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Contents of Course

Modeling with stochastic state space models.
Bayesian theory of optimal filtering.
Gaussian approximations: Derivation of Kalman, extended
Kalman and unscented Kalman filters, Gauss-Hermite and
cubature Kalman filters from the general theory.
Monte Carlo methods: Particle filtering, Rao-Blackwellized
filtering.
Bayesian theory of optimal smoothing and related Kalman
(=Gaussian) and particle type methods.
Various illustrative applications to backup the theory.
Various exercises to practice modeling and estimation.

Simo Särkkä Lecture 1: Overview of Course Topic



Some History

In 40’s, Wiener’s work on stochastic analysis and optimal
filtering (and “cybernetics”)
In late 50’s, state space models, Bellman’s dynamic
programming, Swerling’s filter, Stratonovich’s conditional
Markov processes.
In early 60’s, Kalman filter and Kalman-Bucy filter, stability
analysis of linear state space models (mostly by Kalman).
In mid 60’s, Rauch-Tung-Striebel smoother, extended
Kalman filters (EKF).
In late 60’s, Bayesian approach to optimal filtering, first
practical applications (e.g. Apollo program).
In 70’s and 80’s, first particle filters, square root Kalman
filters, new algorithms and applications.
In 90’s, rebirth of particle filters, sigma-point and
unscented Kalman filters (UKF), new applications.
In 2000–, new algorithm variations and applications.
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Recursive Estimation of Dynamic Processes

Dynamic, that is, time varying
phenomenon - e.g., the motion state
of a car or smart phone.
The phenomenon is measured - for
example by a radar or by
acceleration and angular velocity
sensors.
The purpose is to compute the state
of the phenomenon when only the
measurements are observed.
The solution should be recursive,
where the information in new
measurements is used for updating
the old information.
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Bayesian Modeling of Dynamics

The laws of physics, biology, epidemiology etc. are
typically differential equations.
Uncertainties and unknown sub-phenomena are modeled
as stochastic processes:

Physical phenomena: differential equations + uncertainty
⇒ stochastic differential equations.
Discretized physical phenomena: Stochastic differential
equations⇒ stochastic difference equations.
Naturally discrete-time phenomena: Systems jumping from
step to another.

Stochastic differential and difference equations can be
represented in stochastic state space form.
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Bayesian Modeling of Measurements

The relationship between measurements and phenomenon
is mathematically modeled as a probability distribution.
The measurements could be (in ideal world) computed if
the phenomenon was known (forward model).
The uncertainties in measurements and model are
modeled as random processes.
The measurement model is the conditional distribution of
measurements given the state of the phenomenon.
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Why Bayesian Approach?

Theory of optimal filtering can be formulated in many ways:

1 Least squares optimization framework⇒ hard to extend
recursive estimation beyond linear models, uncertainties
cannot be modeled.

2 Maximum likelihood framework⇒ the theoretical basis of
dynamic models is somewhat heuristic, uncertainties
cannot be modeled.

3 Bayesian framework⇒ theory is quite complete, but the
computational complexity can be unbounded.

4 Other approaches⇒ typically applicable to restricted
special cases.

For practical “engineering” reasons, Bayesian approach is
used here (because it works!).
Kalman filter (1960) was originally derived in least squares
framework
Non-linear filtering theory has been Bayesian from the
beginning (about 1964).
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Bayesian Estimation of Dynamic Process

Time-varying process xk and noisy measurements yk from it:
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Mathematical Model of Dynamic Process

Generally, Markov model for the state:

xk ∼ p(xk |xk−1).

Likelihood distribution of the measurement:

yk ∼ p(yk |xk ).

In principle, we could simply use the Bayes’ rule

p(x1, . . . ,xT |y1, . . . ,yT )

=
p(y1, . . . ,yT |x1, . . . ,xT ) p(x1, . . . ,xT )

p(y1, . . . ,yT )
.

Curse of computational complexity: complexity grows more
than linearly with number of measurements.
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Optimal Filter

y1 y2 y3 y4 ... Optimal

filter

x1 x2 x3 x4 ...

The classical recursive (efficient) solution to the dynamic
estimation problem is called an optimal filter.
The Bayesian optimal filter computes the (marginal)
posterior distribution of the state given the measurements:

p(x(tk ) |y1, . . . ,yk ).

The “filtered” state x̂(tk ) typically is the posterior mean

x̂(tk ) = E(x(tk ) |y1, . . . ,yk ).

The solution is called filter for historical reasons.
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Bayesian Filtering, Prediction and Smoothing

Recursively computable marginal distributions:

Filtering distributions:

p(xk |y1, . . . ,yk ), k = 1, . . . ,T .

Prediction distributions:

p(xk+n |y1, . . . ,yk ), k = 1, . . . ,T , n = 1,2, . . . ,

Smoothing distributions:

p(xk |y1, . . . ,yT ), k = 1, . . . ,T .
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Bayesian Filtering, Prediction and Smoothing (cont.)

Measurements Estimate

0 Tk

Prediction:

Filtering:

Smoothing:
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Algorithms for Computing the Solutions

Kalman filter is the classical optimal (Bayesian) filter for
linear-Gaussian models.
Extended Kalman filter (EKF) is linearization based
extension of Kalman filter to non-linear models.
Unscented Kalman filter (UKF) is sigma-point
transformation based extension of Kalman filter.
Gauss-Hermite and Cubature Kalman filters (GHKF/CKF)
are numerical integration based extensions of Kalman filter.
Particle filter forms a Monte Carlo representation (particle
set) to the distribution of the state estimate.
Grid based filters approximate the probability distributions
by a finite grid.
Mixture Gaussian approximations are used, for example, in
multiple model Kalman filters and Rao-Blackwellized
Particle filters.
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Navigation of Lunar Module

The navigation system of Eagle lunar
module AGC was based on an optimal
filter - this was in the year 1969.
The dynamic model was Newton’s
gravitation law.
The measurements at lunar landing
were the radar readings.
On rendezvous with the command ship
the orientation was computed with
gyroscopes and their biases were also
compensated with the radar.
The optimal filter was an extended
Kalman filter.
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Satellite Navigation (GPS)

The dynamic model in GPS receivers is
often the Newton’s second law where
the force is completely random, that is,
the Wiener velocity model.
The measurements are time delays of
satellite signals.
The optimal filter computes the position
and the accurate time.
Also the errors caused by multi path
can be modeled and compensated.
Acceleration and angular velocity
measurements are sometimes used as
extra measurements.
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Health and Medical Applications

Many brain imaging methods (e.g.
MEG & EEG) be recasted as Kalman
filtering.
The Kalman filter solves the inverse
problem recursively.
Bayesian filters can also be used for
post-processing brain imaging data.
Biomedical signal processing (e.g.
ECG and BCG) also require e.g. noise
reduction which can be done with
Kalman filters.
ECG signal analysis can also be done
with extended Kalman filter (EKF).
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Mobile phone sensor fusion

Acceleration and angular velocity
can be integrated to give position
and orientation.
Unknown initial conditions and
sensors drifts cause problems.
The known gravitation direction
helps in orientation tracking.
Accelerometer can also be used
to detect steps – gives a
measurement of speed/distance.
Barometer can be used to for
local height tracking.
Can be combined with radio and
magnetic field fingerprinting.
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Simultaneous localization and mapping (SLAM)

In simultaneous
localization and mapping
(SLAM) radio/magnetic
map is created while
positioning.
Considerably harder than
separate mapping and
positioning.
Typically detect a return to
known location:

Loop closure to confirm
the traveled path.
Inertial navigation can
be used to map a small
unknown area at a time.
Known wall locations
provide constraints.
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Other Applications
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Autonomous cars with multitude of
sensors – sensor fusion.
Target tracking, where one or many
targets are tracked with many passive
sensors - air surveillance.
Machine learning in time series data –
Gaussian process regression is related
to Kalman filtering.
Analysis/restoration of audio signals.
Telecommunication systems - optimal
receivers, signal detectors.
State estimation of control systems -
chemical processes, auto pilots, control
systems of cars.
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Generic Probabilistic State Space Model

General form of probabilistic state space models:

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk )

x0 ∼ p(x0).

xk is the generalized state at time step k , including all
physical state variables and parameters.
yk is the vector of measurements obtained at time step k .
The dynamic model p(xk |xk−1) models the dynamics of
the state.
The measurement model p(yk |xk ) models the
measurements and their uncertainties.
The prior distribution p(x0) models the information known
about the state before obtaining any measurements.
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Linear Gaussian State Space Models

General form of linear Gaussian state space models:

xk = A xk−1 + qk−1, qk−1 ∼ N(0,Q)

yk = H xk + rk , rk ∼ N(0,R)

x0 ∼ N(m0,P0).

In probabilistic notation the model is:

p(yk |xk ) = N(yk |H xk ,R)

p(xk |xk−1) = N(xk |A xk−1,Q).

Surprisingly general class of models – linearity is from
measurements to estimates, not from time to outputs.
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Non-Linear State Space Models

General form of non-linear Gaussian state space models:

xk = f(xk−1,qk−1)

yk = h(xk , rk ).

qk and rk are typically assumed Gaussian.
Functions f(·) and h(·) are non-linear functions modeling
the dynamics and measurements of the system.
Equivalent to the generic probabilistic models of the form

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk ).
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Modeling with State Space Models

Probabilistic state space models are very general – every
finite dimensional Bayesian estimation problem has a state
space representation.
The most difficult task is figure out how to formulate an
estimation problem in state space form.
Formulating state space representations of physical
problems is engineering in its basic form.
Best way to learn this engineering is by examples and
practical work – in this lecture we shall give examples.
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Linear and Linear in Parameters Models

Basic linear regression model with noise εk :

yk = a0 + a1 xk + εk , k = 1, . . . ,N.

First rename xk to e.g. sk to avoid confusion:

yk = a0 + a1 sk + εk , k = 1, . . . ,N.

Define matrix Hk = (1 sk ) and state x = (a0 a1)T :

yk = Hk x + ek , k = 1, . . . ,N.

For notation sake we can also define xk = x such that
xk = xk−1:

xk = xk−1

yk = Hk xk + ek .

Thus we have a linear Gaussian state space model,
solvable with the basic Kalman filter.
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Linear and Linear in Parameters Models (cont.)

More general linear regression models:

yk = a0 + a1 sk ,1 + · · ·+ ad sk ,d + εk , k = 1, . . . ,N.

Defining matrix Hk = (1 sk ,1 · · · sk ,d ) and state
xk = x = (a0 a1 · · · ad )T gives linear Gaussian state
space model:

xk = xk−1

yk = Hk xk + εk .

Linear in parameters models:

yk = a0 + a1 f1(sk ) + · · ·+ ad fd (sk ) + εk .

Definitions Hk = (1 f1(sk ) · · · fd (sk )) and
xk = x = (a0 a1 · · · ad )T again give linear Gaussian state
space model.
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Non-Linear and Neural Network Models

Non-linearity in measurements models arises in
generalized linear models, e.g.

yk = g−1(a0 + a1 sk ) + εk .

The measurement model is now non-linear and if we
define x = (a0 a1)T and h(x) = g−1(x1 + x2 sk ) we get
non-linear Gaussian state space model:

xk = xk−1

yk = h(xk ) + εk .

Neural network models such as multi-layer perceptron
(MLP) models can be also transformed into the above
form.
Instead of basic Kalman filter we need extended Kalman
filter or unscented Kalman filter to cope with the
non-linearity.
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Adaptive Filtering Models

In digital signal processing, a commonly used signal model
is the autoregressive model

yk = w1 yk−1 + · · ·+ wd yk−d + εk ,

In adaptive filtering the weights wi are estimated from data.
If we define matrix Hk = (yk−1 · · · yk−d ) and state as
xk = (w1 · · · wd )T , we get linear Gaussian state space
model:

xk = xk−1

yk = Hk xk + εk .

The estimation problem can be solved with Kalman filter.
The LMS algorithm can be interpreted as approximate
version of this Kalman filter.
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Adaptive Filtering Models (cont.)

In time varying autoregressive models (TVAR) models the
weights are time-varying:

yk = w1,k yk−1 + · · ·+ wd ,k yk−d + εk ,

Typical model for the time dependence of weights:

wi,k = wi,k−1 + qk−1,i , qk−1,i ∼ N(0, σ2), i = 1, . . . ,d .

Can be written as linear Gaussian state space model with
process noise qk−1 = (qk−1,1 · · · qk−1,d )T :

xk = xk−1 + qk−1

yk = Hk xk + εk .

More general (TV)ARMA models can be handled similarly.
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Spectral and Covariance Models

Time series can be often modeled in terms of spectral
density

S(ω) = {some function of angular velocity ω}.

Or in terms of mean and covariance function:

m(t) = E[x(t)]

C(t , t ′) = E[(x(t)−m(t)) (x(t ′)−m(t ′))T ]

Such Gaussian processes have representations as outputs
of linear Gaussian systems driven by white noise.
We often can construct a linear Gaussian state space
model with a given spectral density or covariance function.
If spectral density is a rational function, this is possible.
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Stochastic Differential Equation Models

Physical systems can be often modeled as differential
equations with random terms such as

dx(t)
dt

= f(x, t) + L(t) w(t),

where w(t) is a continuous-time white noise process.
The noise process can be used for modeling the deviation
from the ideal solution dx(t)/dt = f(x, t).
For example, locally (short term) linear functions, almost
periodic functions, etc.
The dynamic model has to be dicretized somehow in
computations.
Typically, measurements are assumed to be obtained at
discrete instances of time:

yk = h(x(tk )) + rk ,

Simo Särkkä Lecture 1: Overview of Course Topic



Dynamic Model for a Car [1/3]

g1(t)

g2(t)

The dynamics of the car in 2d
(x1, x2) are given by the Newton’s
law:

g(t) = m a(t),

where a(t) is the acceleration, m is
the mass of the car, and g(t) is a
vector of (unknown) forces acting
the car.

We shall now model g(t)/m as a 2-dimensional white
noise process:

d2x1/dt2 = w1(t)

d2x2/dt2 = w2(t).
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Dynamic Model for a Car [2/3]

If we define x3(t) = dx1/dt , x4(t) = dx2/dt , then the model
can be written as a first order system of differential
equations:

d
dt


x1
x2
x3
x4

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

F


x1
x2
x3
x4

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

L

(
w1
w2

)
.

In shorter matrix form:

dx
dt

= F x + L w.
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Dynamic Model for a Car [3/3]

If the state of the car is measured (sampled) with sampling
period ∆t it suffices to consider the state of the car only at
the time instances t ∈ {0,∆t ,2∆t , . . .}.
The dynamic model can be discretized, which leads to the
linear difference equation model

xk = A xk−1 + qk−1,

where xk = x(tk ), A is the transition matrix and qk is a
discrete-time Gaussian noise process.
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Measurement Model for a Car

(y1, y2)

Assume that the position of the car
(x1, x2) is measured and the
measurements are corrupted by
Gaussian measurement noise
e1,k ,e2,k :

y1,k = x1,k + e1,k

y2,k = x2,k + e2,k .

The measurement model can be now written as

yk = H xk + ek , H =

(
1 0 0 0
0 1 0 0

)
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Model for Car Tracking

The dynamic and measurement models of the car now
form a linear Gaussian filtering model:

xk = A xk−1 + qk−1

yk = H xk + rk ,

where qk−1 ∼ N(0,Q) and rk ∼ N(0,R).
The posterior distribution is Gaussian

p(xk |y1, . . . ,yk ) = N(xk |mk ,Pk ).

The mean mk and covariance Pk of the posterior
distribution can be computed by the Kalman filter.
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Re-Entry Vehicle Model [1/3]
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Gravitation law:

F = m a(t) = −G m M r(t)
|r(t)|3

.

If we also model the friction and uncertainties:

a(t) = −G M r(t)
|r(t)|3

− D(r(t)) |v(t)|v(t) + w(t).
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Re-Entry Vehicle Model [2/3]

If we define x = (x1 x2
dx1
dt

dx2
dt )T , the model is of the form

dx
dt

= f(x) + L w(t).

where f(·) is non-linear.
The radar measurement:

r =
√

(x1 − xr )2 + (x2 − yr )2 + er

θ = tan−1
(

x2 − yr

x1 − xr

)
+ eθ,

where er ∼ N(0, σ2
r ) and eθ ∼ N(0, σ2

θ ).
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Re-Entry Vehicle Model [3/3]

By suitable numerical integration scheme the model can be
approximately written as discrete-time state space model:

xk = f(xk−1,qk−1)

yk = h(xk , rk ),

where yk is the vector of measurements, and
qk−1 ∼ N(0,Q) and rk ∼ N(0,R).
The tracking of the space vehicle can be now implemented
by, e.g., extended Kalman filter (EKF), unscented Kalman
filter (UKF) or particle filter.
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Summary

The purpose of is to estimate the state of a time-varying
system from noisy measurements obtained from it.
The linear theory dates back to 50’s, non-linear Bayesian
theory was founded in 60’s.
The efficient computational solutions can be divided into
prediction, filtering and smoothing.
Applications: tracking, navigation, telecommunications,
audio processing, control systems, etc.
The formal Bayesian estimation equations can be
approximated by e.g. Gaussian approximations, Monte
Carlo or Gaussian mixtures.
Formulating physical systems as state space models is a
challenging engineering topic as such.

Simo Särkkä Lecture 1: Overview of Course Topic



Matlab Demo: EKF/UKF Toolbox

http://becs.aalto.fi/en/research/bayes/ekfukf/
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