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Lecture 1 overview1

Practical matters

Structure, workload, grading
Exercise format
Student feedback from 2018

Course overview

Basic probability calculus (Barber, Ch. 1)

Basic graph concepts

1These slides build upon the book Bayesian Reasoning and Machine Learning and
the associated teaching materials. The book and the demos can be downloaded from
www.cs.ucl.ac.uk/staff/D.Barber/brml.
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Course structure

Structure

Lectures 10× 2 hours
Exercise sessions (1+ 9)× 2 hours
See Timetable in myCourses/Materials

Grading based on

Exam: 70% of the total weight
Exercises: 30%
Preliminary boundaries: 1:50%, 2:60%, 3:70%, 4:80%, 5:90%
Minimum required: 1/2 of the exam points, 1/3 of exercise points
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Course books

Note: Bayesian Reasoning and Machine Learning is freely available
for download at www.cs.ucl.ac.uk/staff/D.Barber/brml
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Estimated workload

Lectures: 10× 2h
Preparation for lectures, reading the book (∼ 200 pages): 9× 4h
Exercise sessions: 9× 2h
Doing the exercises: 9× 4.5h
Exercise 0, self-study, introduction to Python: 5.5h

Preparing for the exam: 11h

Exam: 4h

Total 135h. As credits 135/27 = 5cr.
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Exercises

Exercises must be returned to MyCourses by the deadline

A single PDF
Grading of the exercises (2p→done, almost correct; 1p→done, but
something clearly missing/incorrect; 0p→not done or completely
incorrect)
Exercises are graded by the TAs, not corrected → Always make sure
afterwards you know the correct answer, by attending the exercise
sessions or going through the model solutions.

Exercise session format

help for getting started with next week’s exercises
possibility to ask about next week’s exercises or previous week’s
solutions
two assistants present
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Relation to other courses
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Student feedback from 2018

About prerequisites

’Bayesian Data Analysis should be listed as a prerequisite’
→See previous slide.

About exam

’Exam was diffi cult’
→Exam duration increased from 3 to 4 hours.
→Overall level of performance was (and will be) taken into account in
grading.
→Questions in the exam will be similar to the exercise questions. Best
way to prepare is to do the exercises.
→Separate recap lecture added to the end of the course.
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Student feedback from 2018

About diffi culty in general

’At least to me there was steep curve in the topic diffi culty starting
from lecture 5. Compress lectures 1-4 and spend more time on the
"new stuff"
→Take a full advantage of the Exercise sessions (also and especially on
the 2nd half)
→Ask clarifications on the lectures

About exercises

’Participating in the exercise sessions was extremely useful and the
course assistants were great’
’The exercises really helped me to understand the concepts related to
this course, and I think that they played a huge role in my learning’
’TAs from the exercise session were very helpful and stayed often (a
lot) longer!’
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Student feedback from 2018, overview

Overall assessment

I will benefit from things learnt on the course
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Probabilistic modeling overview (1/2)

The goal of probabilistic
modeling is to answer a
question about the data:

Classify the samples into
groups
Create prediction for future
observations
Select between competing
hypotheses
Estimate a parameter, such as
the mean, of the population
...
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Probabilistic modeling overview (2/2)

Probabilistic modeling in a nutshell
1 Select a model
2 Infer the parameters of the model (train/fit the model)
3 Use the fitted model to answer the question of interest

Usually several models are considered, requiring model selection.
For example: fn(x) = a0 + a1x + a2x2 + . . .+ anxn
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Course contents (1/2)

Ingredients of probabilistic modeling
Models: Bayesian networks, Sparse Bayesian linear regression,
Gaussian mixture models, latent linear models
Methods for inference: maximum likelihood, maximum a posteriori
(MAP), Laplace approximation, expectation maximization (EM),
Variational Bayes (VB), Stochastic variational inference (SVI)
Ways to select between models

Box’s loop (Blei, 2014)
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Course contents (2/2)

A brief introduction to probabilistic programming using Tensorflow
and Edward2.

2Tensorflow Probability is another very recent tool that incorporates also the
functionality of Edward, see: https://www.tensorflow.org/probability/.
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Role of probabilistic machine learning today

Keynote at NIPS in December 2017 by Yee Whye Teh

https://www.youtube.com/watch?v=9saauSBgmcQ
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Basic probability calculus

Marginalization

Independence

Conditional distribution

Conditional independence

Continuous random variables

(To recap these, see Additional Reading in myCourses/Materials)
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Notation (1/2)

Random variables: X ,Y ,Z , . . .
Values these random variables can take: x , y , z , . . .
Probability

The following notations are used interchangeably

p(X = x) = pX (x) = p(x)

All are interpreted as the probability that variable X is in state x
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Notation (2/2)

Domain

dom(X ) denotes all possible states for variable X .

Distribution of a variable X consists of

its domain dom(X )
and full specification of probability values pX (x), for all possible
x ∈ dom(X )

Normalization

The summation over all the states

∑
x∈dom(X )

p(X = x) = 1

The sum can be written as: ∑x p(x) = 1
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Example - probability table

B M K p(b,m, k)
1 1 1 0.012
1 1 0 0.108
1 0 1 0.288
1 0 0 0.192
0 1 1 0.016
0 1 0 0.064
0 0 1 0.096
0 0 0 0.224

The probability table lists the
probabilities of all possible
combinations of the random variables.

The joint distribution of B,M and K

For example

pB ,M ,K (1, 1, 0) = p(B = 1,M = 1,K = 0)

= 0.108

Modified from Example 1.3 "Inspector
Clouseau"
M =’Maid is the murderer’
B =’Butler is the murderer’
K =’Knife is the murder weapon’
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Marginalization

Given a joint dist pX ,Y (x , y), the marginal dist of X is defined by

pX (x) = ∑
y
pX ,Y (x , y)

More generally,

p(x1, . . . , xi−1, xi+1, . . . , xn) = ∑
xi

p(x1, . . . , xn)
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Example - marginalization (1/2)

B M K p(b,m, k)
1 1 1 0.012
1 1 0 0.108
1 0 1 0.288
1 0 0 0.192
0 1 1 0.016
0 1 0 0.064
0 0 1 0.096
0 0 0 0.224

What is the marginal distribution of B
and M?
We need to compute pB ,M (b,m), for
all possible b and m.
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Example - marginalization (2/2)

Use

pB ,M (b,m) =
1

∑
k=0

pB ,M ,K (b,m, k)

For example:

pB ,M (0, 0) = pB ,M ,K (0, 0, 0) + pB ,M ,K (0, 0, 1)

= 0.096+ 0.224 = 0.32

Doing this for all B,M combinations, we get the marginal probability
table

B M p(b,m)
1 1 0.12
1 0 0.48
0 1 0.08
0 0 0.32
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Independence

Random variables X and Y are independent if

pX ,Y (x , y) = pX (x)pY (y)

for all x and y .

Intuitively, this means that knowing the value of X does not provide
any information about the value of Y .

Notation: X ⊥⊥ Y
More generally: A = {A1, . . . ,Ak} and B = {B1, . . . ,Bl} are
independent if

pA1,...,Ak ,B1,...,Bl (a1, . . . , ak , b1, . . . , bl )
= pA1,...,Ak (a1, . . . , ak )pB1,...,Bl (b1, . . . , bl )
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Example - Independence (1/2)

B M p(b,m)
1 1 0.12
1 0 0.48
0 1 0.08
0 0 0.32

Are B and M independent?
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Example - Independence (2/2)

Marginal distributions

B p(b)
1 0.6
0 0.4

and
M p(m)
1 0.2
0 0.8

Direct computation gives

B M p(b)p(m) p(b,m)
1 1 0.12 0.12
1 0 0.48 0.48
0 1 0.08 0.08
0 0 0.32 0.32

Hence, B and M are (marginally) independent
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Statistical vs. causal independence

D=’number of people drowned’, A=’amount of ice-cream sold’

Are D and A independent?
Are D and A causally dependent?
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Conditional distribution

Conditional distribution

pX |Y (x |y) =
pX ,Y (x , y)
pY (y)

specifies the probability of each possible value x of X given that we
have observed variable Y in state y .
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Example - Conditional distribution

For example:

p(K = 1|B = 1,M = 1) =
p(B = 1,M = 1,K = 1)

p(B = 1,M = 1)
= 0.1

p(K = 0|B = 1,M = 1) = 0.9

All conditional probabilities in the last column

B M K p(b,m, k) p(k |b,m)
1 1 1 0.012 0.1
1 1 0 0.108 0.9
1 0 1 0.288 0.6
1 0 0 0.192 0.4
0 1 1 0.016 0.2
0 1 0 0.064 0.8
0 0 1 0.096 0.3
0 0 0 0.224 0.7
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Conditional independence

X ⊥⊥ Y |Z denotes that variables X and Y are conditionally
independent of each other, given the state of variable Z . This is
formally defined by condition

pX ,Y |Z (x , y |z) = pX |Z (x |z)pY |Z (y |z)

for all states x , y , z of variables X ,Y ,Z .

Intuitively, this means that if we know the value of Z , knowing in
addition the value of Y does not provide any information about the
value of X . Indeed, provided p(y , z) > 0, we have

X ⊥⊥ Y |Z =⇒ pX |Y ,Z (x |y , z) = pX |Z (x |z)
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Conditional independence

X ⊥⊥ Y |Z =⇒ pX |Y ,Z (x |y , z) = pX |Z (x |z)

Proof

p(x |y , z) = p(x , y , z)
p(y , z)

=
p(x , y |z)p(z)
p(z)p(y |z)

=
p(x |z)p(y |z)p(z)
p(z)p(y |z) = p(x |z)

The general chain rule of probability

p(x , y , z) = p(x |y , z)p(y |z)p(z),

follows from iterative use of the definition of conditional probability.
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Example - Conditional independence (1/3)

B M K p(b,m, k)
1 1 1 0.012
1 1 0 0.108
1 0 1 0.288
1 0 0 0.192
0 1 1 0.016
0 1 0 0.064
0 0 1 0.096
0 0 0 0.224

Are M and B conditionally
independent, given K?

We need to compare

pM |K (m|k)pB |K (b|k)
pB ,M |K (b,m|k)

for all m, b, k .
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Example - Conditional independence (2/3)

For example,

p(B = 1,M = 1|K = 1) = p(B = 1,M = 1,K = 1)
p(K = 1)

=
0.012

0.012+ 0.288+ 0.016+ 0.096
≈ 0.0291

Similarly,

p(M = 1|K = 1) = p(M = 1,K = 1)
p(K = 1)

=
0.012+ 0.016

0.012+ 0.288+ 0.016+ 0.096
≈ 0.0508

and

p(B = 1|K = 1) = . . . ≈ 0.7110
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Example - Conditional independence (3/3)

B M K p(b,m|k) p(b|k) p(m|k) p(b|k)p(m|k)
1 1 1 0.029 0.711 0.051 0.036
0 1 1 · · · · · · · · · · · ·
1 0 1
0 0 1
1 1 0
0 1 0
1 0 0
0 0 0

Because 0.029 6= 0.036, it follows that B and M are not conditionally
independent given K .
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Intuition for independence and conditional independence
(1/2)

Let X1,X2, . . . ,Xn denote the cumulative sum of n dice throws, such
that dom(X1) = {1, . . . , 6}, dom(X2) = {2, . . . , 12}, etc.

Is Xn+1 independent of Xn−1?
Is Xn+1 conditionally independent of Xn−1 given Xn?

X=’Location of an airplane now’, Y=’Location of the plane 15s ago’,
Z=’Location 15s from now’

Is Y independent of Z?
Is Y conditionally independent of Z given X ?
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Intuition for independence and conditional independence
(2/2)

S=’sunshine’, D=’number of people drowned’, A=’amount of
ice-cream sold’

Are D and A independent?
Are D and A conditionally independent given S?

A=’The alarm is on’, B=There is a burglar in the house”, T=’A
truck passes the house’

Suppose that the alarm can be triggered either by a burglar or by a
passing truck
Are B and T independent?
Are B and T conditionally independent given A
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Continuous random variables (1/3)

Probability density function (pdf) for a continuous variable X , fX ()∫
x∈R

fX (x)dx = 1

p(X ∈ [a, b]) =
∫ b

x=a
fX (x)dx

Cumulative distribution function (cdf)

FX (x) = p(X ≤ x) =
∫ x

t=−∞
fX (t)dt

N(µ, σ2) pdf (Wikip.) N(µ, σ2) cdf (Wikip.)
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Continuous random variables (2/3)

Concepts presented can be generalized to continuous random variables

Marginalization

Discrete: pX (x) = ∑y pX ,Y (x , y)

Continuous: fX (x) =
∫
y fX ,Y (x , y)dy

Expected value

Discrete: E (X ) = ∑x x pX (x)

Continuous: E (X ) =
∫
x x fX (x) dx
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Continuous random variables (3/3)

Conditional distribution

fY |X (y |x) =
fX ,Y (x , y)
fX (x)

(conditional) independence: X ⊥⊥ Y |Z , if

fX ,Y |Z (x , y |z) = fX |Z (x |z)fY |Z (y |z)
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Basic graph definitions

A graph consists of nodes (vertices) and undirected of directed
edges (links) between nodes.
A path from Xi to Xj is a sequence of connected nodes starting at Xi
and ending at Xj .
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Directed graphs

A Directed Acyclic Graph (DAG) is a directed graph without cycles
Parents, Children, Ancestors, Descendants,... (see Ch. 2)
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Important points

marginalization

conditional distribution

conditional/marginal independence

probability density function, cumulative distribution function

Basic graph concepts
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