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Hydromechanics
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Lecture themes
Flow rate – Pure joy?

Pressure in system – Constant or what?

Efficiency – What is that?

Power – Forms of
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Pressure losses induced by flow

Flow induced pressure losses are categorized to losses occurring in
w straight flow channels of constant cross-sectional area
w complex flow channels (direction and/or velocity of the flow changes)

Total pressure loss of a system is a sum of these
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käyttäjä
Leima

käyttäjä
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l = friction factor

For laminar flow l =
64
Re

For turbulent flow Moody diagram

In straight flow channels of
constant cross-sectional area
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- pipe length l
- pipe diameter d
- flow velocity v

käyttäjä
Tekstiruutu
Reynolds numberRe=vD/ν- velocity v- pipe diameter D- kinematic viscosity ν
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Moody diagram
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Re < 2300
2300 < Re < 4000

Re > 4000

Roughness

Seamless hydraulic pipe 	
0.01 – 0.04 mm
Hod rolled pipe	 	
0.05 – 0.10 mm
Hydraulic hose	 	
0.02 – 0.03 mm

käyttäjä
Tekstiruutu
Relative roughness

käyttäjä
Tekstiruutu
Laminar   Turbulent
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There are many approximations for friction factor but the one above includes also
relative roughness parameter e (= Rz/d).
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In straight flow channels of
constant cross-sectional area
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In complex flow channels (direction
and/or velocity of the flow changes)
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z = loss factor, resistance coefficient

Numerical value for z from tables or characteristic curves
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käyttäjä
Tekstiruutu
Minor losses

käyttäjä
Tekstiruutu
Dynamic pressure 1/2 ρv2
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Characteristic curve
This valve can be interpreted as
- four orifices:
PA - PB - AT - BT
(Four "control edges").

P 	 pump
T 	 tank
A	 actuator's A interface
B	 actuator's B interface
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4/3 Directional control valve
4 way
3 position
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Converting known pressure loss
to another operating point
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If flow rate changes

If density changes

käyttäjä
Tekstiruutu
Effect of viscosityApproximation for common valves

käyttäjä
Tekstiruutu
Attention! For a pure orifice the viscosity has no effect
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Total pressure loss of system

Significance of individual loss components?

pipes                   + minor losses
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Total pressure of a system
In each point of a system the prevailing pressure builds up on
- external loading of the system
- internal loading of the system (= pressure losses)

External loading, ie.,
pressure demand of
the actuators

Internal loading, ie.,
flow induced
pressure losses
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cylinder motor
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® Total pressure in observation point ttex,t ppp D+=
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Hydraulic power and efficiency – introduction

pqP ×= V

A B
Generation Use

Power
transmission

qVp,
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Power – Utility or Loss

sVs pqP ×=

Utility:
- cylinders
- motors
- pumps

Loss:
- cylinders
- motors
- pumps
- control components
- piping
- maintenance components

Power demand of system: soutin PPP +=

pqP D×= Vout
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Efficiency
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( )tins 1 h-×= PP
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Efficiency terms of hydraulic energy converting components

hmvt hhh ×=

Energy converting components tinout h×= PP
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Volumetric efficiency hv
effect of leakages
Hydromechanical  efficiency hhm
effect of mechanical and flow friction

Pump as an example
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Energy converting components

Pump :

Hydraulic motor :

Cylinder :

Utility power – Power loss

pqTP D×=××= Vtpumpout, hw
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Unclear way to
represent power
losses!

käyttäjä
Leima
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System efficiency

Momentary total efficiency:

Total efficiency of work cycle:
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Hydraulic system heats up
Power loss turns into heat

System jq 

Part of the heat
stores in to the
system thus rising
its temperature

Surroundings
Part of the heat
transfers to the
surroundings
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overall heat transfer coefficient
[W/(m²·K)]
heat transfer surface area
[m2]
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System temperature sets to a value at which
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Settling time depends on 
time constant t.

Temperature as a
function of time.

New stationary
temperature after
the transient.

Effect of surface area on asymptotic temperature
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Lecture themes - Recap
Was flow rate just pure joy?

Total system pressure – Contributing factors?

System pressure – Same everywhere?

Efficiency – What story does it tell for us?

Effects of power losses on the system?
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