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Recap
- ordinary differential equations are transformed to the form 

ẋ1 = f1(x1, . . . , xn)
.
.
.
.

ẋn = fn(x1, . . . , xn)

✓
ẋi =

dxi

dt

◆ - trick: x1 = x; x2 = ẋ1

- one-dimensional flows:                      ; linear stability analysis 
via f’(x) 

ẋ = f(x)

- vector field: how the velocity of the particle depends on its
position
- fixed points; stable 
and unstable 

- time dependence x(t)
f(x) = �dV

dx- potential V:

→ "#$
"%# = $̇#



Bifurcations
Question: One-dimensional motion is pretty simple
(solutions settle down to equilibrium or head out to
infinity); why bother?
Answer: Dependence on parameters, which may change
the behaviour dramatically!
Bifurcation: Qualitative change of the dynamics due to
variation of a (control) parameter.

The qualitative changes: creation and destruction or a 
change in the stability of fixed points. 



Bifurcations

Learn bifurcations first in the simplest case, i.e.  on the line.

Dynamical variable x: deflection of the beam from vertical.
Control parameter: mass of the weight placed on the top.

Example. Buckling of a beam.

(“Bifurcation” means “splitting into two”.)



Saddle-node bifurcations
As a parameter varies two fixed points move toward each
other, collide and mutually annihilate, or, varying the
parameter in the opposite direction, a FP is created. The
prototypical example: ẋ = r + x2

Bifurcation at r = 0: the vector fields for r < 0 and r > 0 are
qualitatively different.

x⇤
1,2 = ±

p
�r x⇤ = 0 No fixed points.

The most fundamental bifurcation.



Saddle-node bifurcations
ẋ = r + x2

Fixed points as a function of r:
for ẋ = 0, r = �x2

x⇤
1,2 = ±

p
�r x⇤ = 0 No FPs.

Graphical conventions

Stacked vector fields

In the limit of a continuous 
stack of vector fields        →



Saddle-node bifurcations
ẋ = r + x2

Conventional bifurcation diagram
plotted as x vs r, since r is here
viewed as the independent variable. Again, the word 

bifurcation: splitting 
into two branches.



Example I
Do the linear stability analysis of the fixed points of

ẋ = f(x) = r � x2

x⇤
1,2 = ±

p
r ! f 0(x⇤) = �2x⇤ ! f 0(±

p
r) = ⌥2

p
r

r > 0

x⇤
1 =

p
r stable x⇤

2 = �
p
r unstable

r = 0
x⇤ = 0 ! f 0(x⇤) = �2x⇤ ! f 0(0) = 0

Linearization vanishes when the points coalesce.

r < 0

No fixed points!



Example II
Show that the first-order system

ẋ = r � x� e�x

undergoes a saddle-node bifurcation as r is varied.

Fixed points:

f(x⇤) = 0 ! r � x⇤ � e�x⇤
= 0

How to solve it?→ Use the geometric method
⇢

y = r � x
y = e�x



Example II
ẋ = r � x� e�x

⇢
y = r � x
y = e�x

Bifurcation point at the !-value for which the curves are tangent



Example II
ẋ = r � x� e�x

⇢
y = r � x
y = e�x

Condition of tangential intersection: the curves must touch at
that point and have equal derivative.

⇢
r = 1
x = 0

The bifurcation point is rc = 1 and the bifurcation occurs at
x = 0.

⇢
e�x = r � x

d
dxe

�x = d
dx (r � x)



Normal forms
The equations ẋ = r � x2 ẋ = r + x2and

are prototypical in the sense that they are representative of 
all saddle-node bifurcations.

Consider, for example,                                              →ẋ = r � x� e�x



Normal forms
ẋ = r � x� e�x

Taylor expansion about x = 0:

ẋ = r � x� e�x

= r � x�
h
1� x+ x2

2! + · · ·
i

= (r � 1)� x2

2 + · · ·

ẋ = r � x2
has the same algebraic form as

(It can be made to agree exactly by r → r + 1 and x→ 2x in the Taylor expansion.) 



Normal forms

Near the bifurcation !(#) looks parabolic.

Graphically: Two nearby roots of f(x) are needed for a saddle-node bifurcation to 
occur. At the bifurcation point f(x) is tangent to the x-axis. 

(Note that in the previous example the parabola actually opens 
downwards and there are no FPs when % < %' and two FPs when % > %'.)



Normal forms
Taylor expansion about x*, rc

= the normal forms of saddle-node
bifurcation.

ẋ = a(r � rc) + b(x� x⇤)2 + · · ·

ẋ = f(x, r)
= f(x⇤, rc) + (x� x⇤)@f@x |(x⇤,rc)

+ (r � rc)
@f
@r |(x⇤,rc) +

1
2 (x� x⇤)2 @2f

@2x |(x⇤,rc) + · · ·

f(x⇤, rc) = 0,
@f

@x
|(x⇤,rc) = 0, a = @f/@r|(x⇤,rc), b =

1

2
@2f/@x2|(x⇤,rc)

FP & tangency condition

, which agrees with the prototypical forms.

ẋ = r � x2 ẋ = r + x2



Transcritical bifurcation
For a transcritical bifurcation a fixed point always exists (as e.g.
in logistic eq. "̇ = $" 1 − "/( ), but it may change stability
when a parameter varies.

ẋ = rx� x2
The normal form for a transcritical bifurcation

A fixed point at x* = 0 for all values of r.
(A logistic equation, where r can also have negative values.)



Transcritical bifurcation
Unlike in the saddle-node bifurcation, in the transcritical
bifurcation fixed points do not disappear – instead they just
switch their stability.

Bifurcation diagram



Example I
Show that the first-order system

ẋ = x(1� x2)� a(1� e�bx)

has a transcritical bifurcation at x = 0 when a and b satisfy a
certain relation, to be determined. Then find an approximate
formula for the FP that bifurcates from x = 0, assuming that
the parameters are close to the bifurcation curve.
Clue for a transcritical bifurcation:

1� e
�bx = 1� [1� bx+ 1

2b
2
x
2 +O(x3)]

= bx� 1
2b

2
x
2 +O(x3)

Taylor expansion about x* = 0

ẋ = x� a(bx� 1
2b

2
x
2) +O(x3)]

= (1� ab)x+ ( 12ab
2)x2 +O(x3)

ẋ = rx� x2

x⇤ = 0 8 a, b



Example I
r = 0 ! ab = 1 equation for bifurcation curve

(on this curve bifurcation takes
place in !, " –space).

Nonzero fixed point:

1� ab+ (
1

2
ab2)x⇤ ⇡ 0 ! x⇤ ⇡ 2(ab� 1)

ab2

For !" = 1 (and small x): ẋ =
b

2
x2

Valid for small x ⇒ !" ≈ 1

(So, parabolic near FP.)



Example II
Analyse the dynamics of

ẋ = r lnx+ x� 1

near ! = 1 , and show that the system undergoes a
transcritical bifurcation at a certain value of r. Then find new
variables such that the equation assumes
A fixed point at x* = 1 for all values of r. We are interested in
the dynamics close to this FP, so introduce $:

Transcritical bifurcation for rc = - 1.

u = x� 1 ! u̇ = ẋ

= r ln(1 + u) + u

= r[u� 1
2u

2 +O(u3)] + u

⇡ (r + 1)u� 1
2ru

2 +O(u3)

Ẋ ⇡ RX �X2



Example II
To get the normal form, coefficient of u2 has to be 1.

for a = 2/r ! v̇ = (r + 1)v � v
2 +O(v3)

u = av ! v̇ = (r + 1)v � (
1

2
ra)v2 +O(v3)

R = r + 1, X = v ! Ẋ ⇡ RX �X2

In fact, the theory of normal forms ensures that one can put
the system in normal form without neglecting higher order
terms, so in the above case Ẋ ⇡ RX �X2 ) Ẋ = RX �X2.



Laser threshold
Solid-state laser: collection of “laser-active” atoms
embedded in a solid state matrix, bounded by partially
reflecting mirrors at either end

External energy source is used to excite or “pump” the
atoms out of their ground states



Laser threshold
When the pumping is relatively weak, laser acts as lamp:
the excited atoms oscillate independently of one another
and emit randomly light waves.

Above a certain threshold for the pumping, emitted
photons from one atom triggers emission in others; atoms
oscillate in phase → laser → the beam of radiation is much
more coherent and intense than that produced below the
laser threshold.
Atoms are being excited completely at random: where
does coherence come from? From the cooperative
interaction of stimulated emission among the atoms.



Laser threshold

The dynamical variable: number of photons !(#) in the
laser field

Model

ṅ = gain� loss = GnN � kn

Gain term from stimulated emission (photons stimulate
excited atoms to emit other photons).

Rate of stimulated emission is proportional to the number
of photons n(t) and of excited atoms N(t). G > 0 is the gain
coefficient.

Loss term from photons escaping the laser, rate constant k.



Laser threshold

Key idea: after an excited atom emits a photon it drops
down to a lower energy and is no longer excited → N
decreases due to emission of photons.

Model

In the absence of laser action, the pump keeps the number
of excited atoms fixed at N0 → the actual number of
excited atoms will be reduced by the laser process

N(t) = N0 � ↵n(t)

ṅ = Gn (N0 � ↵n)� kn
= (GN0 � k)n� (↵G)n2

(! is the rate at which atoms drop from stimulated to the ground state.)



Laser threshold
Model

ṅ =(GN0 � k)n� (↵G)n2

Fixed point n* = 0 for all values of parameters.
For N0 < k/G→ n* = 0 is stable (no laser action).

For N0 > k/G → n* = 0 is unstable and n* = (GN0-k)/αG > 0 is
stable (laser).



Laser threshold
Model

ṅ =(GN0 � k)n� (↵G)n2

N0 = k/G is the laser threshold.
Bifurcation diagram:

(This simplified model ignores dynamics of excited atoms,
existence of spontaneous emissions, etc.)



Pitchfork bifurcation
Common in physical problems having a symmetry.

For example in problems having a spatial symmetry
between left and right, fixed points tend to appear and
disappear in symmetrical pairs.

Two types of pitchfork
bifurcations:
1) Supercritical (related to 2nd

order phase transitions)
2) Subcritical (related to 1st

order phase transitions)

Beam buckling has a left-right 
symmetry:



Supercritical pitchfork 
bifurcation

ẋ = rx� x3

Left-right symmetry: The equation is invariant under the
change of variables x→ -x (left-right symmetry).

The normal form:



Supercritical pitchfork 
bifurcation

1) ! < 0: the origin is the only fixed point (stable).
2) ! = 0: the origin is still stable, but solutions no longer

decay exponentially fast (no linear term), but have
algebraic (power-law) decay (critical slowing down).

3) ! > 0: the origin becomes unstable, two new stable
fixed points appear at &∗ = ± !.

Non-zero FPs for ! > 0:
“supercritical”
Supercritical: 
bifurcating FPs are 
stable.  



Example I

ẋ = �x+ � tanhx

Show that the equation

undergoes a pitchfork bifurcation as β is varied.

x⇤ = � tanhx⇤
Fixed points

⇢
y = x
y = � tanhx

Geometric approach



Example I

⇢
y = x
y = � tanhx

Geometric approach

Pitchfork bifurcation at β = 1, x* = 0.



Example I
It is easier to treat x as an independent variable and
compute β as a function of x. Then plot the bifurcation
diagram in the usual way:

x⇤ = � tanhx⇤ ! � =
x⇤

tanhx⇤

This shortcut is based on 
f(x, β) = -x + β tanh(x) depending
more simply on β than on x.
Typically, the dependence on the 
control parameter is simpler than 
on x. 



Example II
Plot the potential !(#) for the cases % < 0, % = 0, % > 0 for
the system

ẋ = rx� x3

f(x) = �dV

dx
! �dV

dx
= rx� x3 ! V (x) = �1

2
rx2 +

1

4
x4



Example III: Overdamped bead on a rotating hoop

Coordinates:

Solutions for slow and fast rotation:

Supercritical 
pitchfork 
bifurcation.



Subcritical pitchfork 
bifurcation

ẋ = rx+ x3

Bifurcation diagram

The normal form:



Subcritical pitchfork 
bifurcation

ẋ = rx+ x3

The destabilizing term
+ "3 makes a world of
difference. Here the
nonzero fixed points
are unstable and exist
only below the
bifurcation $ < 0 →
“subcritical”.

This cubic term also drives the trajectories starting from " ≠ 0 to
infinity in a finite time when $ > 0 (blow-up).

⇣
V (x) = �r

2
x2 � 1

4
x4

⌘



Subcritical pitchfork 
bifurcation

In real systems such an explosive instability is usually
opposed by the stabilizing influence of higher-order terms

ẋ = rx+ x3 � x5

The first high-order power that maintains the left-right
symmetry is x5.

Bifurcation
diagram.



Subcritical pitchfork 
bifurcation

ẋ = rx+ x3 � x5

Unstable branches turn around and become stable for r = rs < 0.



Subcritical pitchfork 
bifurcationRemarks

1) In the range !" < ! < 0 , the
origin and the large-amplitude
fixed points are stable. The origin
is locally, but not globally stable.

2) Jumps and hysteresis are possible:
if we start at the origin, and
tune ! from negative to positive
values, the slightest perturbation
makes the system jump to the
large-amplitude fixed points,
where it stays even if we bring r
back to negative values, as long as
! > !".

3) Saddle-node bifurcation at !".



Imperfect bifurcations
In many real-world circumstances the symmetry of the
system is only approximate due to imperfections.

ẋ = h+ rx� x3

For ℎ = 0: normal supercritical pitchfork bifurcation. For
ℎ ≠ 0 the left-right symmetry is broken. ℎ is the imperfection
parameter.
Two independent parameters, ℎ and %. Think of keeping %
fixed and varying ℎ.
Solving fixed points exactly is messy→ graphical approach.

h+ rx� x3 = 0 ! =

⇢
y = �h
y = rx� x3



Imperfect bifurcations
ẋ = h+ rx� x3

Only one fixed point. One, two, or three
fixed points, depending
on the value of ℎ.

FPs at intersections of y = rx� x3 y = �hand .



Imperfect bifurcations
ẋ = h+ rx� x3

Saddle-node bifurcation occurs when the horizontal line is
tangent to the minimum or the maximum of the cubic.

d

dx
(rx� x3) = r � 3x2 = 0 ! xext = ±

r
r

3

The extrema of the cubic:

Values of the cubic at the extrema:

rxext � x3
ext = ±r

r
r

3
⌥ r

3

r
r

3
= ±2r

3

r
r

3



Imperfect bifurcations
ẋ = h+ rx� x3

The condition for a saddle-node bifurcation to occur:

|h| = hc =
2r

3

r
r

3
Stability diagram

Three FPs for 

One FP for 
|h| < hc(r).

|h| > hc(r).
The two bifurcation curves meet 
tangentially at the  cusp point (r, h) 
= (0, 0).  Saddle-node bifurcations 
along the curves. A codimension-2 
bifurcation (2 tunable parameters) 
at the cusp point.



Imperfect bifurcations
ẋ = h+ rx� x3

Bifurcation diagram

A supercritical pitchfork bifurcation for h = 0. For h ≠ 0 the
pitchfork disconnects into two pieces. Then increasing r
from negative values makes the fixed point glide smoothly
along the upper branch: the lower branch is not accessible
unless a large disturbance is made.



Imperfect bifurcations
ẋ = h+ rx� x3

An alternative bifurcation diagram when we keep r fixed
and vary h.

Three solutions for |ℎ| < ℎ$: the middle one is unstable,
the external ones are stable.



Catastrophe with 
bifurcations

Discontinuous jump 
between branches. Plot 
x* above (", ℎ) plane: 
cusp catastrophe 
surface. This jump can 
be catastrophic e.g. for 
the equilibrium of a 
bridge or a building.



Example
Bead on a tilted wire

• A bead of mass m is constrained to glide along a straight
wire inclined at an angle θ with respect to the
horizontal

• The mass is attached to a spring of stiffness k and
relaxed length L0, and is also acted on by gravity
Choice of coordinates: x = 0 at the point closest to the
support point of the spring



Example
Bead on a tilted wire

Horizontal wire ( ! = 0 ): $ = 0 is the equilibrium
position.
• %0 < ': the spring is in tension and the equilibrium is

stable
• %0 > ': the spring is compressed and the equilibrium is

unstable→ two stable equilibria to either side of it



Example
Bead on a tilted wire

Tilted wire (! ≠ 0)
• For small !, there are still three equilibria (one unstable,

two stable) if $0 > &
• For ! not too small, uphill equilibrium might suddenly

disappear and the bead would jump - catastrophically -
to the downhill equilibrium!



Summary
Bifurcation changes the dynamics of the system 
qualitatively.
Three main classes of bifurcations:

1. Saddle-node
2. Transcritical
3. Pitchfork

- supercritical
- subcritical

Imperfect bifurcations take place in real life and may be
catastrophic.


