Nonlinear
dynamics &
chaos
Bifurcations

Lecture 11



Recap

- ordinary differential equations are transtormed to the form

.C'Clz fl(SCl ..... l'n)
(@z%) - trick: Tl =, Tg= jjl
d?x

% —

dt?

En = folZ1,...,25)

= Xy

- one-dimensional flows: T = f(x) ; linear stability analysis
via f'(x)

- vector field: how the velocity of the particle depends on its

position i

- fixed points; stable &
and unstable N //"
- time dependence x(t) B &
- potential V: f(z) = —Z—Z 7




Bifurcations

Question: One-dimensional motion is pretty simple
(solutions settle down to equilibrium or head out to
infinity); why bother?

Answer: Dependence on parameters, which may change
the behaviour dramatically!

Bifurcation: Qualitative change of the dynamics due to
variation of a (control) parameter.

The qualitative changes: creation and destruction or a
change in the stability of fixed points.



Bifurcations

(“Bifurcation” means “splitting into two”.)

Example. Buckling of a beam.

beam

beam "buckles"

VAV

Dynamical variable x: deflection of the beam from vertical.
Control parameter: mass of the weight placed on the top.

Learn bifurcations first in the simplest case, i.e. on the line.



Saddle-node bifurcations

The most fundamental bifurcation.

As a parameter varies two fixed points move toward each
other, collide and mutually annihilate, or, varying the
parameter in the opposite direction, a FP is created. The

prototypical example: x =1 + &

ANVERNVRNYS

(a) r<0 (b) r=0 (c) r>0
* * . .
P /7 =0 No fixed points.

Bifurcation at r = 0: the vector fields for r < 0 and » > 0 are
qualitatively different.




Saddle-node bifurcations

p=rast g N Ng

Graphical conventions

Xl = £V -—r :c* 0 No FPs.
Stacked vector fields Fixed points as a function of r:
> - A forjj:()’/r’:—x2 ,
> > r>0
- O— r=0
. | e —— R
—@—+—(O—— <0
— =& - ) >
X
In the limit of a continuous y
® - e ‘ —
stack of vector fields — ‘

stable unstable



Saddle-node bifurcations
T =7+

Conventional bifurcation diagram

plotted as x vs 7, since r is here

viewed as the independent variable. Again, the word

X bifurcation: splitting
into two branches.

unstable - L _

stable -




Example I

Do the linear stability analysis of the fixed points of

= f(z) =r—x°

r>0
v, =V o fat) = 2" — fEVT) = T2
T =+/r stable r5 = —y/r unstable
r=0
=0 — f(z*)=-22" — f'(0)=0

Linearization vanishes when the points coalesce.

= ()

No fixed points! r<0 r=0 r>0

- e () et — — () > -



Example II

Show that the first-order system

r=r—x—e 7

undergoes a saddle-node bifurcation as r is varied.

Fixed points:

%

flzX) =0 — r—a"—e % =0

How to solve it? — Use the geometric method

¥

T — X
e~ 7T



Example II

r=r—x—e "~

¥

r— X

|
®

N

X

(@) (®) (©)

Bifurcation point at the r-value for which the curves are tangent



Example II

r=r—x—e "~

¥

Condition of tangential intersection: the curves must touch at
that point and have equal derivative.

e * r—x r
L oo L (r — ) - {w

r— X
e

1
0

The bifurcation point is . = 1 and the bifurcation occurs at
B ().



Normal forms

The equations p —= 7 — 562 and =1 4+ 5132

are prototypical in the sense that they are representative of
all saddle-node bifurcations.

Consider, forexample, - =1 —x —e * —



Normal forms

T=r—x—e "
Taylor expansion about x = 0:
r = r—xr—e "’
2
= r—x— [1—w T }
2
— X
has the same algebraic form as
i=r—1

(It can be made to agree exactly by r — r + 1 and x — 2x in the Taylor expansion.)



Normal forms

Graphically: Two nearby roots of f(x) are needed for a saddle-node bifurcation to
occur. At the bifurcation point f(x) is tangent to the x-axis.

X

_________ r>r,
~ : N~ : x
f(x) looks

parabolic in here

Near the bifurcation f (x) looks parabolic.

(Note that in the previous example the parabola actually opens
downwards and there are no FPs when r < 7, and two FPs when r > 7;..)



Normal forms

Taylor expansion about x’, 7.

r = f(z,7)
= f(x*,rc)—l—(x—x*)%kw*,rc) 2
o *\2 O
Iy (T_Tc)a_i‘(x*,rc)""%(x_x )2aT£’(w*,?“c)+"'
FP & tangency condition
. 0
f(CU 7rc) f|(cc T)_O a_af/aﬂ(m Te)? b__a f/ax2|(zc T

i=a(r—r.) +blx—a*)*+--

, which agrees with the prototypical forms.

& =r—z° i =r+z’

= the normal forms of saddle-node
bifurcation.



Transcritical bifurcation

For a transcritical bifurcation a fixed point always exists (as e.g.
in logistic eq. N = rN(1 — N/K)), but it may change stability
when a parameter varies.

The normal form for a transcritical bifurcation

T = rr —

(A logistic equation, where r can also have negative values.)
A fixed point at x” = 0 for all values of r.

X x x

TV 7N Y

(@ r<0 (b) r=0 (c) r>0




Transcritical bifurcation

Unlike in the saddle-node bifurcation, in the transcritical
bifurcation fixed points do not disappear — instead they just
switch their stability. |

) /1N 1A
Bifurcation diagram

X stable

stable e - - v - -- unstable

unstable ’



Example I

Show that the first-order system
i=x(l—2%) —a(l —e )

has a transcritical bifurcation at x = 0 when a and b satisfy a
certain relation, to be determined. Then find an approximate
formula for the FP that bifurcates from x = 0, assuming that
the parameters are close to the bifurcation curve.

Clue for a transcritical bifurcation: £ =0V a,b

Taylor expansion about x" =0

] —e 0= 1—[1—bx+ 3b%2? + O(a?)]
= br— b%2? + O(%)

z — a(br — $b%x 2)+O( %) : 2

9
|

(1—a,b)a;‘+( ab?®)z? + O(x?) -



Example I

r=0 — ab=1 equation for bifurcation curve
(on this curve bifurcation takes
place in a, b —space).

Nonzero fixed point:

1 2(ab—1
1 —ab—+ (§ab2)x* ~0 — "= (a 7 )
a

Valid forsmallx = ab =~ 1

Forab = 1 (and small x): x = 51‘2

(So, parabolic near FP.)



Example II

Analyse the dynamics of
r=rlhr+z—1

near x =1, and show that the system undergoes a
transcritical bifurcation at a certain value of r. Then find new
variables such that the equation assumes X ~ RX — X?

A fixed point at x"= 1 for all values of . We are interested in
the dynamics close to this FP, so introduce u:

T

rin(l 4+ u) + u

rlu — 2u? + O(u?)] 4+ u
(r + Du — 3ru® 4+ O(u?)

v=r—1 — U

Q

Transcritical bifurcation for r,=- 1.



Example II

To get the normal form, coefficient of 1 has to be 1.

1ra)v2 + O(v®)

u=av — ?}:(T+1)v—(2

fora=2/r — = (r+1)v—v°+0>)
R=r+1, X=v — X=~RX-X’

In fact, the theory of normal forms ensures that one can put
the system in normal form without neglectmg higher order
terms, so in the above case X ~ RX — X? = X = RX — X~



[Laser threshold

Solid-state laser: collection of “laser-active” atoms
embedded in a solid state matrix, bounded by partially
reflecting mirrors at either end

External energy source is used to excite or “pump” the
atoms out of their ground states

N

active material

laser light
—_—

LLL L
Ll L

mirror



[Laser threshold

When the pumping is relatively weak, laser acts as lamp:
the excited atoms oscillate independently of one another
and emit randomly light waves.

Above a certain threshold for the pumping, emitted
photons from one atom triggers emission in others; atoms
oscillate in phase — laser — the beam of radiation is much
more coherent and intense than that produced below the
laser threshold.

Atoms are being excited completely at random: where
does coherence come from? From the cooperative
interaction of stimulated emission among the atoms.



[Laser threshold

Model

The dynamical variable: number of photons n(t) in the
laser field
n = gain — loss = GnN — kn

Gain term from stimulated emission (photons stimulate
excited atoms to emit other photons).

Rate of stimulated emission is proportional to the number
of photons n(t) and of excited atoms N(t). G > 0 is the gain
coefficient.

Loss term from photons escaping the laser, rate constant k.



[Laser threshold

Model

Key idea: after an excited atom emits a photon it drops
down to a lower energy and is no longer excited — N
decreases due to emission of photons.

In the absence of laser action, the pump keeps the number
of excited atoms fixed at N, — the actual number of
excited atoms will be reduced by the laser process

N(t) = Ng — an(t)

n = Gn(Ng—an)—kn
= (GNg—k)n — (aG)n?

(a is the rate at which atoms drop from stimulated to the ground state.)



[Laser threshold

Model
n =(GNy — k)n — (o G)n?
Fixed point n" = 0 for all values of parameters.

For N,< k/G — n =0 is stable (no laser action).

For N,> k/G — n = 0 is unstable and n = (GN,-k)/aG > 0 is
stable (laser).

n n n

No <k/GC No =k/C No >k/G



[Laser threshold

Model
n =(GNy — k)n — (o G)n?

Ny= k/G is the laser threshold.
Bifurcation diagram:

n l laser

(This simplified model ignores dynamics of excited atoms,
existence of spontaneous emissions, etc.)



Pitchfork bifurcation

Common in physical problems having a symmetry.

For example in problems having a spatial symmetry
between left and right, fixed points tend to appear and
disappear in symmetrical pairs.

Beam buckling has a left-right
symmetry:

Two types of pitchfork

bifurcations: beam

1) Supercritical (related to 2nd
order phase transitions)

2) Subcritical (related to 1%t
order phase transitions)

beam "buckles"

VA



Supercritical pitchfork

The normal form:

rT=7rr—2=x

bifurcation

3

Left-right symmetry: The equation is invariant under the
change of variables x — -x (left-right symmetry).

£
\ -

(a) r<O

X

X

(b) r=0

A

) r>0



Supercritical pitchfork
bifurcation

1) r < 0:the origin is the only fixed point (stable).

2) r = 0: the origin is still stable, but solutions no longer
decay exponentially fast (no linear term), but have
algebraic (power-law) decay (critical slowing down).

3) r > 0: the origin becomes unstable, two new stable
fixed points appear at x* = +/1.

Non-zero FPs forr > 0:

“supercritical” stable
Supercritical:
bifurcating FPs are stable. s - - - - - - - - -+ unstable

stable.

stable




Example I

Show that the equation
r=—x+ [ tanhzx

undergoes a pitchfork bifurcation as f is varied.

Fixed points
x* = [ tanh x™

Geometric approach

¥

]
3

£ tanh x



Example I

Geometric approach

y = @
y = [tanhx

Pitchfork bifurcation at f =1, x* =0.



Example I

It is easier to treat x as an independent variable and
compute  as a function of x. Then plot the bifurcation

diagram in the usual way:

:l,j,*

r* = Btanhz® — (=

~ tanh z*

This shortcut is based on

f(x, B) = -x + B tanh(x) depending
more simply on f§ than on x.
Typically, the depe.ndgnce on the,
control parameter is simpler than

on Xx.




Example II

Plot the potential V(x) for the casesr < 0, r = 0, r > 0 for
the system 2

r=rxr—2x

r<( r=0 r>0



Example III: Overdamped bead on a rotating hoop

|
L O Coordinates: .
.m

Solutions for slow and fast rotation:

|
Supercritical
pitchfork
bifurcation.

bottom bottom



Subcritical pitchfork
bifurcation

The normal form: T = ry 4+

Bifurcation diagram

unstable

L4
- -
’.
~

stable l ---------- unstable

unstable




Subcritical pitchfork
bifurcation

i =rr+ z° (V(a:) = g2 1:134)
2 4

The destabilizing term
+ x3 makes a world of
difference. Here the unstable .
nonzero fixed points
are unstable and exist wble e anatable
only below the r
bifurcation r < 0 — g
“subcritical”.

“
-
..
-

unstable

This cubic term also drives the trajectories starting from x # 0 to
infinity in a finite time when r > 0 (blow-up).



Subcritical pitchfork
bifurcation

In real systems such an explosive instability is usually
opposed by the stabilizing influence of higher-order terms

x':rx—l—xg—a:5

The first high-order power that maintains the left-right
symmetry is x°.

X
Bifurcation ‘
do 0 [ "01--------;.
lagram. r, .0
\




Subcritical pitchfork
bifurcation

. 3 5)
r=7rr+I —X
X X
unstable . _ (_—j—'
~‘| O ' :‘1 .........
stable e——— - - - - - = = = = = Un$§ table r 270 r
“‘ r s . - -
tabl --" \

Unstable branches turn around and become stable for r = r,<0.



Subcritical pitchfork

bifurcation

Remarks
1) In the ranger, < r < 0, the

origin and the large-amplitude
fixed points are stable. The origin
is locally, but not globally stable.

2) Jumps and hysteresis are possible:

it we start at the origin, and
tuner from negative to positive
values, the slightest perturbation
makes the system jump to the
large-amplitude fixed points,
where it stays even if we bring r
back to negative values, as long as
= T

3) Saddle-node bifurcation at r..

0




Imperfect bifurcations

In many real-world circumstances the symmetry of the

system is only approximate due to imperfections.
t=h+re—a°

For h = 0: normal supercritical pitchfork bifurcation. For

h + 0 the left-right symmetry is broken. h is the imperfection

parameter.

Two independent parameters, h and r. Think of keeping r

fixed and varying h.

Solving fixed points exactly is messy — graphical approach.

y = —h

h+rz—2° =0 %:{ 3
y = ro



Imperfect bifurcations

r=h+rr—=x
FPs at intersections of Yy=71rr—2x

3

y=rx—x
___________ y=—h
X
(a) r<0
Only one fixed point.

3 and y=—h.

(b) r>0

One, two, or three
fixed points, depending
on the value of h.



Imperfect bifurcations

t=h+trr—x°

Saddle-node bifurcation occurs when the horizontal line is
tangent to the minimum or the maximum of the cubic.

The extrema of the cubic:

d r
%(TQZ—CIZS):T—SCEQ:O — Lept = T 3
Values of the cubic at the extrema:
2 r r Jr 2 e
Tmext i —— - T — — Sl Ny

<2 3 3V3 3V 3



Imperfect bifurcations

r=h+rrx—=zx

3

The condition for a saddle-node bifurcation to occur:

Stability diagram
Three FPs for |h| < he(T).

One FP for |h| > h.(7).
The two bifurcation curves meet
tangentially at the cusp point (7, h)
= (0, 0). Saddle-node bifurcations
along the curves. A codimension-2
bifurcation (2 tunable parameters)
at the cusp point.

— -
A

2
3V 3
21

I fixed point h.(r)

3 fixed points

—h.(r)

T L] Al ) r

-1 0 1 2



Imperfect bifurcations

i=h+rz—z°

Bifurcation diagram

(a) h=0 (b)y h#0

A supercritical pitchfork bifurcation for i1 = 0. For h # 0 the
pitchfork disconnects into two pieces. Then increasing r
from negative values makes the fixed point glide smoothly
along the upper branch: the lower branch is not accessible
unless a large disturbance is made.



Imperfect bifurcations

t=h+rr—x°

An alternative bifurcation diagram when we keep r fixed
and vary h.

_—
d

h

//

(a)r<0 (b)r>0

Three solutions for |h| < h,: the middle one is unstable,
the external ones are stable.



Catastrophe with
bifurcations

Discontinuous jump
between branches. Plot ¥
x* above (7, h) plane:

cusp catastrophe M
surface. This jump can

be catastrophic e.g. for
the equilibrium of a

bridge or a building. ‘>\



Example

Bead on a tilted wire

wire

* A bead of mass m is constrained to glide along a straight
wire inclined at an angle O with respect to the
horizontal

 The mass is attached to a spring of stiffness k and

relaxed length L,, and is also acted on by gravity
Choice of coordinates: x = 0 at the point closest to the

support point of the spring

7///////////
2
L




Example

Bead on a tilted wire

N N
N7 \
N N
N N
N N
N N
N N
N N
N N
\
N\ OO NN NN NN

Horizontal wire (6 = 0): x = 0 is the equilibrium

position.

* Ly < a: the spring is in tension and the equilibrium is
stable

* Ly > a: the spring is compressed and the equilibrium is
unstable — two stable equilibria to either side of it



Example

Bead on a tilted wire

wire

7///////////
N
L LS

Tilted wire (8 # 0)

* For small 0, there are still three equilibria (one unstable,
two stable) if L, > a

* For 6 not too small, uphill equilibrium might suddenly
disappear and the bead would jump - catastrophically -
to the downhill equilibrium!



Summary

Bifurcation changes the dynamics of the system
qualitatively.

Three main classes of bifurcations:
1. Saddle-node
2. Transcritical
3. Pitchfork
- supercritical
- subcritical

Imperfect bifurcations take place in real life and may be
catastrophic.



