Advanced probabilistic methods Lecture 1

Pekka Marttinen

Aalto University

January, 2019

Pekka Marttinen (Aalto University)

- Practical matters
 - Structure, workload, grading
 - Exercise format
 - Student feedback from 2018
- Course overview
- Basic probability calculus (Barber, Ch. 1)
- Basic graph concepts

Pekka Marttinen (Aalto University)

¹These slides build upon the book *Bayesian Reasoning and Machine Learning* and the associated teaching materials. The book and the demos can be downloaded from *www.cs.ucl.ac.uk/staff/D.Barber/brml.*

Structure

- Lectures 10×2 hours
- $\bullet~$ Exercise sessions $(1+9)\times 2$ hours
- See Timetable in myCourses/Materials

Grading based on

- Exam: 70% of the total weight
- Exercises: 30%
- Preliminary boundaries: 1:50%, 2:60%, 3:70%, 4:80%, 5:90%
- Minimum required: 1/2 of the exam points, 1/3 of exercise points

• Note: *Bayesian Reasoning and Machine Learning* is freely available for download at *www.cs.ucl.ac.uk/staff/D.Barber/brml*

- Lectures: $10 \times 2h$
- Preparation for lectures, reading the book (\sim 200 pages): 9 \times 4h
- Exercise sessions: 9 × 2h
- Doing the exercises: $9 \times 4.5h$
- Exercise 0, self-study, introduction to Python: 5.5h
- Preparing for the exam: 11h
- Exam: 4h
- Total 135h. As credits 135/27 = 5cr.

• Exercises must be returned to MyCourses by the deadline

- A single PDF
- Grading of the exercises (2p→done, almost correct; 1p→done, but something clearly missing/incorrect; 0p→not done or completely incorrect)
- Exercises are graded by the TAs, not corrected → Always make sure afterwards you know the correct answer, by attending the exercise sessions or going through the model solutions.
- Exercise session format
 - help for getting started with next week's exercises
 - possibility to ask about next week's exercises or previous week's solutions
 - two assistants present

Relation to other courses

About prerequisites

 'Bayesian Data Analysis should be listed as a prerequisite' →See previous slide.

About exam

- 'Exam was difficult'
 - \rightarrow Exam duration increased from 3 to 4 hours.

 $\rightarrow \textsc{Overall}$ level of performance was (and will be) taken into account in grading.

 \rightarrow Questions in the exam will be similar to the exercise questions. Best way to prepare is to do the exercises.

 ${\rightarrow}\mathsf{Separate}$ recap lecture added to the end of the course.

- About difficulty in general
 - 'At least to me there was steep curve in the topic difficulty starting from lecture 5. Compress lectures 1-4 and spend more time on the "new stuff"

 $\rightarrow \mathsf{Take}$ a full advantage of the Exercise sessions (also and especially on the 2nd half)

 \rightarrow Ask clarifications on the lectures

- About exercises
 - 'Participating in the exercise sessions was extremely useful and the course assistants were great'
 - 'The exercises really helped me to understand the concepts related to this course, and I think that they played a huge role in my learning'
 - 'TAs from the exercise session were very helpful and stayed often (a lot) longer!'

Student feedback from 2018, overview

• Overall assessment

• I will benefit from things learnt on the course

Pekka Marttinen (Aalto University)

January, 2019 10 / 41

- The goal of **probabilistic modeling** is to answer a question about the data:
 - Classify the samples into groups
 - Create prediction for future observations
 - Select between competing hypotheses
 - Estimate a parameter, such as the mean, of the population

۰...

Probabilistic modeling overview (2/2)

- Probabilistic modeling in a nutshell
 - Select a model
 - Infer the parameters of the model (train/fit the model)
 - Use the fitted model to answer the question of interest
- Usually several models are considered, requiring model selection.
- For example: $f_n(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$

Course contents (1/2)

• Ingredients of probabilistic modeling

- **Models**: Bayesian networks, Sparse Bayesian linear regression, Gaussian mixture models, latent linear models
- Methods for inference: maximum likelihood, maximum a posteriori (MAP), Laplace approximation, expectation maximization (EM), Variational Bayes (VB), Stochastic variational inference (SVI)
- Ways to select between models

Course contents (2/2)

• A brief introduction to probabilistic programming using Tensorflow and Edward².

Google

²Tensorflow Probability is another very recent tool that incorporates also the functionality of Edward, see: https://www.tensorflow.org/probability/. \equiv + < \equiv +

Pekka Marttinen (Aalto University)

Advanced probabilistic methods

January, 2019 14 / 41

Role of probabilistic machine learning today

• Keynote at NIPS in December 2017 by Yee Whye Teh

https://www.youtube.com/watch?v=9saauSBgmcQ

Image: Image:

- Marginalization
- Independence
- Conditional distribution
- Conditional independence
- Continuous random variables

(To recap these, see Additional Reading in myCourses/Materials)

- Random variables: X, Y, Z, ...
- Values these random variables can take: x, y, z, ...
- Probability
 - The following notations are used interchangeably

$$p(X = x) = p_X(x) = p(x)$$

• All are interpreted as the probability that variable X is in state x

- Domain
 - dom(X) denotes all possible states for variable X.
- Distribution of a variable X consists of
 - its domain dom(X)
 - and full specification of probability values $p_X(x)$, for all possible $x \in dom(X)$
- Normalization
 - The summation over all the states

$$\sum_{x \in dom(X)} p(X = x) = 1$$

• The sum can be written as: $\sum_{x} p(x) = 1$

Example - probability table

В	М	Κ	p(b, m, k)
1	1	1	0.012
1	1	0	0.108
1	0	1	0.288
1	0	0	0.192
0	1	1	0.016
0	1	0	0.064
0	0	1	0.096
0	0	0	0.224

- The probability table lists the probabilities of all possible combinations of the random variables.
- The *joint* distribution of *B*, *M* and *K*

• For example

$$p_{B,M,K}(1,1,0) = p(B=1, M=1, K=0)$$

= 0.108

• Modified from Example 1.3 "Inspector Clouseau"

M = 'Maid is the murderer'

B = 'Butler is the murderer'

K = 'Knife is the murder weapon'

• Given a joint dist $p_{X,Y}(x, y)$, the marginal dist of X is defined by

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$

• More generally,

$$p(x_1,...,x_{i-1},x_{i+1},...,x_n) = \sum_{x_i} p(x_1,...,x_n)$$

- В K p(b, m, k)Μ 0.012 1 1 1 1 1 0 0.1081 0 1 0.288 1 0 0 0.192 0 1 0.016 1 0 1 0 0.064 0 0 1 0.096 0 0 0 0.224
- What is the marginal distribution of *B* and *M*?
- We need to compute $p_{B,M}(b, m)$, for all possible *b* and *m*.

Example - marginalization (2/2)

Use

$$p_{B,M}(b,m) = \sum_{k=0}^{1} p_{B,M,K}(b,m,k)$$

• For example:

$$p_{B,M}(0,0) = p_{B,M,K}(0,0,0) + p_{B,M,K}(0,0,1)$$

= 0.096 + 0.224 = 0.32

• Doing this for all *B*, *M* combinations, we get the marginal probability table

В	Μ	p(b, m)
1	1	0.12
1	0	0.48
0	1	0.08
0	0	0.32

• Random variables X and Y are independent if

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$

for all x and y.

- Intuitively, this means that knowing the value of X does not provide any information about the value of Y.
- Notation: X ⊥ Y
- More generally: $\mathcal{A} = \{A_1, \dots, A_k\}$ and $\mathcal{B} = \{B_1, \dots, B_l\}$ are independent if

$$p_{A_1,...,A_k,B_1,...,B_l}(a_1,...,a_k,b_1,...,b_l) = p_{A_1,...,A_k}(a_1,...,a_k)p_{B_1,...,B_l}(b_1,...,b_l)$$

В	Μ	p(b,m)
1	1	0.12
1	0	0.48
0	1	0.08
0	0	0.32

• Are *B* and *M* independent?

Marginal distributions

В	p(b)		Μ	p(m)
1	0.6	and	1	0.2
0	0.4		0	0.8

Direct computation gives

В	Μ	p(b)p(m)	p(b,m)
1	1	0.12	0.12
1	0	0.48	0.48
0	1	0.08	0.08
0	0	0.32	0.32

• Hence, B and M are (marginally) independent

- D='number of people drowned', A='amount of ice-cream sold'
 - Are D and A independent?
 - Are D and A causally dependent?

Conditional distribution

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

specifies the probability of each possible value x of X given that we have observed variable Y in state y.

Example - Conditional distribution

• For example:

$$p(K = 1|B = 1, M = 1) = \frac{p(B = 1, M = 1, K = 1)}{p(B = 1, M = 1)} = 0.1$$

 $p(K = 0|B = 1, M = 1) = 0.9$

• All conditional probabilities in the last column

В	Μ	Κ	p(b, m, k)	p(k b,m)
1	1	1	0.012	0.1
1	1	0	0.108	0.9
1	0	1	0.288	0.6
1	0	0	0.192	0.4
0	1	1	0.016	0.2
0	1	0	0.064	0.8
0	0	1	0.096	0.3
0	0	0	0.224	0.7

 X ⊥ Y | Z denotes that variables X and Y are conditionally independent of each other, given the state of variable Z. This is formally defined by condition

$$p_{X,Y|Z}(x,y|z) = p_{X|Z}(x|z)p_{Y|Z}(y|z)$$

for all states x, y, z of variables X, Y, Z.

• Intuitively, this means that if we know the value of Z, knowing in addition the value of Y does not provide any information about the value of X. Indeed, provided p(y, z) > 0, we have

$$X \perp Y | Z \Longrightarrow p_{X|Y,Z}(x|y,z) = p_{X|Z}(x|z)$$

$$X \perp Y | Z \Longrightarrow p_{X|Y,Z}(x|y,z) = p_{X|Z}(x|z)$$

Proof

$$p(x|y, z) = \frac{p(x, y, z)}{p(y, z)} = \frac{p(x, y|z)p(z)}{p(z)p(y|z)}$$
$$= \frac{p(x|z)p(y|z)p(z)}{p(z)p(y|z)} = p(x|z)$$

• The general chain rule of probability

$$p(x, y, z) = p(x|y, z)p(y|z)p(z),$$

follows from iterative use of the definition of conditional probability.

- В Κ p(b, m, k)Μ 1 1 1 0.012 1 0.108 1 0 1 0 1 0.288 1 0 0 0.1920 1 0.016 1 0 1 0 0.064 0 0 1 0.096 0 0 0 0.224
- Are *M* and *B* conditionally independent, given *K*?
- We need to compare
 - $p_{M|K}(m|k)p_{B|K}(b|k)$
 - $p_{B,M|K}(b,m|k)$

for all m, b, k.

Example - Conditional independence (2/3)

• For example,

$$p(B = 1, M = 1 | K = 1) = \frac{p(B = 1, M = 1, K = 1)}{p(K = 1)}$$
$$= \frac{0.012}{0.012 + 0.288 + 0.016 + 0.096} \approx 0.0291$$

• Similarly,

$$p(M = 1 | K = 1) = \frac{p(M = 1, K = 1)}{p(K = 1)}$$
$$= \frac{0.012 + 0.016}{0.012 + 0.288 + 0.016 + 0.096} \approx 0.0508$$

and

$$p(B=1|K=1)=\ldots\approx 0.7110$$

Pekka Marttinen (Aalto University)

э

В $K \quad p(b,m|k) \quad p(b|k) \quad p(m|k) \quad p(b|k)p(m|k)$ Μ 0.029 0.711 0.051 0.036 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0

• Because 0.029 \neq 0.036, it follows that *B* and *M* are not conditionally independent given *K*.

Intuition for independence and conditional independence $\left(1/2 \right)$

- Let X_1, X_2, \ldots, X_n denote the cumulative sum of n dice throws, such that $dom(X_1) = \{1, \ldots, 6\}$, $dom(X_2) = \{2, \ldots, 12\}$, etc.
 - Is X_{n+1} independent of X_{n-1} ?
 - Is X_{n+1} conditionally independent of X_{n-1} given X_n ?
- X='Location of an airplane now', Y='Location of the plane 15s ago', Z='Location 15s from now'
 - Is Y independent of Z?
 - Is Y conditionally independent of Z given X?

Intuition for independence and conditional independence $\left(2/2\right)$

- S='sunshine', D='number of people drowned', A='amount of ice-cream sold'
 - Are *D* and *A* independent?
 - Are D and A conditionally independent given S?
- A='The alarm is on', B=There is a burglar in the house", T='A truck passes the house'
 - Suppose that the alarm can be triggered either by a burglar or by a passing truck
 - Are *B* and *T* independent?
 - Are B and T conditionally independent given A

Continuous random variables (1/3)

• Probability density function (pdf) for a continuous variable X, $f_X()$

$$\int_{x \in \mathcal{R}} f_X(x) dx = 1$$
$$p(X \in [a, b]) = \int_{x=a}^{b} f_X(x) dx$$

Cumulative distribution function (cdf)

$$F_X(x) = p(X \le x) = \int_{t=-\infty}^{x} f_X(t) dt$$

σ²=0.2, - $\sigma^2 = 1.0,$

 $\sigma^2 = 5.0$

- Concepts presented can be generalized to continuous random variables
- Marginalization
 - Discrete: $p_X(x) = \sum_y p_{X,Y}(x,y)$
 - Continuous: $f_X(x) = \int_y f_{X,Y}(x,y) dy$
- Expected value
 - Discrete: $E(X) = \sum_{x} x p_X(x)$
 - Continuous: $E(X) = \int_X x f_X(x) dx$

Conditional distribution

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

• (conditional) independence: $X \perp Y | Z$, if

$$f_{X,Y|Z}(x,y|z) = f_{X|Z}(x|z)f_{Y|Z}(y|z)$$

Basic graph definitions

- A graph consists of **nodes** (vertices) and undirected of directed **edges** (links) between nodes.
- A path from X_i to X_j is a sequence of connected nodes starting at X_i and ending at X_j.

A Directed Acyclic Graph (DAG) is a directed graph without cycles
Parents, Children, Ancestors, Descendants,... (see Ch. 2)

- marginalization
- conditional distribution
- conditional/marginal independence
- probability density function, cumulative distribution function
- Basic graph concepts