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Motivation

q You have just revised some key concepts of probability calculus
o Conditional probability
o Law of total probability
o Bayes’ rule

q This time:
– How to build a probability-based model to support decision-making under

uncertainty?
– How to elicitate the probabilities needed for these models?
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Why probabilities for modeling
uncertainty?
q Decisions are often made under uncertainty

q “How many train drivers should be trained, when future traffic is uncertain?”
q “Should I buy an old or a new car, given that I only need an operational one and

want to minimize costs = purchase price, maintenance & repair costs, selling
price, etc.?”

q “Should I buy my first my apartment now or postpone the decision, given that
future interest rates, mortgage costs, personal income and apartment prices are
uncertain?”

q Probability theory dominates the modeling of uncertainty in
decision analysis

– Well established rules for computations, understandable
– Other models (e.g., evidence theory, fuzzy sets) exist, too
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Conditional probabilities
q The probabilities of

sequential, mutually
exclusive and collectively
exhaustive events can be
represented if form of a tree

q The probability of a
sequence of events is
obtained my multiplying the
probabilities on the path
q 0.95 x 0.95 x 0.02 = 1.805 %

q The total probability of being
late is 7.985 %
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Metro driver of
a train is sick

Metro driver
not sick

This metro train
is on time

This metro train
is cancelled

This metro train
is on time

This metro train
is cancelled

Passengers are
late from …

Late

Late

Late

Not late

Not late

Not late

Not late

0.05

0.95

0.05

0.95

0.95

0.05

0.02

0.98

0.02

0.98

0.65

0.35

0.65

0.35

0.005%

0.245%

3.088%

1.663%

1.805%

88.445%

3.088%

1.663%The probability of being late on the condition
that the train is cancelled (and the original
driver is sick)



Call
help?

What if…
q We are interested in

financial aspects and
assume that being late
results in unwanted financial
consequences (Cost 1)?
q numerical outcomes for states

q You had a possibility to
influence the probability
p(this metro train is on
time | metro driver of this
train is sick) by use of extra
personnel (help) at a cost
(Cost 2)?
q Now the event probabilities

depend on your decision
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Metro driver of
a train is sick

This metro train
is on time

This metro train
is cancelled

Passengers are
late from …

Late

Not late

Not late

0.05

0.05

0.95

0.02

0.98

0.65

0.35

0.1%;
Cost 1

4.9%

61.75%;
Cost 1

33.25%
no

This metro train
is on time

This metro train
is cancelled

Passengers are
late from …

Late

Not late

Not late

0.80

0.20

0.02

0.98

0.65

0.35

yes

1.6%;
Cost 1+2

78.4%
Cost 2

13.0%;
Cost 1+2

7%;
Cost 2



Decision trees
q Decision-making under uncertainty can be

modeled by a decision tree
q Decision trees consist of

– Decision nodes (squares) – DM can choose which arc to follow
– Chance nodes (circles; cf. states of nature) – chance represented by

probabilities dictates which arc will be followed (states of nature). The
probabilities following a chance node must sum up to 1

– Consequence nodes (triangles; resulting consequences) – at the end of
the tree; describe the consequence (e.g., profit, cost, revenue, utility) of
following the path leading to this node

q Decisions and chance events are displayed in a
logical temporal sequence from left to right
q Only chance nodes whose results are known can precede a decision

node

q Each chain of decisions and chance events
represents a possible outcome
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Take an umbrella

Do not take an
umbrella

It will rain, p=0.4

It will not rain, p=0.6

It will rain, p=0.4

It will not rain, p=0.6
10

0

4
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Solving a decision tree
q A decision tree is solved by starting

from the leaves (consequence
nodes) and going backward toward
the root:

– At each chance node: compute the
expected value at the node

– At each decision node: select the arc with
the highest expected value

q The optimal strategy consists of the
arcs selected at decision nodes
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Take an umbrella

Do not take an
umbrella

It will rain, p=0.4

It will not rain, p=0.6

It will rain, p=0.4

It will not rain, p=0.6 10

0

4

5

EV=4.6

EV=6
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§ Your uncle is going to buy a tractor. He has two alternatives:
1. A new tractor (17 000 €)
2. A used tractor (14 000 €)

§ The engine of the old tractor may be defect, which is hard to ascertain. Your uncle
estimates a 15 % probability for the defect.

§ If the engine is defect, he has to buy a new tractor and gets 2000 € for the old
one.

§ Before buying the tractor, your uncle can take the old tractor to a garage for an
evaluation, which costs 1 500 €.
§ If the engine is OK, the garage can confirm it without exception.
§ If the engine is defect, there is a 20 % chance that the garage does not

notice it.
§ Your uncle maximizes expected monetary value

Example: Decision tree (1/12)
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§ Before making the buying decision and before you get to know
the result of any uncertain event, you must decide upon taking
the old tractor to a garage for an evaluation.

§ The decision node ‘evaluation’ is placed leftmost in the tree

Evaluation

No evaluation

Example: Decision tree (2/12)
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§ If the old tractor is evaluated, your uncle receives the results of the evaluation

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

Example: Decision tree (3/12)
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§ The next step is to decide which tractor to buy

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

New

Old

New

Old

New

Old

Example: Decision tree (4/12)
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§ …But the engine of the old tractor can be defect

§ Now all chance nodes and decisions are in chronological order such
that in each node, we can follow the path to the left to find out what we
know

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

New

Old

New

Old

New

Old

No defect
Defect

No defect
Defect

No defect
Defect

Example: Decision tree (5/12)
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§ We next need the probabilities for all outcomes of the chance nodes

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

New

Old

New

Old

New

Old

No defect
Defect

No defect
Defect

No defect
Defect

P(result ”OK”)

P(result ”Defect”)

P(”Defect” | result ”OK”)

P(”No defect” | result ”OK”)
P(”Defect” | result ”Defect”)

P(”No defect” | result ”Defect”)

P(”Defect”)

P(”No defect”)

Example: Decision tree (6/12)



Remember: Law of total probability
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q If E1,…,En are mutually exclusive and A = ⋃ , then

P(A)=P(A|E1)P(E1)+…+P(A|En)P(En)

q Most frequent use of this law:
– Probabilities P(A|B), P(A|Bc), and P(B) are known
– These can be used to compute P(A)=P(A|B)P(B)+P(A|Bc)P(Bc)



Remember: Bayes’ rule

q Bayes’ rule: = ( | ) ( )
( )

q Follows from
1. The definition of conditional probability: = ( ∩ )

( )
, = ( ∩ )

( )
,

2. Commutative laws: ∩ = ∩ .
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Example: Bayes’ rule
A metro train is cancelled (event C) and we have not
had the opportunity to call help. What is the probability
that the driver originally allocated to drive the train is
sick (event S)? = What is ?

Solution:
q P(S)=0.05, P(Sc)=0.95, P(C|S)=0.95, P(C|Sc)=0.05

Law of total probability: P(C)=P(C|S)P(S)+P(C|Sc) P(Sc)=
0.95 x 0.05 + 0.05 x 0.95 = 0.095

Bayes’ rule: = ( | ) ( )
( )

= . .
.

= 50%
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Metro driver of
a train is sick

Metro driver
not sick

This metro train
is on time

This metro train
is cancelled

This metro train
is on time

This metro train
is cancelled

0.05

0.95

0.05

0.95

0.95

0.05
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§ Solve all probabilities. You know that
§ ”Your uncle estimates a 15 % probability for the defect.” => P(Defect)=0.15
§ “If the engine is OK, the garage can confirm it without exception.” => P(result

“OK” | No defect)=1
§ “If the engine is defect, there is a 20 % chance that the garage does not

notice it.” => P(result “OK” | Defect)=0.20
(result "OK") (result "OK" | No defect) (No defect) (result "OK" | Defect) (Defect)
1.0 0.85 0.20 0.15 0.88
(result "defect")=1- (result "OK") 0.12

(result "OK" | Defect) (Defect)(Defect | result "OK")

P P P P P

P P
P PP

P

= × + ×
= × + × =

=
×

=
0.20 0.15 0.034

(result "OK") 0.88
(No defect | result "OK") 1 0.034 0.966

(result "defect" | Defect) (Defect) 0.80 0.15(Defect | result "defect") 1.00
(result "defect") 0.12

(No Defect | result "defect") 1

P
P PP

P
P

×
= »

= - =
× ×

= = =

= -1 0=

Example: Decision tree (7/12)
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§ Compute monetary values for each end node
§ Evaluation + new = 1500 + 17000 = 18500
§ Evaluation + old with defect = 1500 + 14000 – 2000 + 17000 = 30500
§ Evaluation + old without defect = 1500 + 14000 = 15500
§ No evaluation + new = 17000
§ No evaluation + old with defect = 14000 – 2000 + 17000 = 29000
§ No evaluation + old without defect = 14000

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

New

Old

New

Old

New

Old

No defect
Defect

No defect
Defect

No defect
Defect

Example: Decision tree (8/12)
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Evaluation

Result: “OK”

Result: “Defect”

No evaluation

0.88

0.12

0.15

0.85

New

Old

-17 000

No defect
Defect

No defect
Defect

1

0

-30 500
-15 500

-29 000
-14 000

New

Old

-18 500

No defect
Defect0.034

0.966

-30 500
-15 500

New

Old

-18 500

§ We now have a decision tree presentation of the problem

Example: Decision tree (9/12)
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Evaluation

Result: “OK”

Result: “Defect”

No evaluation

0.88

0.12

0.15

0.85

New

Old

-17 000

No defect
Defect

No defect
Defect

1

0

-30 500
-15 500

-29 000
-14 000

New

Old

-18 500

No defect
Defect0.034

0.966

-30 500
-15 500

EMV(New | result “ok”)= -18500

Old

-18 500

§ Starting from the right, compute expected monetary values for each
decision

§ Place the value of the better decision to the decision node
EMV(Old | result “ok”)= 0.034 x -30500 +

0.966 x -15500= -16010

-16010

Example: Decision tree (10/12)
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Evaluation

Result: “OK”

Result: “Defect”

No evaluation

0.88

0.12

0.15

0.85

New

Old

-17 000

No defect
Defect

No defect
Defect

1

0

-30 500
-15 500

-29 000
-14 000

New

Old

-18 500

No defect
Defect -30 500

-15 500

-18500

Old

-18 500

§ Starting from the right, compute expected monetary values for each
decision

§ Place the value of the better decision to the decision node

-16010

New

-16010

-18500
-18500

-30500

-16250

-17000-16250

0.88 x -16010 + 0.12 x -18500 =

-16309

-16309

-16250

Example: Decision tree (11/12)
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Evaluation

Result: “OK”

Result: “Defect”

No evaluation

0.88

0.12

0.15

0.85

New

Old

-17 000

No defect
Defect

No defect
Defect

1

0

-30 500
-15 500

-29 000
-14 000

New

Old

-18 500

No defect
Defect -30 500

-15 500

-18500

Old

-18 500

§ The optimal solution is to buy the old tractor without evaluating it

-16010

New

-16010

-18500
-18500

-30500

-16250

-17000-16250

-16309

-16250

Example: Decision tree (12/12)



… How much should we pay for the
sample information by the garage?
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q The expected monetary value was higher without evaluating the old tractor
q Determine evaluation cost c so that you are indifferent between

1. Not taking the old tractor for an evaluation (EMV = -16250€)
2. Taking the old tractor for an evaluation

q Indifference, when EMVs equal: -16250 = -14809 – c => c = 1441€
q Expected value of sample information = Expected value with sample information –

Expected value without sample information = -14809€ - (-16250€) = 1441€

Evaluation

Result: “OK”

Result: “Defect”

0.88

0.12
No defect
Defect

New

Old

-17 000 - c

No defect
Defect -29 000 - c

-14 000 - c

-17000 - c

Old

-17 000 - c

-14510 - c

New

-14510 - c

-17000 - c
-17000 - c

-29000 - c

-14809 - c

-29 000 - c
-14 000 - c



Example: expected value of perfect
information
q You are considering between three

investment alternatives: high-risk stock, low-
risk stock, and savings account

q Savings account:  certain payoff of 500€
q Stocks:

– 200€ brokerage fee
– Payoffs depend on market conditions
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Up Same Down

High-risk 1700 300 -800

Low-risk 1200 400 100

Probability 0.5 0.3 0.1

Decision tree

Source: Clemen, R.T. (1996): Making Hard Decisions: An Introduction to
Decision Analysis, 2nd edition, Duxbury Press, Belmont.



Example: investing in the stock market

q The expected monetary values
(EMVs) for the different alternatives
are

– HRS: 0.5∙1500+0.3∙100-0.2∙1000=580
– LRS: 0.5∙1000+0.3∙200-0.2∙100=540
– Savings Account: 500

→   It is optimal* to invest in high-risk
stock
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Decision tree

Source: Clemen, R.T. (1996): Making Hard Decisions: An Introduction to
Decision Analysis, 2nd edition, Duxbury Press, Belmont.

EMV=580€

EMV=540€

EMV=500€

* Assuming you are risk-neutral !!! – risk
attitudes discussed later on this course



Expected value of perfect information
q How much could the expected value be expected to increase, if

– Additional information about the uncertainties was received before the decision
– The decision would be made according to this information?

– Note: this analysis is done before any information is obtained

q Perfect information: certain information about how the
uncertainties are resolved – ”if we could choose after we know the
state of the world”
q Expected value of perfect information = Expected value with perfect

information – Expected value without perfect information

q Expected value of perfect information is computed through a
reversed decision tree in which all chance nodes precede all
decision nodes
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Expected value of perfect information
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Decision tree

EMV=580€

EMV=540€

EMV=500€

Reversed decision tree: you know the state of the
world when making the decision(s)

Expected value
without perfect

information
=580€

Expected value
with perfect

information =
0.5∙1500+0.3∙500
+0.2∙500=1000€

Expected value of perfect information
= 1000€ - 580€ = 420€



Probability assessment

q Use a few minutes to answer ten probability assessment questions
– You have either questionnaire sheet A or B

q Do not communicate with others

q Do not look up the answers on the internet
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Estimation of probabilities

q How to obtain the probabilities needed in decision models?
1. If possible, use objective data
2. If  objective data is not available, obtain subjective probability

estimates from experts through
o Betting approach
o Reference lottery
o Direct judgement
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Estimation of probabilities: Betting
approach
q Goal: to estimate the probability of event A

– E.g., A=”GDP growth is above 3% next year” or A=”Sweden
will join NATO within the next five years”

q Betting approach:
– Bet for A: win X € if A happens, lose Y € if not

– Expected monetary value − 1 −

– Bet against A: lose X € if A happens, win Y € if not
– Expected monetary value− + 1 −

– Adjust X and Y until the respondent is indifferent between
betting for or against A

– Assuming risk-neutrality(*, the expected monetary values of
betting for or against A must be equal:

− 1 − = − + 1 − ⇒ = +
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Bet for A

Bet
against A

A

Not A
A

X

-Y

-X

YNot A

*)A strong assumption



Estimation of probabilities: Reference
lottery
q Lottery:

– Win X if A happens
– Win Y if A does not happen
– X is preferred to Y

q Reference lottery:
– Win X with (known) probability p
– Win Y with (known) probability (1-p)
– Probability p can be visualized with, e.g., a wheel of fortune

q Adjust p until the respondent is indifferent between the two lotteries:
+ 1 − = + 1 − ⇒ =

q Here, the respondent’s risk attitude does not affect the results (shown later)
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Lottery

Ref.
lottery

A

Not A
p

X

Y

X

Y1-p



Reference lottery: example
q Event A: ”HIFK wins Jokerit”

32

10.1.2019

Lottery

Ref.
lottery

A

Not A

10 €

0 €
⚀⚁⚂⚃⚄

⚅

10 €

0 €

Lottery

Ref.
lottery

A

Not A
⚀⚁⚂

⚃⚄⚅

10 €

0 €

10 €

0 €

Lottery

Ref.
lottery

A

Not A
⚀⚁⚂⚃

⚄⚅

10 €

0 €

10 €

0 €

Lottery

Ref.
lottery

A

Not A

⚁⚂⚃⚄⚅

⚀

10 €

0 €

10 €

0 €

The respondent
chooses the
reference lottery:

<

The respondent
chooses the lottery:

>

Chooses
the lottery:

>

Chooses the
reference
lottery:

<

These four answers revealed to probability estimate of A to
be in (0.5, 0.67). Further questions should reveal the
respondent’s estimate for P(A)



Estimation of continuous probability
distributions
q A continuous distribution can be approximated by estimating several event

probabilities (X is preferred to Y)
q Example:

– Goal: to assess the distribution of the change in GDP (ΔGDP) in Finland next year
– Means: elicitation of probability p for five different reference lotteries
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Estimation of continuous probability
distributions
q Often experts assess the descriptive statistics of the distribution

directly, e.g.,
– The feasible range (min, max)
– Median f50 (i.e., P(X<f50)=0.5)
– Other quantiles (e.g., 5%, 25%, 75%, 95%)

q In the previous example:
– ”The 5% and 95% quantiles are f5 =-3% and f95 = 4%”
– ”The change in GDP is just as likely to be positive as it is to be negative”
– ”There is a 25% chance that the change in GDP is below -1%”
– ”There is a 25% chance that the change in GDP is above 1.5%”
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Summary

q Decision trees are probability-based models to support decision-
making under uncertainty

– Which decision alternative should I choose?
– How much would I be willing to pay for perfect information or (imperfect) sample

information about how the uncertainties are resolved?

q Subjective probability assessments often required
– Probability elicitation techniques require some effort
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