX? 4+ (X — X)?

is a sum of two independent random variables, one of which is 2.
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Statistics

Sampling normal variables

NX? 4+ (X — X)?

i

is a sum of two independent random variables, one of which is x?

2. X7

is a sum of N independent X3 variables.
e So

> (X - X)) = =3 XP - NX?

i

is distributed like the sum of N — 1 independent x? variables.
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Sampling normal variables

@ Denote the distribution of the sum of n independent x? variables by

Xa-

@ We call this the chi-squared distribution with n degrees of freedom.
o Silly name. Live with it.

e So
XE X~ G

@ We saw that, if s> was the sample variance of N observations of
N(0,1), then
(N —1)s* ~ xj_1-
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Sampling normal variables

XEFe 4 Xi g

fk(“L) Xf
0.5

I

Il
O DA W N

0471

T

0.1

0.0 -

o Funny (but usually useless) fact: x3 = exp(3).
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Sampling normal variables

o Let s? be the sample variance of normal (but not necessarily

standard)
Xla"'7XN NN(M7U2)
@ Then )
2 o 2
S YNt
@ s2 is an unbiased estimate of the variance o2.

e X = f1 and s?> = 02 are independent random variables!
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Sampling normal variables

e Let X be the sample mean and s? the sample variance of normal
X1,y Xn ~ N(p,02)
@ Then % )
S N0 (=15~

e X =jfiand s> = o2 are independent.

e So _
X—pu ;
S/\/ﬁ n—1,

the Student's t-distribution with n — 1 degrees of freedom.
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Sampling normal variables

@ The Student’s t-distribution with n degrees of freedom is by
definition the distribution of

Z
———, when Z ~ N(0,1) and X ~ x2.
v X/n

o Invented by William Gosset (alias Student) at Guinness breweries.

| GUINNESS

STRENGTH

@ Used for quality control with limited sample sizes.
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Sampling normal variables

@ The Student’s t-distribution is what you get when you normalize a

normal distribution with the sample standard deviation, instead of
the real standard deviation:

o “tre = N(0,1)".
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The sample variance

@ s2 is an unbiased estimator of the variance o2.

@ However, s is not an unbiased estimator of the standard deviation o,

because
E(s) = E(Vs?) # \/E(s?) = Vo2 = 0.
@ Is s still a meaningful estimator of o7 Yes.

@ In fact, there does not exist any known unbiased estimator of o!
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Unknown parameters

o Consider an unknown source of data, with a distribution f(x) that is
known apart from a few unknown parameters.

o Examples:
o Indicator variable:

p(0)=1—-p, p(1)=p, p unknown.
o Exponential distribution:
f(x) = Ae” ™ when x > 0, A unknown.

o Normal distribution:

1 _x=w)?
f(x) = ——e 27 w and o unknown.
2o

@ Based on observed data (xi,...x,), how do we guess the
parameters?
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Parameter estimation

@ Consider an unknown source of data, with a distribution fp(x) that
is known apart from the parameter 6.
@ Observations (x1, ... Xp).
o An estimate ) = g(x1,...xy) is a number, which is a guess for the
value of #, based on the data.
o An estimator is the function g : (xi,...x,) — 6 which maps the data
to the estimate.
@ As we have seen earlier, there is often not a single “best” choice for
an estimator of a certain parameter.
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Likelihood function

@ Stochastic model for the data source: the components of (xi,...x,)
are i.i.d. and fy-distributed variables (Xi,...X,).

@ For a discrete distribution,
P(X1i=x1,..., X0 =xn) = fo(x1) - fo(xn)-
@ For a continuous distribution,

€ €
P(X1:X1:I:§,...,Xn:xn:t§> r~ €fy(x1) - fo(xn).

@ The likelihood function
L(0) = fo(xa) - - - fa(xn)

is the probability to observe (approximately) the given values, as a
function of 6.
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Maximum likelihood estimate

@ The likelihood function
L(0) = fo(x1) - -~ fo(xn)

is the probability to observe (approximately) the given values, as a
function of 6.

@ "The larger L(0) is, the better the model fy explains our
observations”.

o The maximal likelihood estimate (MLE) 8 = A(x) is the value that
maximizes the likelihood function.
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Binomial distributions

Example (Estimating the proportion of faulty products)

@ A production line produces components, of which the proportion p is
faulty, independent of each other.

e Of 200 inspected items, 22 were found to be faulty. Estimate p

@ The number N of faulty components has the distribution

200

X

) = PN =) = (%) o°(2 =

@ For which value of p is

L(p) = <22020) p2(1—p)t"®

maximized?
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Binomial distributions

Example (Estimating the proportion of faulty products (Continued))

L(p) = (22020> p(1—p)'®

is maximized when /(p) = log L(p) is maximized.

{(p) = log (22020> +22log p + 178 log(1 — p).
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Binomial distributions

Example (Estimating the proportion of faulty products (Continued))

22 178 22

S p=—.
p 1-p  PT 200

e "(x) <0, so the critical point p = 22 is indeed a maximum of {(p).
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Binomial distributions

The maximum likelihood estimate for the unknown parameter p of a
Bin(n, p)-distribution, based on an observed point of data x is

. X
p=—
n
Repeat the previous computations with 200 — n and 22 — x. ]
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Uniform continuous distributions

o A data source generates independent random numbers from the
uniform distribution Unif{0, 6].

@ Observations (1.2,4.5,8.0). What is the ML estimate of 67
@ The observations have density function

1
_ | 5 x€]0,6]
fo(x) = { 0, otherwise

@ The likelihood function becomes

673, 6> max{1.2,4.5,8.0
10) = 1 DHESHE0 = { o oo }
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Uniform continuous distributions

Example

@ The likelihood function becomes

=3, 0> max{1.2,4.5,8.0}
, otherwise

L0) = (1265660 = { §

AN

ST

o Clearly, L is maximized at § = max{1.2,4.5,8.0} = 8.0.

Ragnar Freij-Hollanti MS-A0503



s
ihood estimators
Interval
Statistics Hypothesis testing
Covariance and correlation

Properties of ML estimators

@ For indicator variables, the ML estimator p = X is unbiased and
consistent.
@ For continuous uniform variables Unif{a, b], the ML estimators
4 = min X; and b = max X; are biased, because we known for a fact
that
a<a b<b,

and typically the inequalities are strict.
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Exponential distribution

o Let xq,...x, be samples of an exponential random variable with
parameter \.

@ Then
L) = [Jre ™ = Ane i,

@ Maximized when

0="L'(A)=|=A"D xi—n\"t) e r %,

i.e. when n
A= ——.
DX

n

@ So the ML estimator for X is A = S
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Normal distributions

@ The normal distribution density function

t) = e 202
2no

M,O’z(

is known apart from the parameters u and o2.

o If we observe xi, . ..x, ~ N(p,c?), the likelihood function is

1 i)
L(p,0%) = We 2t

@ As often, it is easier to work with

206 = 1))

202

O, 0%) = log L(,0°) = —g log(27) — nlogo —
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Normal distributions

@ To find the maximum likelihood estimators, we differentiate

n AXi — 2
U, 0?) = —3 log(27) — nlogo — M

with respect to p and o:

i _ >oixi — )

du o2

de _n 3i(xi—n)?)
do o o3

@ Setting both these derivatives to zero, we get the ML estimates

C DX nH 1 2 1 2\2
p==—=X o —;Z(Xi*/l) —EZ(XI*X)

i
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Normal distributions

The maximum likelihood estimate of the expectation parameter p
of the normal distribution is

1 n
fi(x) = n Z;X;-
i=

We have for a stochastic model X = (Xi,...,X,) that
1 n
B = E(23X) = m
i=1

so the function x + fi(x) is an unbiased estimator of the
parameter ji.

Ragnar Freij-Hollanti MS-A0503
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Normal distributions

The maximum likelihood estimate of the variance parameter o2 of
the normal distribution is

n

520 = - 3 (x - m(x))>.

i=1
We have for a stochastic model X = (Xi,...,X,) that

n

E[6%(X)] = E %Z(Xi*m(Xf L "_laz,

- n
=1

so #%(x) is biased. An unbiased estimator for the variance
parameter is given by the sample variance

2(x) = =305~ m()*

i=1
Ragnar Freij-Hollanti MS-A0503
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Interval estimates

@ So far, we have estimated unknown parameters 6 by a number éA?,
which is in some sense our “best guess” for what @ is.

@ We would like to improve this, by also measuring our confidence in
our estimate.

@ More precisely, we want to say “with confidence 95%, the parameter
0 is contained in the interval a <0 < b".

Ragnar Freij-Hollanti MS-A0503
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Interval estimates

@ What does this mean?

“With confidence 95%, the parameter 0 is contained in the interval
a<f<b".

o It does NOT mean that P(a < 6 < b) = 95%, because the
statement “a < 0 < b" does not contain any randomness.
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Interval estimates

@ What does this mean?

“With confidence 95%, the parameter 0 is contained in the interval
a<6<bp".

@ It means:

“The numbers a and b are computed from some random data
X1,...Xn, in such a way that, with probability at least 95%, the
random interval [a, b] contains 6.”

@ The interval [a, b] is random, but 6 is not!

Ragnar Freij-Hollanti MS-A0503
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Interval estimates

Example (Week 5, Exploratory problem 1)

@ The mean score on a certain test is known to be 100.

@ Ten students take the test and get the scores 99, 102, 111, 105,
107, 100, 96, 141, 99, 92.

@ The mean score is thus

@ The sample variance is

X; — X)?
s? 2.( ’9 ) ~ 187.96.
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Interval estimates

Example (Week 5, Exploratory problem 1, Continued)
@ The mean score on a certain test is known to be 100.

@ The sample variance is

X; — X)?
s = LXK = X) ~ 187.96.

e Can we compute an interval [a, b] such that we can say with 95%
confidence that the standard deviation o satisfies a < o < b?

@ Since we do not know the distribution function of the scores, the
only thing we can use is Chebyshev's inequality:

P(X —pul=ro) <

Ragnar Freij-Hollanti MS-A0503
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Interval estimates

Example (Week 5, Exploratory problem 1, Continued, Extracurricular)

@ Chebyshev's inequality:

1

P(X |2 ro) < .

@ So the probability that some of our 10 observations is larger than
100 + ro is at most 10 - r%

@ In particular, the probability that some of our 10 observations is
larger than 100 4 150 is at most

1
10- = < 5%,
T

Ragnar Freij-Hollanti MS-A0503
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Interval estimates

Example (Week 5, Exploratory problem 1, Continued, Extracurricular)

@ So the probability that some of our 10 observations is larger than
100 + 150 is at most

1
]. T —A 0 .
0 152 < 5%

@ So with confidence 95%, we can say that the highest score is smaller
than 100 + 150.

@ As the highest score was 141, we get an interval estimate
41
> — =~ 2.73
7= 15

with confidence 95%.

@ This kind of bounds, where we use no knowledge about the
distribution, is rather unusual, and only give very weak bounds.

Ragnar Freij-Hollanti MS-A0503
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2)

@ We are now informed that the test scores
99,102,111, 105,107,100, 96, 141, 99, 92

were indeed normally distributed, A/(100, o).

@ When p is known, the maximum likelihood estimate of o?is

g uxi— p)? _ 3(x —100)2
n 10
124224+ 1124524+ 72402+ 42+ 412 + 12 + 82

10

= 196.2
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2, Continued)
@ Test scores
99,102,111, 105, 107, 100, 96, 141, 99, 92

@ When = 100 is known, the maximum likelihood estimate of o2 is

A~ f— 2
2 2002 g6,

@ This is different from the maximum likelihood estimate of o2 when
W is unknown, which is

=\2
N . -1
g2 X=X =l 169

n n

Ragnar Freij-Hollanti MS-A0503



Satpliz

ood estimators

Int al estimates
Statistics Hypothesis testing
Covariance and correlation

Interval estimates in normal distributions

o If a parmeter § = f(n) is a function of another parameter 7, then
the maximum likelihood estimators are also related by 6 = f(#)
@ In particular, the maximim likelihood estimator for the standard

~

deviation is & = V 02,

Example (Week 5, Exploratory problem 2, Continued)

@ Test scores
99,102,111,105, 107,100, 96, 141, 99, 92

@ When p = 100 is known, the maximum likelihood estimate of o is

&= E(X’ 1’ _ /1062 ~ 14.0.
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Notation for interval estimates

@ We are interested in “extremal values” of probability distributions,
values x such that P(X > x) = «a.

e Compact notation: z, € R is the value such that P(Z > z,) = a if
Z ~N(0,1).

FIGURE 5.9 P[Z > z4) = a.

@ In other words,

Ragnar Freij-Hollanti MS-A0503
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Notation for interval estimates

o If we care about "“two-sided intervals with confidence level o', we
must study both the points z,,> and z1_4 /2 = — 242

I
I
I
I
I
I
I
Il
~Zare 0 Zaf2

FIGURE T.|  P{—z2q/2 < Z < zgj2) = I —c.
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Notation for interval estimates

e Compact notation: Xi,n € R is the value such that
P(X > X%Ln) =aif X ~ \2.

Area =a

8 % n

FIGURE 5.12  The chi-square density function with 8 degrees of freedom.
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Notation for interval estimates

e Compact notation: t,,, € R is the value such that P(T > t, ,) =«
if T~ t,.

|
|
|
|
|
|
1
tu,l’): t1 —a, n 0

FIGURE 5.16 1/ o n = —tan-
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2")

@ We are now informed that the test scores
99,102,111, 105,107,100, 96, 141, 99, 92

were indeed normally distributed, N(100, o).
o What is a 95% confidence interval for the standard deviation o?
o We computed the sample variance S? ~ 187.96.

Y
@ Recall that, for normal samples, % ~x2_;.
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2")

2
@ Recall that, for normal samples, % ~x2_;.

e So

(n—1)S?
95% = P <X%.975,n1 <5z < X%.ozs,nq

b ((,71)52 gy (n1)52>

2 2
X0.025,n—1 X0.975,n—1
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Table of Chi-squared values

Values of the Chi-squared distribution

=]
a

0995 [ 0975 [ 0.20 0.10 0.05 | 0.025 | 0.02 0.01 0.005 | 0.002 | 0.001
0000393(0.000982( 1.642 | 2.706 3.841 5.024 5412 | 6.635 | 7.879 9.550 | 10.828
0.0700 | 0.0506 | 3.219 | 4.605 | 5991 | 7.378 | 7.824 | 9.210 | 10.597 | 12.429 | 13.816
0.0717 | 0.216 | 4.642 | 6251 | 7.815 | 9.348 | 9.837 | 11.345 | 12.838 | 14.796 | 16.266
0.207 0.484 | 5989 | 7.779 | 9.488 | 11.143 | 11.668 | 13.277 | 14.860 | 16.924 | 18.467
0.412 0.831 7.289 9.236 | 11.070 | 12.833 | 13.388 | 15.086 | 16.750 | 18.907 | 20.515
0.676 1.237 | 8.558 | 10.645 | 12.592 | 14.449 | 15.033 | 16.812 | 18.548 | 20.791 | 22.458
0.989 1.690 | 9.803 | 12.017 | 14.067 | 16.013 | 16.622 | 18.475 | 20.278 | 22.601 | 24.322
1.344 2180 | 11.030 | 13.362 | 15.507 | 17.535 | 18.168 | 20.090 | 21.955 | 24.352 | 26.124
1.735 2.700 | 12.242 | 14.684 | 16.919 | 19.023 | 19.679 | 21.666 | 23.580 | 26.056 | 27.877
15.987 | 18.307 | 20.483 | 21.161 | 23.209 | 25.188 | 27.722 | 29.588
11 | 2603 3816 | 14.631 | 17.275 | 19.675 | 21.920 | 22.618 | 24.725 | 26.757 | 29.354 | 31.264
12 3.074 4.404 | 15812 | 18.549 | 21.026 | 23.337 | 24.054 | 26.217 | 28.300 | 30.957 | 32.909
13 | 3.565 5.009 | 16.985 | 19.812 | 22.362 | 24.736 | 25.472 | 27.688 | 29.819 | 32.535 | 34.528
14 | 4075 5629 | 18151 | 21.064 | 23.685 | 26.119 | 26.873 | 29.141 | 31.319 | 34.091 | 36.123
15 | 4.601 6.262 | 19.311 | 22.307 | 24.996 | 27.488 | 28.259 | 30.578 | 32.807 | 35.628 | 37.697

olw|~|o|n|a|w|m]=

s
o
@
&
w
fo
bS]
@
S

https://www.medcalc.org/manual/chi-square-table.php
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2")

@ We computed the sample variance S? ~ 187.96, and have n = 10.
@ So a 95% confidence interval for o2 is

(n—1)-52 (n—1)-82| [9.187.96 9-187.96
T | 10.023 ' 2700

~ [88.9, 626.5]

P ) 2
X0.025,n—1 X0.975,9

@ This is called a two-sided confidence interval, as we are bounding o2
both from above and below.

o A two-sided 95% confidence interval for o is

V889, \/626.5} - [\/88.9, \/626.5] ~ [9.4,25.0]

Ragnar Freij-Hollanti MS-A0503
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2")

@ We could also be interested in one-sided intervals, where we bound
o only from below.

@ We also have

o2

—1)82
=P 7(,72 )9 < o2
X0.05,n—1

@ So a one-sided 95% confidence interval for o2 is

l(n— 1) 52,001 _ [9~187.96

X%_057n71 16.919

—1)82
95% = P (o P Ut 1 Xg_osyn)

,oo} ~ [100, o]
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2")

@ An upper 95% confidence interval for o is
{\/100,00} = [10, o],

if the data was known to be normal with expected value 100.

@ This is much stronger than the 95% confidence interval
[2.73, ],

that we got without the assumption of normal data.

Ragnar Freij-Hollanti MS-A0503
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 2")

@ We could also be interested in one-sided intervals, where we bound
o only from above.

@ We also have

o2

—1)s2
:P(02<<n2 >s>
X0.95,n—1

@ So a one-sided 95% confidence interval for o2 is

—1).52 .
0, M = [0’ 9187'96,00] ~ [0,509]
X0.95.n—1 3.325

_1)62
95% = P (X%,gs,n < (=15 )
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 3)
@ Authorities think the test results

99,102, 111,105, 107, 100, 96, 141, 99, 92

are suspiciously good, and are getting suspicious, as to whether the
mean score (i.e. expected value) of the test is really 100.

o How likely is it (assuming p = 100) to see results that are as least as
good as the ones observed?

Ragnar Freij-Hollanti MS-A0503



Sampling statistics
Maximum likelihood estimators
Interval estimates
Statistics Hypothesis testing
Covariance and correlation

Interval estimates in normal distributions

Example (Week 5, Exploratory problem 3)

@ Test results
99,102,111, 105,107,100, 96, 141,99, 92

@ The assumption p = 100 is not enough to compute the probability
of a certain mean.

@ However, assuming normality, we know that

X —

Ragnar Freij-Hollanti MS-A0503
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 3, Continued)
@ So

X —p
l—a=P(—tyon1<—=<tyon
« ( a/2,n—1 s/ﬁ /2, 1)

< ta/2 n—ls % ta/2 n—15
—p (X 22t X - /2012 )
< Jn ks /n

@ So a 95% confidence interval for p is

o tho2s0-1S o t0.025.0-15
X — 2 X )
{ N ]

L« 187. t 187.
~ |105.0 - f00259VI8T.96 o) | f0.025,9V187.96
V10 NG
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Interval estimates in normal distributions

TAULUKKO 2. t-DISTRIBUTION ¢(df)
TABLE 2. t-JAKAUMA t (df)

Kriittisia arvoja / Critical values

[Merkitsevyystaso 1-suuntaisissa testeissa/ Sigficance level in 1-sided tests
df 0.4 0.3 0.2 0.1 0.05 0.025 0.01 0.005 0.001| 0.0005
1 0.325 0.727 1.376 3.078 6.314] 12.706] 31.821| 63.657| 318.309] 636.619
2 0.289 0.617 1.061 1.886 2.920 4.303 6.965 9.925| 22.327| 31.599
3 0.277 0.584 0.978 1.638 2.353 3.182 4.541 5.841| 10.215] 12.924
4| 0.271 0.569 0.941 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5| 0.267 0.559 0.920 1.476 2.015 2.571 3.365 4.032 5.893 6.869
Gl 0.265 0.553 0.906 1440 1.943 2.447 3.143 3.707 5.208 5.959
7| 0.263 0.549 0.896 1415 1.895 2.365 2.998 3.499 4.785 5.408
8]  0.262 0.546 0.889 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9| 0.261 0.543 0.883 1.383 1.833 2.262 2.821 3.250 4.297 4.781
10| 0.260 0.542 0.879 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 0.260 0.540 0.576 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 0.259 0.539 0.873 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13| 0.259 0.538 0.870 1.350 1.771 2.160 2.650 3.012 3.852 4221
14| 0.258 0.537 0.868 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 0.258 0.536 0.866 1.341 1.753 2.131 2.602 2.947 3.733 4.073
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Interval estimates in normal distributions

Example (Week 5, Exploratory problem 3, Continued)

@ So a 95% confidence interval for p is

105.2 — 202soVI87.90 1 op 5 | foo2s9V187.50
V10 /10
2.262+/187. 2.262+/187.
~ |105.2 — 2202VI8T90 o5, | 2.202V17.90
V10 J10

~[95.4,115.0] .

@ This interval contains the claimed value = 100, so we should not
doubt this on the 95% confidence level.
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Interval estimates in normal distributions: Summary

o Approximate z by X, which has (scaled) normal or Student t
distribution, depending on whether ¢ is known or approximated.

e Approximate o by S, which is (scaled) x2_;-distributed.

Assumption Parameter Confidence Interval Lower Interval Upper Interval
o2 known N )_(j:zm'g% (—oo,)_(-&-zu%) ()_(+z¢,%. oo)
2 unk Rk bt Tttt ) (F = o
0~ unknown M fef2,n—1 Ja o0, o, n—1 Tn o, n—1 NTK o0
2 (n— 1S (n— 1S (n— 1§ (n— 1§
w1 unknown o —_ 0, — — @
Xat2,n-1 Xi-al2,n-1 Xi—a,n-1 Xet,n—1
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Paul the Octupus

In the football 2010 world championships Paul correctly predicted
the winner in every match of Germany.

Opponent ¢ | Tournament ¢ Stage ¢ Date ¢ Prediction ¢ Result ¢ Outcome ¢
s Poland Euro 2008 groupstage | 8 June 2008 Germany 2-0 Correct
=== Croatia Euro 2008 group stage 12 June 2008  Germanyl?Ii20) 1-2 Incorrect
= Austria Euro 2008 group stage 16 June 2008 Germany 10 Correct

Euro 2008 quarter-finals 19 June 2008 Germany 3-2 Correct

Euro 2008 semiinals | 25 June 2008 Germany 3-2 Correct

Euro 2008 final 29 June 2008 Germany®®! 0-1 Incorrect

&M Australia | World Cup 2010 | groupstage | 13 June 2010 Germany!®") 4-0 Correct
WM Serbia | World Cup 2010 groupstage | 18 June 2010  Serbial®'] 0-1 Correct
== Ghana World Cup 2010 groupstage 23 June 2010 Germanyl®!] 1-0 Correct
—}- England | World Cup 2010 round of 16 27 June 2010 Germany!®) 41 Correct
Argentina World Cup 2010 quarter-finals 3July 2010 Germany!??! 4-0 Correct
== Spain World Cup 2010 | semifinals 7 July 2010 Spainl® 0-1 Correct
Uruguay | World Cup 2010 | 3rd place play-off | 10 July 2010  Germany 3-2 Correct

Is Paul's abnormally good prediction record statistically significant
or can it be attributed to just randomness?

L IEN T MS-Al
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Null hypothesis Hy

The starting point of a test of statistical significance is the null
hypothesis Hp, which corresponds to the case where nothing new
or abnormal is needed to explain the observations.

Example

Ho: The fortune teller’s predictions are no better than random
guesses.

Ho: The new medicine is no better than the placebo.

Ho: The fund profits are no better than the stock index.

The alternative hypothesis H;j is usually taken to be the opposite
of the null hypothesis.
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p-value of a test statistic

The abnormality of the data set x = (xq, ..., Xx,) is analyzed by
computing the test statistic

t(x) = tlxt, ..., Xn),
which summarizes the observations into one number.

The test statistic p-value is the probability with which a data
source distributed according to the null hypothesis produces more
abnormal or equally abnormal test statistic values than t(x).

p-value Interpretation

> 0.10 The observation is not in odds with Hy

~ 0.05 The observation gives some evidence against Hy
< 0.01 The observation gives strong evidence against Hp

Ragnar Freij-Hollanti MS-A0503
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Roadmap to a statistical test.

@ Choose a null hypothesis Hy and a counterhypothesis H;.

o Hp: “the suspect is not guilty"”.
o Hy: “the medicine is not better than placebo”
o Hp: "the octopus can not predict the future”

Choose a test statistic T.

Compute the distribution function of T, assuming that Hy is true.

Check if the observations are exceptional or not, according to this
distribution.

o Not exceptional data — accept null hypothesis.

o Exceptional data — reject null hypothesis, accept counterhypothesis.

Ragnar Freij-Hollanti MS-A0503



tes
Statistics Hypothesis testing
Covariance and correlation

Roadmap to a statistical test.

@ Check if the observations are exceptional or not, according to the
distribution of T assuming Hp.

Concretely, the p-value is

p = P(observations are at least as exceptional as this|Hp).

The test has predetermined significance level « (typically
0.05,0.01,0.005).
The null hypothesis is:

o Accepted if p > «.
o Rejected if p < a.

Ragnar Freij-Hollanti MS-A0503
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Error types

State of the world
Null hypothe- | Null hypothesis
sis is true is false
Test Null hypothesis | Correct Acceptance er-
Result | remains valid conclusion ror
Null hypothesis | Rejection error  Correct
is rejected conclusion

@ The significance level « indicates the probability of rejection error
(before seeing the data).

@ The significance level says nothing about the probability of an
acceptance error.
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Statistics

JELLY BEANS WE FOUNDNO THAT SETLES THAT,
CAUSE. ACNE! LINK BETWEEN :
T HEAR ITS
SCENTISTS ! TELLY BEANS AND & CERTAN CotOR
INVESTIGATE! ANE (P > 0.05), TrHTCﬁUSES I
BUT WeRe |
+es FINE, H"IIINICWT'

@k

Ragnar Freij-Hollanti

MS-A0503




Statistics Hypothesis lestmg

Covariance and correlation

Choosing the right significance level

WE FOUND NO WE FOUND NO WE FOUND NO WE FOUND NO WE FOUNDNO

LINK GETWEEN LINK BETWEEN LINK BETWEEN LINK GETWEEN LINK BETWEEN

PURPLE JELL BROWN JeLLy PiNg JELLY BWE JeLy TEAL TELLY

BEANS PriD ACNE BEPNSMDP&IE BEANS FND ACNE. BEANS ANiD ACNE BEANS PD ACNE

(P>005). (p> oos) (P>0.05). (P>005). (P>0.05).

/ / ! !
WE FOUND NO WE FOUND NO WE FOUND NO WE FOUND NO WE FOUNDNO
LINK BETWEEN LINK BETWEEN LINK GETWEEN LINK GETWEEN LINK BETWEEN
SALMON JELY RED JEwy TURGUOISE JELLY | | MAGENTA TELLY YELLOW TELY
BEANS AID ACNE. BEANS AND ANE BEANS AND ACNE. BEANS AND ACNE. BEFNS AND ACNE
(p>005). (P> 0.05). (p>005). (p>o005). (P>0.05).
! / / ! !
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Statistics

Choosing the right significance level

WE FoUND NG WE FOUND NO WE FounD NO WE FOUND A WE FOUND NO
LINK, GETWEEN LINK, BETWEEN LINK GETWEEN LINK GETWEEN LINK BETWEEN
GREY JELLY TAN JELY AN JELY GREEN JELLY MAVE JELLY
BEANS AHD ANE GEANS AND ANE BEANS AR ANE BEANS PHD ACNE BEANS PHD ACNE
(p>005) (P>005) (P>0.05) (p<0.05), (p>0.05)
! f / oy | !
WE FOUND NG WE FOUND NO WE FounD NG WE FOUND NO WE FOUND NO
LINK, GETWEEN LINK BETWEEN LINK GETWEEN LINK BETWEEN LINK BETWEEN
BeIGE JELy LAc JELy BuAck, JEL FERCH JeELLY ORANGE JELLY
BEANS AND ANE GEANS AND ANE BEANS AND ANE BEFNS PD ACNE BEANS AD ACNE
(p>005) (p>o0.05) (P>0.05), (p>0.05), (p>0.05).
1 f / ! !
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Choosing the right significance level
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Choosing the right significance level

o If many experiments are conducted, then one can expect some of
them to give an “exceptional” outcome.

@ For a result to be worth reporting, the significance level should be
such that the probability of any rejection error in the test is < a.

@ The outcomes about jelly beans can at best be an indicator that
green jelly beans might be interesting to study further with a
stronger test.
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Statistics

Testing the mean value

Example (Coffee machine)

Coffee machine is supposed to produce 10.0 cl coffee cups on
average. The machine was tested by taking a sample of 30 cups
and by measuring the amount of coffee in each cup.

The measurement gave the following values (cl):
11.05 9.65 10.93 9.46 10.27 10.02 10.07 10.74 11.15 10.40 10.12
11.20 10.07 10.27 9.99 9.80 10.83 10.21 11.26 10.11 10.49 10.10
10.15 11.02 10.00 11.68 10.51 11.20 11.29 10.15

Is the machine correctly calibrated?

Sample mean of the data set x is m(x) = 10.473, which differs
from the target value pg = 10.0.

Is this difference statistically significant?

Ragnar Freij-Hollanti MS-A0503



s
ihood estimators
Interval tes
Statistics Hypothesis testing
Covariance and correlation

Testing the mean value

Example (Coffee machine (Continued))
The sample mean of the observed data set x is m(x) = 10.473.

We can analyse the statistical significance of the difference using
N(0, 1)-distribution, if we normalize m(x):

m(x)—po  10473-100
o/v/n  o/N30
Problem: Parameter o is unknown.
Solution: Replace o by estimate s(x) = 0.563.
From the data we can calculate statistic
m(x) —po _ 10.473 —10.0

s(x)/v/n  0563/\/30

t(x) = 4.60.

Ragnar Freij-Hollanti MS-A0503
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Testing the mean value

Example (Coffee machine (Continued))

11.05 9.65 10.93 9.46 10.27 10.02 10.07 10.74 11.15 10.40 10.12 11.20
10.07 10.27 9.99 9.80 10.83 10.21 11.26 10.11 10.49 10.10 10.15 11.02
10.00 11.68 10.51 11.20 11.29 10.15

For this data set m(x) = 10.473, s(x) = 0.563, t(x) = 4.60.

When the initial hypothesis (normal distribution) and the null
hypothesis (i = po) are correct, the (random) statistic
corresponding to the stochastic model is

m(X) — po
s(X)/v/n
If the hypotheses are correct, then typically t(X) =~ 0.

The p-value of Student’s t-test is the probability of the deviation
[t(X)| = 4.60:

t(X) = ~ 1(29).
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Testing the mean value

Example (Coffee machine (Continued))

For this data set m(x) = 10.473, s(x) = 0.563, t(x) = 4.60.

If the initial hypothesis and the null hypothesis are correct, then for
the statistic corresponding to the stochastic model it holds that
|e(X)| > 4.60 with probability

P(|£(X)| > 4.60) = 0.000077.
Such a small p-value means that it is extremely unlikely that the

deviation from 0 is caused by random variaton.

Hence the deviation is statistically significant and we reject the null
hypothesis p = 10.0.

Conclusion: The coffee machine is not calibrated correctly.

Ragnar Freij-Hollanti MS-A0503
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Testing the mean value

Starting points

¢ Data set of a quantitative variable x = (x;,..., Xn).

e Initial hypothesis H: Observed data points are realizations of
independent N(u, o2)-distributed random variables.
e Null hypothesis Hp: 1t = pig
(Alternative hypothesis Hq: p # pg)
Testing

m(x)—pg

¢ Calculate the test statistic from the data: t(x) = S)/Vn

¢ Compute the p-value P(|t(X)| > |t(x)|) from
t(n — 1)-distribution.
Conclusion

e If the p-value is close to zero, then reject the null hypothesis
Hp.

e Otherwise keep the null hypothesis.

Ragnar Freij-Hollanti MS-A0503
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Testing equality

Example (Week 6, Exploratory problem 1)

We have measured the blood pressures of same (eight) patients
before and after they had taken the medicine we are testing. The
test results (mm/Hg) are:

1 2 3 4 5 6 7 8
Before | 134 | 174 | 118 | 152 | 187 | 136 | 125 | 168
After | 128 | 176 | 110 | 149 | 183 | 136 | 118 | 158

Does the medicine lower the blood pressure on average?

Average blood pressure before: m(x(?)) = 149.25

Average blood pressure after: m(x(?)) = 144.75

Hence the blood pressure after taking the medicine is 4.5
units lower

¢ Is this change statistically significant?
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Testing equality

Example (Week 6, Exploratory problem 1 (Continued))

Differences "blood pressure before” - "blood pressure after”:

1 2 3 4 5 [ T 8
Before 134 | 174 | 118 | 152 | 187 | 136 | 125 | 168
After 128 | 176 | 110 | 149 | 183 | 136 | 118 | 158

Difference 6 -2 8 3 4 0 7 10

Initial hypothesis H:

Observed differences d; are realizations of independent
N(p, o2)-distributed random variables.

Null hypothesis Hy: =0
Alternative hypothesis Hy: pu # 0.
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Testing equality

Example (Week 6, Exploratory problem 1 (Continued))

The test statistic, when the initial hypothesis and the null
hypothesis are correct, is

m(D) — 0
s(D)/v/n

Corresponding statistic computed from the data is

t(D) = ~ t(n—1).

m(d)—0 45
s(d)/v/n ~ 407/v8 >3

Since the alternative hypothesis is H; : i # 0, the p-value is

t(d) =

P(|t(D)| > 3.13) = 2+ (1-pt(3.13,7)) = 0.017.
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Testing equality

Example (Week 6, Exploratory problem 1 (Continued))

¢ |s this change statistically significant?
e Null hypothesis (medicine has no impact, i = 0):
¢ is rejected with significance level 2 %
¢ is not rejected with significance level 1 %
¢ In long term, a doctor who rejects null hypotheses with
significance level 2 %, makes wrong conclusions in 2 % of all
those cases in which Hy would have been correct.

Ragnar Freij-Hollanti



tes
Statistics Hypothesis testing
Covariance and correlation

Testing equality

Example (Week 6, Exploratory problem 1 (Continued))

The test statistic, when the initial hypothesis and the null
hypothesis are correct, is

m(D) — 0
s(D)/v/n

Corresponding test statistic computed from data is t(d) = 3.13.

t(D) = ~ t(n—1).
When the alternative hypothesis is H; : i > 0, the p-value is
P(t(D) > 3.13) = 1-pt(3.13,7) = 0.0083.

In this case the null hypothesis Hp : 4 = 0 (medicine has no
impact) can be rejected with the support of alternative hypothesis
on significance level 1 %.
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Testing dependence

Can we predict exam points from exercise points?

id | exam (y) | report | exercises (x) | grade
1 0 0 0 0
2 17 5 20 5
3 15 5 0 3
4 12 6 16 4
5 19 5 20 5
6 21 6 17 5
7 0 0 3 0
8 13 6 9 4
9 19 6 12 5
10 0 0 0 0
11 15 5 19 5
12 12 6 0 3
13 13 5 17 4

Input (explanatory): x = (0,20,0,16,20,17,3,9,12,0,19,0,17)
Output (dependent): y = (0,17,15,12,19,21,0,13,19,0, 15,12,13)
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Statistics
Covariance and correlation

Sample covariance

The sample covariance of data vectors x and y is defined by
s(x, ) Z(xf x))(yi — m(y)),

where m(x) and m(y) are sample means of data vectors.

Remark:
2 . .
e s(x,x) = s°(x) is the sample variance of x
e s(y,y) = s?(y) is the sample variance of y

o /s(x,x) = s(x) is the sample standard deviation of x
o /s(y,y) =s(y) is the sample standard deviation of y
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Sample covariance

id | exam (y) | report | exercises (x) | grade
1 0 0 0 0
2 17 5 20 5
3 15 5 0 3
4 12 6 16 4
5 19 5 20 5
6 21 6 17 5
7 0 0 3 0
8 13 6 9 4
9 19 6 12 5
10 0 0 0 0
11 15 5 19 5
12 12 6 0 3
13 13 5 17 4

¢ The sample covariance s(x,y) = cov(x,y) = 43.67

e We need to normalise this to be able to interpret it.
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Sample covariance

Pearson's sample correlation of data vectors x and
y is defined by

r(x,y) = s(x,y)) e [-1,+1]

s(x)s(y

Karl Pearson FRS
1857-1936

Pearson's correlation measures linear dependence:
o If r(x,y) > 0, then x and y are positively correlated
o If r(x,y) =0, then x and y are uncorrelated

o If r(x,y) <0, then x and y are negatively correlated
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Sample covariance

id | exam (v) | report | exercises (x) | grade
1 0 0 0 0
2 17 5 20 5
3 15 5 0 3
4 12 6 16 4
5 19 5 20 5
6 21 6 17 5
7 0 0 3 0
8 13 <] 9 4
9 19 6 12 5
10 0 0 0 0
11 15 5 19 5
12 12 6 0 3
13 13 5 17 4

e Pearson's sample correlation r(x,y) = cor(x,y) = 0.694

* Exercise points and exam points appears to be positively
correlated
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Covariance and correlation

Data points: (x1,¥1); - - - (Xn, ¥n)
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Sample covariance

Fitted values: v; = g + B1x;
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Sample covariance

Residuals: e = y; — y;

18
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Sample covariance

How to choose the optimal slope 31 and constant 35?
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Sum of squares of residuals of line y = 3y + [F1x

n

SSE(fo, 41) Z(y. 9i)* =" (vi = o — Bixi)?

i=1

Least squares method

Find (30, 81) such that sum of squared residuals is minimized.
Solution: Differentiate SSE(3g, 31) with respect to Fg and 31, set
both to zero and solve these equations.

Answer: (3o, 31) = (bo, b1), where

by = r(x,y)%,

by = m(y) — bym(x).
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Sample covariance

id | exam (y) [ report | exercises (x) grade
1 0 0 0
2 17 5 20 5
3 15 5 0 3
4 12 6 16 4
5 19 5 20 5
6 21 6 17 5
7 0 0 3 0
8 13 6 9 4
9 19 6 12 5
10 0 0 0 0
11 15 5 19 5
12 12 6 0 3
13 13 5 17 4

Sample means: m(x) =10.2, m(y) = 12.0
Sample standard deviations: s(x) = 8.51, s(y) = 7.39

e Pearson's sample correlation r(x,y) = 0.694
o b = r(x,y)% = 0.60
® by = m(y) — bym(x) = 5.82
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