Advanced probabilistic methods Lecture 1

Pekka Marttinen

Aalto University

January, 2019

Lecture 1 overview ${ }^{1}$

- Practical matters
- Structure, workload, grading
- Exercise format
- Student feedback from 2018
- Course overview
- Basic probability calculus (Barber, Ch. 1)
- Basic graph concepts
${ }^{1}$ These slides build upon the book Bayesian Reasoning and Machine Learning and the associated teaching materials. The book and the demos can be downloaded from www.cs.ucl.ac.uk/staff/D.Barber/brml.

Course structure

- Structure
- Lectures 10×2 hours
- Exercise sessions $(1+9) \times 2$ hours
- See Timetable in myCourses/Materials
- Grading based on
- Exam: 70% of the total weight
- Exercises: 30\%
- Preliminary boundaries: $1: 50 \%, 2: 60 \%, 3: 70 \%, 4: 80 \%, 5: 90 \%$
- Minimum required: $1 / 2$ of the exam points, $1 / 3$ of exercise points

Course books

$$
\begin{aligned}
& \text { uncertainty time series inference } \\
& \text { BAYESIAN } \\
& \text { REASONING } \\
& \text { and algorithms } \\
& \text { MACHINE } \\
& \text { LEARNING }
\end{aligned}
$$

- Note: Bayesian Reasoning and Machine Learning is freely available for download at www.cs.ucl.ac.uk/staff/D.Barber/brml

Estimated workload

- Lectures: $10 \times 2 \mathrm{~h}$
- Preparation for lectures, reading the book (~ 200 pages): $9 \times 4 h$
- Exercise sessions: $9 \times 2 \mathrm{~h}$
- Doing the exercises: $9 \times 4.5 h$
- Exercise 0, self-study, introduction to Python: 5.5h
- Preparing for the exam: 11 h
- Exam: 4h
- Total 135 h. As credits $135 / 27=5 \mathrm{cr}$.

Exercises

- Exercises must be returned to MyCourses by the deadline
- A single PDF
- Grading of the exercises ($\mathbf{2 p} \rightarrow$ done, almost correct; $\mathbf{1 p} \rightarrow$ done, but something clearly missing/incorrect; $\mathbf{0 p} \rightarrow$ not done or completely incorrect)
- Exercises are graded by the TAs, not corrected \rightarrow Always make sure afterwards you know the correct answer, by attending the exercise sessions or going through the model solutions.
- Exercise session format
- help for getting started with next week's exercises
- possibility to ask about next week's exercises or previous week's solutions
- two assistants present

Relation to other courses

Student feedback from 2018

- About prerequisites
- 'Bayesian Data Analysis should be listed as a prerequisite' \rightarrow See previous slide.
- About exam
- 'Exam was difficult'
\rightarrow Exam duration increased from 3 to 4 hours.
\rightarrow Overall level of performance was (and will be) taken into account in grading.
\rightarrow Questions in the exam will be similar to the exercise questions. Best way to prepare is to do the exercises.
\rightarrow Separate recap lecture added to the end of the course.

Student feedback from 2018

- About difficulty in general
- 'At least to me there was steep curve in the topic difficulty starting from lecture 5. Compress lectures 1-4 and spend more time on the "new stuff"
\rightarrow Take a full advantage of the Exercise sessions (also and especially on the 2nd half)
\rightarrow Ask clarifications on the lectures
- About exercises
- 'Participating in the exercise sessions was extremely useful and the course assistants were great'
- 'The exercises really helped me to understand the concepts related to this course, and I think that they played a huge role in my learning'
- 'TAs from the exercise session were very helpful and stayed often (a lot) longer!'

Student feedback from 2018, overview

- Overall assessment

- I will benefit from things learnt on the course

Probabilistic modeling overview (1/2)

- The goal of probabilistic modeling is to answer a question about the data:
- Classify the samples into groups
- Create prediction for future observations
- Select between competing hypotheses
- Estimate a parameter, such as the mean, of the population
- ...

Probabilistic modeling overview (2/2)

- Probabilistic modeling in a nutshell
(1) Select a model
(2) Infer the parameters of the model (train/fit the model)
(3) Use the fitted model to answer the question of interest
- Usually several models are considered, requiring model selection.
- For example: $f_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$

Course contents (1/2)

- Ingredients of probabilistic modeling
- Models: Bayesian networks, Sparse Bayesian linear regression, Gaussian mixture models, latent linear models
- Methods for inference: maximum likelihood, maximum a posteriori (MAP), Laplace approximation, expectation maximization (EM), Variational Bayes (VB), Stochastic variational inference (SVI)
- Ways to select between models

Box's loop (Blei, 2014)

Course contents (2/2)

- A brief introduction to probabilistic programming using Tensorflow and Edward ${ }^{2}$.

Google

${ }^{2}$ Tensorflow Probability is another very recent tool that incorporates also the functionality of Edward, see: https://www.tensorflow.org/probability/.

Role of probabilistic machine learning today

- Keynote at NIPS in December 2017 by Yee Whye Teh

https://www.youtube.com/watch?v=9saauSBgmcQ

Basic probability calculus

- Marginalization
- Independence
- Conditional distribution
- Conditional independence
- Continuous random variables
(To recap these, see Additional Reading in myCourses/Materials)

Notation (1/2)

- Random variables: X, Y, Z, \ldots
- Values these random variables can take: x, y, z, \ldots
- Probability
- The following notations are used interchangeably

$$
p(X=x)=p_{X}(x)=p(x)
$$

- All are interpreted as the probability that variable X is in state x

Notation (2/2)

- Domain
- $\operatorname{dom}(X)$ denotes all possible states for variable X.
- Distribution of a variable X consists of
- its domain $\operatorname{dom}(X)$
- and full specification of probability values $p_{X}(x)$, for all possible $x \in \operatorname{dom}(X)$
- Normalization
- The summation over all the states

$$
\sum_{x \in \operatorname{dom}(X)} p(X=x)=1
$$

- The sum can be written as: $\sum_{x} p(x)=1$

Example - probability table

- The probability table lists the probabilities of all possible

B	M	K	$p(b, m, k)$
1	1	1	0.012
1	1	0	0.108
1	0	1	0.288
1	0	0	0.192
0	1	1	0.016
0	1	0	0.064
0	0	1	0.096
0	0	0	0.224

- The joint distribution of B, M and K
- For example

$$
\begin{aligned}
p_{B, M, K}(1,1,0) & =p(B=1, M=1, K=0) \\
& =0.108
\end{aligned}
$$

- Modified from Example 1.3 "Inspector Clouseau"
$M=$ 'Maid is the murderer'
$B=$ 'Butler is the murderer'
$K=$ 'Knife is the murder weapon'

Marginalization

- Given a joint dist $p_{X, Y}(x, y)$, the marginal dist of X is defined by

$$
p_{X}(x)=\sum_{y} p_{X, Y}(x, y)
$$

- More generally,

$$
p\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)=\sum_{x_{i}} p\left(x_{1}, \ldots, x_{n}\right)
$$

Example - marginalization (1/2)

B	M	K	$p(b, m, k)$	
1	1	1	0.012	
1	1	0	0.108	
1	0	1	0.288	- What is the marginal distribution of B
1	0	0	0.192	and M ?
0	1	1	0.016	- We need to compute $p_{B, M}(b, m)$, for
0	1	0	0.064	all possible b and m.
0	0	1	0.096	
0	0	0	0.224	

Example - marginalization (2/2)

- Use

$$
p_{B, M}(b, m)=\sum_{k=0}^{1} p_{B, M, K}(b, m, k)
$$

- For example:

$$
\begin{aligned}
p_{B, M}(0,0) & =p_{B, M, K}(0,0,0)+p_{B, M, K}(0,0,1) \\
& =0.096+0.224=0.32
\end{aligned}
$$

- Doing this for all B, M combinations, we get the marginal probability table

B	M	$p(b, m)$
1	1	0.12
1	0	0.48
0	1	0.08
0	0	0.32

Independence

- Random variables X and Y are independent if

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)
$$

for all x and y.

- Intuitively, this means that knowing the value of X does not provide any information about the value of Y.
- Notation: $X \Perp Y$
- More generally: $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ and $\mathcal{B}=\left\{B_{1}, \ldots, B_{l}\right\}$ are independent if

$$
\begin{aligned}
& p_{A_{1}, \ldots, A_{k}, B_{1}, \ldots, B_{l}}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{l}\right) \\
& =p_{A_{1}, \ldots, A_{k}}\left(a_{1}, \ldots, a_{k}\right) p_{B_{1}, \ldots, B_{l}}\left(b_{1}, \ldots, b_{l}\right)
\end{aligned}
$$

Example - Independence (1/2)

B	M	$p(b, m)$
1	1	0.12
1	0	0.48
0	1	0.08
0	0	0.32

- Are B and M independent?

Example - Independence (2/2)

- Marginal distributions

B	$p(b)$		M	$p(m)$
1	0.6	and	1	0.2
0	0.4		0	0.8

- Direct computation gives

B	M	$p(b) p(m)$	$p(b, m)$
1	1	0.12	0.12
1	0	0.48	0.48
0	1	0.08	0.08
0	0	0.32	0.32

- Hence, B and M are (marginally) independent

Statistical vs. causal independence

- $D=$ 'number of people drowned', $A=$ 'amount of ice-cream sold'
- Are D and A independent?
- Are D and A causally dependent?

Conditional distribution

- Conditional distribution

$$
p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}
$$

specifies the probability of each possible value x of X given that we have observed variable Y in state y.

Example - Conditional distribution

- For example:

$$
\begin{gathered}
p(K=1 \mid B=1, M=1)=\frac{p(B=1, M=1, K=1)}{p(B=1, M=1)}=0.1 \\
p(K=0 \mid B=1, M=1)=0.9
\end{gathered}
$$

- All conditional probabilities in the last column

B	M	K	$p(b, m, k)$	$p(k \mid b, m)$
1	1	1	0.012	0.1
1	1	0	0.108	0.9
1	0	1	0.288	0.6
1	0	0	0.192	0.4
0	1	1	0.016	0.2
0	1	0	0.064	0.8
0	0	1	0.096	0.3
0	0	0	0.224	0.7

Conditional independence

- $X \Perp Y \mid Z$ denotes that variables X and Y are conditionally independent of each other, given the state of variable Z. This is formally defined by condition

$$
p_{X, Y \mid Z}(x, y \mid z)=p_{X \mid Z}(x \mid z) p_{Y \mid Z}(y \mid z)
$$

for all states x, y, z of variables X, Y, Z.

- Intuitively, this means that if we know the value of Z, knowing in addition the value of Y does not provide any information about the value of X. Indeed, provided $p(y, z)>0$, we have

$$
X \Perp Y \mid Z \Longrightarrow p_{X \mid Y, Z}(x \mid y, z)=p_{X \mid Z}(x \mid z)
$$

Conditional independence

$$
X \Perp Y \mid Z \Longrightarrow p_{X \mid Y, Z}(x \mid y, z)=p_{X \mid Z}(x \mid z)
$$

- Proof

$$
\begin{aligned}
p(x \mid y, z) & =\frac{p(x, y, z)}{p(y, z)}=\frac{p(x, y \mid z) p(z)}{p(z) p(y \mid z)} \\
& =\frac{p(x \mid z) p(y \mid z) p(z)}{p(z) p(y \mid z)}=p(x \mid z)
\end{aligned}
$$

- The general chain rule of probability

$$
p(x, y, z)=p(x \mid y, z) p(y \mid z) p(z)
$$

follows from iterative use of the definition of conditional probability.

Example - Conditional independence (1/3)

B	M	K	$p(b, m, k)$	
1	1	1	0.012	- Are M and B conditionally
1	1	0	0.108	independent, given K ?
1	0	1	0.288	- We need to compare
1	0	0	0.192	$\bullet p_{M \mid K}(m \mid k) p_{B \mid K}(b \mid k)$
0	1	1	0.016	$\bullet p_{B, M \mid K}(b, m \mid k)$
0	1	0	0.064	for all m, b, k.
0	0	1	0.096	
0	0	0	0.224	

Example - Conditional independence (2/3)

- For example,

$$
\begin{aligned}
p(B & =1, M=1 \mid K=1)=\frac{p(B=1, M=1, K=1)}{p(K=1)} \\
& =\frac{0.012}{0.012+0.288+0.016+0.096} \approx 0.0291
\end{aligned}
$$

- Similarly,

$$
\begin{aligned}
& p(M=1 \mid K=1)=\frac{p(M=1, K=1)}{p(K=1)} \\
= & \frac{0.012+0.016}{0.012+0.288+0.016+0.096} \approx 0.0508
\end{aligned}
$$

and

$$
p(B=1 \mid K=1)=\ldots \approx 0.7110
$$

Example - Conditional independence (3/3)

B	M	K	$p(b, m \mid k)$	$p(b \mid k)$	$p(m \mid k)$	$p(b \mid k) p(m \mid k)$
1	1	1	$\mathbf{0 . 0 2 9}$	$\mathbf{0 . 7 1 1}$	$\mathbf{0 . 0 5 1}$	$\mathbf{0 . 0 3 6}$
0	1	1	\cdots	\cdots	\cdots	\cdots
1	0	1				
0	0	1				
1	1	0				
0	1	0				
1	0	0				
0	0	0				

- Because $0.029 \neq 0.036$, it follows that B and M are not conditionally independent given K.

Intuition for independence and conditional independence (1/2)

- Let $X_{1}, X_{2}, \ldots, X_{n}$ denote the cumulative sum of n dice throws, such that $\operatorname{dom}\left(X_{1}\right)=\{1, \ldots, 6\}$, $\operatorname{dom}\left(X_{2}\right)=\{2, \ldots, 12\}$, etc.
- Is X_{n+1} independent of X_{n-1} ?
- Is X_{n+1} conditionally independent of X_{n-1} given X_{n} ?
- $X=$ 'Location of an airplane now', $Y=$ 'Location of the plane 15 s ago', $Z=$ 'Location 15s from now'
- Is Y independent of Z ?
- Is Y conditionally independent of Z given X ?

Intuition for independence and conditional independence (2/2)

- $S=$ 'sunshine', $D=$ 'number of people drowned', $A=$ 'amount of ice-cream sold'
- Are D and A independent?
- Are D and A conditionally independent given S ?
- $A=$ 'The alarm is on', $B=$ There is a burglar in the house", $T=$ ' A truck passes the house'
- Suppose that the alarm can be triggered either by a burglar or by a passing truck
- Are B and T independent?
- Are B and T conditionally independent given A

Continuous random variables ($1 / 3$)

- Probability density function (pdf) for a continuous variable $X, f_{X}()$

$$
\begin{gathered}
\int_{x \in \mathcal{R}} f_{X}(x) d x=1 \\
p(X \in[a, b])=\int_{x=a}^{b} f_{X}(x) d x
\end{gathered}
$$

- Cumulative distribution function (cdf)

$$
F_{X}(x)=p(X \leq x)=\int_{t=-\infty}^{x} f_{X}(t) d t
$$

$N\left(\mu, \sigma^{2}\right) \operatorname{pdf}$ (Wikip.)

$N\left(\mu, \sigma^{2}\right)$ cdf (Wikip.)

Continuous random variables (2/3)

- Concepts presented can be generalized to continuous random variables
- Marginalization
- Discrete: $p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$
- Continuous: $f_{X}(x)=\int_{y} f_{X, Y}(x, y) d y$
- Expected value
- Discrete: $E(X)=\sum_{x} x p_{X}(x)$
- Continuous: $E(X)=\int_{X} x f_{X}(x) d x$

Continuous random variables $(3 / 3)$

- Conditional distribution

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}
$$

- (conditional) independence: $X \Perp Y \mid Z$, if

$$
f_{X, Y \mid Z}(x, y \mid z)=f_{X \mid Z}(x \mid z) f_{Y \mid Z}(y \mid z)
$$

Basic graph definitions

- A graph consists of nodes (vertices) and undirected of directed edges (links) between nodes.
- A path from X_{i} to X_{j} is a sequence of connected nodes starting at X_{i} and ending at X_{j}.

Directed graphs

Directed Acyclic Graph

Directed Cyclic Graph

- A Directed Acyclic Graph (DAG) is a directed graph without cycles
- Parents, Children, Ancestors, Descendants,... (see Ch. 2)

Important points

- marginalization
- conditional distribution
- conditional/marginal independence
- probability density function, cumulative distribution function
- Basic graph concepts

