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Hydromechanics
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Lecture themes
Flow rate – Pure joy?

Pressure in system – Constant or what?

Efficiency – What is that?

Power – Forms of
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Pressure losses induced by flow

Flow induced pressure losses are categorized to losses occurring in
w straight flow channels of constant cross-sectional area
w complex flow channels (direction and/or velocity of the flow changes)

Total pressure loss of a system is a sum of these
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käyttäjä
Leima

käyttäjä
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l = friction factor

For laminar flow l =
64
Re

For turbulent flow Moody diagram

In straight flow channels of
constant cross-sectional area
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- pipe length l
- pipe diameter d
- flow velocity v

käyttäjä
Tekstiruutu
Reynolds number
Re=vD/ν
- velocity v
- pipe diameter D
- kinematic viscosity ν
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Moody diagram
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Re < 2300
2300 < Re < 4000

Re > 4000

Roughness

Seamless hydraulic pipe 	
0.01 – 0.04 mm
Hod rolled pipe	 	
0.05 – 0.10 mm
Hydraulic hose	 	
0.02 – 0.03 mm

käyttäjä
Tekstiruutu
Relative roughness

käyttäjä
Tekstiruutu
Laminar   Turbulent
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There are many approximations for friction factor but the one above includes also
relative roughness parameter e (= Rz/d).
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In straight flow channels of
constant cross-sectional area
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In complex flow channels (direction
and/or velocity of the flow changes)
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z = loss factor, resistance coefficient

Numerical value for z from tables or characteristic curves
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käyttäjä
Tekstiruutu
Minor losses

käyttäjä
Tekstiruutu
Dynamic pressure 
1/2 ρv2
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Characteristic curve
This valve can be interpreted as
- four orifices:
PA - PB - AT - BT
(Four "control edges").

P 	 pump
T 	 tank
A	 actuator's A interface
B	 actuator's B interface
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4/3 Directional control valve
4 way
3 position
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Converting known pressure loss
to another operating point
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If flow rate changes

If density changes

käyttäjä
Tekstiruutu
Effect of viscosity
Approximation for common valves

käyttäjä
Tekstiruutu
Attention! 
For a pure orifice the viscosity has no effect
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Total pressure loss of system

Significance of individual loss components?

pipes                   + minor losses
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Total pressure of a system
In each point of a system the prevailing pressure builds up on
- external loading of the system
- internal loading of the system (= pressure losses)

External loading, ie.,
pressure demand of
the actuators

Internal loading, ie.,
flow induced
pressure losses
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cylinder motor
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® Total pressure in observation point ttex,t ppp D+=
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Hydraulic power and efficiency – introduction

pqP ×= V

A B
Generation Use

Power
transmission

qVp,
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Power – Utility or Loss

sVs pqP ×=

Utility:
- cylinders
- motors
- pumps

Loss:
- cylinders
- motors
- pumps
- control components
- piping
- maintenance components

Power demand of system: soutin PPP +=

pqP D×= Vout
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Efficiency
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( )tins 1 h-×= PP
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Efficiency terms of hydraulic energy converting components

hmvt hhh ×=

Energy converting components tinout h×= PP
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Volumetric efficiency hv
effect of leakages
Hydromechanical  efficiency hhm
effect of mechanical and flow friction

Pump as an example
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Energy converting components

Pump :

Hydraulic motor :

Cylinder :

Utility power – Power loss

pqTP D×=××= Vtpumpout, hw

wh ×=×D×= TpqP tVmotorout,
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Unclear way to
represent power
losses!

käyttäjä
Leima
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System efficiency

Momentary total efficiency:

Total efficiency of work cycle:

å

å

=

=

×

××
== N

i
ii

N

i
iii

tP

tP

W
W

1
in,

1
t,in,

wcin,

wcout,
wct,

h
h

momin,

momout,
momt, P

P
=h

20



Mechanical Engineering / Engineering Design / Mechatronics / Fluid Power

Hydraulic system heats up
Power loss turns into heat

System jq ­

Part of the heat
stores in to the
system thus rising
its temperature

Surroundings
Part of the heat
transfers to the
surroundings
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overall heat transfer coefficient
[W/(m²·K)]
heat transfer surface area
[m2]
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System temperature sets to a value at which
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Settling time depends on 
time constant t.

Temperature as a
function of time.

New stationary
temperature after
the transient.

Effect of surface area on asymptotic temperature
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Lecture themes - Recap
Was flow rate just pure joy?

Total system pressure – Contributing factors?

System pressure – Same everywhere?

Efficiency – What story does it tell for us?

Effects of power losses on the system?

23




