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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on the topics of week 3:

O Vibration problem, natural frequencies and modes of vibration, solution to a free

vibration problem in terms of the modes.

O Time dependent linear elasticity problem, principle of virtual work in a time-dependent

case and vibration analysis by FEM.

O Inertia term element contributions for the solid-, beam-, plate-, and rigid body

elements.
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LINEAR ELASTICITY

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. €

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular
momentum within a material volume equals the external moment resultant acting on the

material volume. €
Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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BOUNDARY-INITIAL VALUE PROBLEM

Assuming equilibrium of a solid body (a set of particles) inside domain Q, the aim is to
find displacement u of the particles as functions of time, when external forces or boundary

conditions are changed in some manner:
Q1A

Equilibrium equations V.o + f = pﬁ in Q,¢>0

E - o
Hooke’s law & = ( e IV-ii+g) in Q,t>0
l+v 1-2v

I . u=0
Boundary conditions n-6=¢ or u=g on 0Q,t>0

Initial conditions i =i, and il =i, in Qats=0

The balance law of angular momentum is satisfied ‘a priori’ by the form of Hooke’s law.
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PRINCIPLE OF VIRTUAL WORK

Principle of virtual work W =8sW™ + W + 5w =0 V&ii is just one form of the

equations of motion, where

0Q2 tdA
( T ¢ ( T - —
5gxx O xx 57/30’ GW .
swt :—IQ (108, ¢ 10y (+307 )zt 10,2 DAV,
kégzz J Oz ] k57/zx J Oz
e 3 T ( N ( 3\ T ' A
ou, Iy ou, t,
SW = jQ Qou, ¢ 1/, >)arV+jaQ (1Su, b 11, 1)dA,
k5uzz \fz) \5”2) \tZ)
e T . . . . .
Su, i, In connection with the principle, time is
SWHE = —jQ 10Uy, » paly, pdl. considered As A parameter!
\51/!2 J \Z;l.Z J
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VIRTUAL WORK DENSITIES

Virtual work densities of the internal forces, inertia forces, external volume forces, and

external surface forces are

( A T e A ( A T ( A ( A T e N
. 58xx O xx 57/30’ Oxy . 5ux Uy
owilt=_Jse L iog L dsy Lle Land SwiE=—{su, b plii, ¢,
»y »y Y yz yz Q y( P4y
(062, ) |0z Oz (O] OU Uz ]
- N T 3 - ST 70
ou, Iy ou, | |t,
Swe ={0u, ¢ 1f,and SWES =30u, t 1ty ¢
k5uz) \fZ) \5”2) \tZJ

Virtual work densities consist of terms containing kinematic quantities and their “work

conjugates” !
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2.1 PERIODIC MOTION AND VIBRATION

Constrained motion: there exists ¢ and C such that ¢ < x(¢) < C
Periodic motion: there exists 7' such that x(¢ +7) = x(¢) for any ¢

Vibration: "periodic motion near static equilibrium"

Harmonic vibration: x(¢) = X sin ot
Period T X 1
Frequency f=1/T H
_ I \/ v
Angular speed o =27 f % S

Amplitude X =H /2
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FREE UNDAMPED VIBRATION

k

Initial value problem Ma+Ka=0 >0, a=a, =0, and a=a;, =0
Solution a(7) = cos(€2f)a, + sin(Qt)Q_lziO

_ —1y\1/2 _ -1
Problem parameter Q=(M K)'° =Xo0X

In practice, the main task is to find the eigenvalue decomposition €2 = XoX ! orit’s form

Q% =Xw’X™! (see: the definition of matrix function)!
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MATRIX ALGEBRA

Transpose Al AZ-JT- =A4;;

—1 —1 -1
Inverse AAT =ATA=1 D e 1. Andy =5
Derivative X xX; =dx; / dt
Linear equation system Find x such that Ax=b
Eigenvalue problem Find all (A,x) such that (A—-AI)x =0

Eigenvalue decomposition A = X?»X_l, where X =[x,

Matrix function If A=XAX"!, then f(A)=

Week 3-9

x, ] and A =diag[/; ...

XF(A)X !

A

n

]



EXAMPLE 2.1 Determine the angular speeds and modes of free vibrations, when the

differential equations in their standard form are given by
a 3 -1/3
02 o0 inwhich Q= .
d- d-n -3 3

-3

1 1
Answer a)lzﬁ, x1:{3} and o, =2, xzz{ }
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o . ) 3-4 -1/3 7
e Characteristic equation det(2“ — Al) = det 3 3.1 =3-4)"-1=0

3-2 -1/3 1
Mode 4, =2 : Tlog = X = M

-3 3-2||x Xy 3

3-4 -1/3 1
Mode 4, =4 : Tlog = Xy = M

-3 3-4||x Xy -3

. S Nt U R I A B
e Figenvalue decomposition Q° =Xo"X " = 3 _allo 4

-1
. _ 1 1 2 1 1
e Positive square root Q= XmX L= {3 3}{\/_ O}{ } €

0o 2|3 3
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EXAMPLE 2.2 Write down the equations of motion for the system shown consisting of
two particles and a spring. After that, determine the angular speeds and modes of free

vibrations.

1
Answer @ =0 and x; = {1} (translation mode),

/ 1
W) = 2% and x, ={_1} (vibration mode).
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k -k

—1
92 :M_IK: O m —k k :E 1 -1
m 0 k —-k| m|-1 1

e Angular speeds of the free vibration modes are the eigenvalues of €. Let us calculate

, 0 m -k k ,
e Matrices M = 0 and K = give
m

first the eigenvalues of Q2 and the corresponding modes

det(Q? — A1) = det(| " m )=(5—z)2—(£)2=0 — ze{o,zf}.
m m m
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Lo 2
1
SRV N T T AR
m k i_zi Xy Xy -1

m m m |

e Angular speeds of the free vibrations and the corresponding modes are

I I
w1=\/11=0,xf{1} and @) =4 = 25»"2:{ 1}' N
m —_—
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TIME-INTEGRATION

In one-step methods for second order initial value problems, temporal domain is divided

into sub-domains te[t(i_l) 1) ] ie{l...n}. Differential equations are replaced by
mitial conditions \

a0 " TanAp]fa0]" [Bi] a0 ] [ag
alAt B A21 :A22 alAt B2 and alAt B glAt

Iteration on the difference equations gives values of the unknowns ag) and their first time-

difference equations:

derivatives aY) at 1) je {0...n}. Iteration matrix A depends on the mass matrix M,

stiffness matrix K | and the step size Az. Vector B depends also on the external forces.
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ONE-STEP INTEGRATION METHODS

The recipes for a single equation and an equation systems are the same. For problem

Ma+Ka=0

. ap 1Y T a1 1/2][a ¥
Crank-Nicholson: =
a|At a/2 1 —a/2 1 ||aAf

. . a (D o I-a/27'0 1 a ©
Disc. Galerkin: =
alAt —1 —(1/2 (1/3 -1 -1 alAt

The proper step-size of depends on the largest eigenvalue of parameter a = M KA. A
small amount of numerical damping is advantageous, if the step-size, according to the

largest eigenvalue, becomes impractically small.
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ACCURACY AND STABILITY Ar=1/2 & a=1/4

}mese error!
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2.2 VIBRATION ANALYSIS

Model the structure as a collection of beam, plate, etc. elements. Derive the element
contributions SW¢ and express the nodal displacement and rotation components of the

material coordinate system in terms of those in the structural coordinate system.

Sum the element contributions to end up with the virtual work expression of the

structure oW = Zee P OW €. Re-arrange to get W = —5a’ (Ma+Ka-F).

Use the principle of virtual work oW =0 Voda and the fundamental lemma of variation

calculus for 5a € R” to deduce the system equations Ma+Ka—F =0.

Solve the equations for the natural angular speeds of vibrations and the corresponding

modes or solve for the displacements and rotations as functions of time.
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BAR ELEMENT

Assuming a linear approximation to the axial displacement wu(x,?), virtual work

expressions of the internal, external, and inertia forces take the forms
T
5Wint _ 5ux1 E_A 1 -1 Uy
Suyy | h =11 ||luyn| f.
T
5Wext _ 5ux1 th 1
5l/lx2 2 1 ’

T ..
5WiIlC:_ 5l/lx1 pAh 2 1 uxl
Suyy| 6 |1 2]||iiyn]

Above, f. and E, A4, p are taken as constants.
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EXAMPLE 2.3. Consider the free vibrations of the bar shown, when material properties
E,p and cross-sectional area A4 are constants. Determine the set of ordinary differential
equations giving as their solution the nodal displacements (assuming that initial

displacement and velocity are known). Use four elements of equal size.

4L
7 |-
(2 -1 0 |[uy, (4 1 0|[iiy,)
EA X2\ AL X
Answer T —1 2 —1 L UXY3 >+T 1 4 1 1 UX3 s = ()
i 0 —1 2_ kl/lX4) _O 1 4_ \i/iX4,
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Let us assume that the structural and material coordinate systems coincide (for

simplicity). Virtual work expressions of the elements taking into account the internal

and inertia parts are

T
0 1 -1 0 2 1 0
e P 2 T o I
UXz L —1 | UX2 6 1 2 UX2
5W2—— 5MX2 T(E_A 1 =1 Uy»o +pAL 2 1 iin )
5MX3 L | -1 | MX3 6 I 2 iiX3 ’
T ..
o 1 -1 2 1
i 61 3 Y Gl = PO P
MX4 L —1 | UX4 6 1 2 UX4
T
P Ol y 4 (E_A I =1 uyy L pAL 2 1| uyy )
0 L|-1 1 0 6 |1 2 0
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Virtual work expression of the structure is the sum of the element contributions

oW = Z SW*€ . When expressed in the “standard form”

OW = -

Principle of virtual work oW =0 Voda and the fundamental lemma of variation

T

(5UX2 )
|
L

calculus for da give

EA

L

[ 2

—1
0

-1 0|

Ux»
2 —1 <MX3
-1 2_ kl/tX4)

2
-1
0

-1
2
-1

0
-1
2

u 4
A
<MX3 >+T 1
\MX4) _O

107 [iiys
4 1 <iiX3
1 4] uyy|
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e Mathematica code of the course can be used to build the set of ordinary differential

equations and check the outcome of hand calculations:

type properties geometry
1 BEAM {{E, G, p}, {A,I,TI}, {0,0,0}} Line[ {1, 2} ]
2 BEAM {({E, G, p}, {A, I, T}, {0,090, 0}} Line[ {2, 3} ]
3 BEAM {{E, G, p}, {A,I,TI}, {0,0,0}} Line[ {3, 4} ]
4 BEAM {({E, G, p}, {A, I, T}, {0,090, 0}} Line[ {4, 5} ]
{X,Y,Z} {Ux, Uy, Uz} {Ex,6v,52}
1 {0, 0, 0} {0, 0, 9} {0, 0, 0}
2 {L, @, 9} fuxX(1], 9, 0} {0, 0, 9}
3 {2L, 0, 0} {uxX[2], 9, 0} {0, 0, 0}
4 {3L, 0, 0} fuxX(3], 9, 0} {0, 0, 9}
5 (4L, 0, 0} {0, 0, 9} {0, 0, 0}

In Mathematica representation, derivatives with respect to time are indicated by
indices. Therefore, e.g., uy, ~uX[n,0], tiy, ~uX[n,2] (zero order derivative means

function itself):
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2AZ _AZ 5
SuX[1, @] \T | L
SW = | sux[2, e] | (| -2 2= &
L L L
OuxX[3, 0] 9 _AE 2A=

L

—

2ALe ALpg

9 A
uX[1, @] 3 6 ux[1, 2]\ (@
ux[2, @] |+ =2 =2 2 | Tux(2, 2] |-|e
ux[3, o] 0 ALp 2ALo | \UX[3, 2] z)
6 3
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EXAMPLE 2.4. Consider free vibrations of a truss of three bar elements of which bar 2 is
inextensible and bars 1 and 3 massless. Determine the displacement of node 2 as function
of time. Initially, displacements are zeros and velocity of nodes 2 and 3 are U downwards.

Use linear bar elements. Cross-sectional areas of bars 1 and 3 are 4 and that of bar 2 \/§A.

2
Answer u,,(t)=2U Lp sin(lt i)
E 2 sz
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Only the displacements of nodes 2 and 3 in the Z —direction matter. As bar 2 1s known
to be rigid, vertical displacements of nodes 2 and 3 coincide 1.e. u;, =u,3. From the
figure, the nodal displacement and length of bar 1 are u, =0, u,, =uy,/ V2 and

h=~/2L. As the bar is assumed to be massless, inertia term vanishes and

T
0 EA| 1 —-1]] 0O EA
swl=-— — =—ou Uz .
{5“22} «/gL{—l 1}{“22} 8L

The relationships for bar 2 are u,y =uy,, u.» =y, and h=L. The cross-sectional

area is ~/SA4. As the axial displacements coincide, internal part vanishes and

T .
o 2 1

5%22 6 1 2 l:iz2
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e The relationships for bar 3 are u, 1 =0, u », =-uy,/ J2 and h=+/2L. As the bar is

assumed to be massless

T
0 1 -1 0
5W3 =— E—A :—51422 £4 Uzr.
~Suzy| NSL{-1 1 ||-uz J8L

e Virtual work expression of the structure is the sum of element contributions

EA

J2L

SW =W + W2 + W3 = —Su,y(——u 4y + pxJ8ALii ).

e Principle of virtual work oW =0 Voda and the fundamental lemma of variation

calculus 5a'F=0Véa < F=0 imply that

EA

J2L

Uz»r + p\/gAlelzz =0.
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e What remains, is solving for the displacement as function of time with the additional
information of the problem description. The initial value problem consists of the

differential equation and two initial conditions:

l:izz +lil/l2220 t>0, l/tzz(()):o and l/lzz(O):U
4pL2

e Solution to the equations is given by

2
uzz(t)zzU,/L—psin(lt i) t>0. €
E 2 sz

e Mathematica code of the course can be used to solve the set of ordinary differential
equations for the nodal displacements and rotations in simple cases and check the

outcome of the hand calculations:

Week 3-28



type properties geometry

BAR  [{E, @}, (A}, (0}) [ine[ {1, 3}
BAR [{E, 0}, {22 A}, {0}] Line[ {2, 3} ]
BAR {{E, @}, {A}, {0}) Line[ {4, 2}]
{XJYJZ} {UXJUYJUZ} {6){:@‘(:@2}
1 {0,090, 0] {0,090, 0] {0, 0, 0}
2 | (L,0,0} {8,0,uZ[2]} {0, 0,0)]
3 {L, 0, L} {0, 0, uZ[2]} {0, 0, 0}
4 | (e,e,L} {0,80,0) (0, 0, 0}
Tesal 1 E
20sin| 2t [ 5|
{uZ[ZJ N }
Lzz_o
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2.3 ELEMENT CONTRIBUTIONS

Virtual work expressions for solid, beam, plate elements combine virtual work densities
representing the model and the element shape and type dependent approximation. To

derive the expression for an element:

O Start with the virtual work densities Swiy, SwhS, and Sws' of the formulae

collection.

O Represent the unknown functions by interpolation of the nodal displacement and
rotations (see formulae collection). Substitute the approximations into the density

expressions.

O Integrate the virtual work density over the domain occupied by the element to get oW .
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ELEMENT APPROXIMATION

In MEC-E8001 element approximation is a polynomial interpolant of the nodal
displacement and rotations in terms of shape functions. In vibration analysis, shape

functions depend on x, y, z and the nodal values on time t.
Approximation u=Nla MWM;S Vf the snmefarm.’
Shape functions N ={N;(x,y,z) N>(x,y,z) ... N, (x, y,z)}T
Parameters a={a;(?) a,(?) ... a, (t)}T

Nodal parameters ae {ux,uy,uz,exﬁyﬁz} may be only displacement or rotation

components or a mixture of them (as with the beam model).
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SOLID MODEL

The model does not contain any assumptions in addition to those of the linear elasticity

theory.
(06u/ox)'  (ou/éx) (08u/oy+osvidx)' (6uldy+ov/dx)
Swal =—={06v/8y [E]Sv/8y p—<00v/dz+05w/dys G{6v/dz+ow/dyy,
05w/ oz ow/oz| |0Swiox+dSuléz|  |éw/ox+oul oz

- NT ) - NT () - N T C e
oul | f. oul |t, | ou u
SWel =18v i {1, b, OwWS =18vy <t b, and SweS=—18v pi VL.
Yy Yy
\5W) \fzj \5W) \tZ) \5W) \W)

The solution domain can be represented, e.g., by tetrahedron elements with linear

interpolation of u(x, y,z,t), v(x,y,z,t), and w(x, y,z,t) in spatial coordinates.
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EXAMPLE 2.5 Consider a tetrahedron of edge length L, density p, and elastic properties
E and v =0 on a horizontal floor. Calculate the displacement u,5(¢#) of node 3 with one
tetrahedron element and linear approximation. Assume that uy3 =uy3 =0, the bottom
surface 1s fixed, and u,3 =U and u,3 =0 at r =0. Stress vanishes at the initial geometry

when u;3 =0.

3
b
[ ] — b
—_— P e
° — R . - - - 4 = R
P N
S D
FE s +
S i
e R i
o 4 T e
S B ) S
e R e S ’
e T e
i 3 e
o o
£ " e
» e
Z T
T
gt
LGt
S e
e e
G e e e
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Linear shape functions can be deduced directly from the figure Ny =x/L, N, =y/L,
Ny=z/L,and Ny=1-x/L—-y/L—-z/L. However, only the shape function of node
3 1s needed as the other nodes are fixed. Approximations to the displacement

components are

.. 0 ow 1 .. .
u=0,v=0,and w:%um, giving —W:—zo,a—wz—uz3,and w:%um.

ox Oy 0z

When the approximation is substituted there, the virtual work densities of the internal

external, and inertia forces simplify to (here v = 0)

o ' (1-v v v |[ 0 ] i
Swoyl=—4 0 ¢ £ v l-v v |§ 0 (=——uy30uy;,
(1+v)1-2v) I?
k@c?w/@z) v v o 1-v]| \aw/ﬁz)
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( \T (oo ) ( \T ( A
ou 1 0 0

5wi£e =—<0V PV p=—3 0 > py O >:—p(%)25uz3iiz3.

5W w \Z/L5MZ3) \Z/Liiz:;)

" J " J

Virtual work expressions are obtained as integrals of densities over the volume:

Wmt _I S lnth J‘ IL ZJ-L =) o 1ntdxdyd2——%EL5UZ3u23:

3
L—z ¢L—z—
S = [ swiedy = j [ medxdydz——l%—(’féumum

Finally, principle of virtual work SW = 0 with SW = SW™ + 5w implies that

1 Lp. E
—ELusr +—Gin =0 < Qi +10—u,n=0. The standard form!
o Lhuzs = iz3 73 oL 73 q "(f
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Solution to the ordinary differential equations with the initial conditions u,3 =U and

uy3 =0 at t =0 is given by (

uz3(t) =U cos( IOLZt). €
pL
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BEAM MODEL

Virtual work density of the inertia term 1s of the same form as that of the external force, if
the distributed external force is replaced by the “inertia force” (not a true force actually).

Virtual work density of the inertia forces of the beam is given by

(su '] A4 =S, =S, (i) (ev)T[ 4 0 =S,] (%)
Swg =—10y ¢ | =S, I, I, |pyW —q6wr | 0 A4 S, |peiy,
\_59) __Sy ]Zy ]yy | \_9) \ 5¢ J __Sy SZ ]”7" | k¢/

in which (Bernoulli constraints) w =dv/dx, 0 =—dw/dx, v =dv/dx, and 0 =—dw/dx.
The terms for the bar, torsion bar, and the two ending modes follow from the generic

expression above. Often, the rotation terms in bending are omitted as negligible.
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e Let us consider the inertia term per unit length under the kinematic assumptions of the

Timoshenko beam model u, =u+z0 — yy, U, = v—z¢,and u, = w+ y¢

Swle = — (pu ou)dA=(o0 lne) +(5wme) +(5wme) , Where
X Q Jy Q Jz

e 5” N T 1 _y —z - u A
(S me)x_—j Su . pii dA=—1 Sy | jA —y 2 yz|pdAd v b,
_58) __Z Zy 22_ \_H/

T | .
(owm me)y —j Suy, piiy, dA——{&)}j { 2}pdA{‘.j},
69 4 |-z z ¢

ine\ sw)’ 1y w
(Owo )Z——_[ Su, pii dA = — {5{15} _[A L yz}pdA{qb}.
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e Assuming that cross-section geometry and density are constants, integration over the

area gives with the assumptions S, =S, =0 and /,, =1, =0

| ré,u\T A _SZ _Sy (e
(5Wge)x:_< oy =5, 1, [yz P l//">9

00 =Sy Iy Iy | 7Y

A

V

r

svI'[ 4 0 =S, (%)

BWE), +(BWSES), =—1vE | 0 4 S, |piii,
\5¢, _Sy Sz [rr \¢,

in which /. =1, +1,. ,y =dv/dx and 0 =—dw/dx (Bernoulli constraints).
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BAR MODE

Bar mode element contribution follows with the assumptions v=0, w=0, ¢ =0, and a

linear approximation to u(x)
T
5Wint _ 5ux1 E_A 1 -1 Uxi
Suyy| h =11 ||up] fo
T
5Wext _ 5ux1 th 1
5l/lx2 2 1 ’

T .
5WiIIC:_ 5l/lx1 pAh 2 1 Z/lxl
Sugn| 6 |1 2||iig |

Above, f. and E, A4, p are taken as constants.
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Virtual work density of the inertia term is of the same form as the terms coming from
the external distributed forces with f. =—pAu (inertia force per unit length). Hence

virtual work densities are

d5l/l EA dl/l’ 5W6Xt :5ufx9 and 5Wge :—5upA1/l

dx dx

5Wint - _

Cross-sectional area 4, Young’s modulus E, density p, and external force per unit

length f,. may depend on x and time ¢.

Element approximation of the bar model with semi-discretization u(x,#) = N(x)T a(t)

L I S SR e R B T,

Uyo dx Uxo Uyo
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e Virtual work density of the inertia force (expressions for the internal and external

forces have been discussed in MEC-E1050) 1s given by

s s [dug Y pa| (=07 x(h-x)|[iiy

Uy l’lz x(h — x) xz Uyo

e Assuming that A4, p are constants, integration over the length gives

T .
swe = " Sty = - O | pAh| 2 T Jia | g
0 Ou 6 |1 2]||uyp
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TORSION MODE

Torsion mode element contribution follows with the assumptions u =0, v=0, w=0, and

a linear approximation to @(x)

T
5Wint — _{5Hx1} G[rr |: 1 _1j|{9x1}
S0, h |-1 1]6, -
T
5W€Xt: 59x1 mxh 1
50, 2 1)

T .
5Wine _ _{59x1 } p]rrh |:2 I:HHxl }
50, 6 [1 2|6,

Above, m,., G,p and [, are assumed to be constants.
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BENDING MODE (xz-plane)

E:E:HHWHHHH?

(Su )" 36 —3h{-36 -3h (156 22k} 54 13h ] (i,
Suyy | 30n | =36 3h 36 3h | 420| 54 —13h 156 22k [ |ii,
00y —3h —h*| 3h 4h* 13n -3k 220 4R® | (O

The first term is negligible whenever a beam element is thin in the sense ¢ =¢/ h <<1!
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BENDING MODE (xy-plane)

/y
RIS

Z /;i X
021 v uyl 922 uy2
J |
y -
(Suy )’ (36 3h {36 3K (156 22h | 54 —13h7] (i
5Wine:_<_€5.f‘.’£.1._> (p[ZZ 3 4R _3h _p2 - anl 228 ar? 130 32 N
Suyy| 30k | =36 —3h| 36 —3h| 420| 54 13k | 156 -22h

(0022 | 3h —h® | -3h 4h* —13h -3h%|-22h 4h* | |

The first term is negligible whenever a beam element is thin in the sense ¢ =¢/ h <<1!
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EXAMPLE 2.6 Consider bending of a simply supported beam of length L in XZ —plane.
Determine the ordinary differential equations giving as their solution the rotation
components of the end nodes as functions of time. Determine also the natural angular
speeds of free vibrations and the corresponding modes. Cross-section properties 4, I and

material properties E, p are constants.

6 1 6 -1
Answer o, = (2520 E[4, { Yl} :{} and @, = [120 E[4, { Yl} :{ }
pAl* 0v2), 1 pAL" (Or2), 1
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As the material and structural coordinate systems coincide here, virtual work
expression taking into account the internal and inertia forces simplifies to (the second

bending term is omitted in the inertia part)
—_— {59Y1}T LI 412 212 {9Y1}+ pAL| 4> 312 {ém})_ )
SOya] |22 4 |6v2) 420|312 4 ||6r2

Principle of virtual work and the fundamental lemma of variation calculus give the

ordinary differential equations

4 21(6 4 -31[0
EI vi|, pAL o1 _) e
L2 4||06y, 420 -3 4 || 6y,
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Angular speeds of free vibrations @ are the eigenvalues of € which is related with the

matrices of the differential equations by Q> =M 'K =Xo’X!

-1
11107 [1 -1 2520 0 1 -1

0? =120 - B |
oAl 110 1171 1] paf 0 120 |11

The latter form of Q7 (eigenvalue decomposition) gives

1 EI —1
o = (2520 E[4,x1: and @, = [120 7> X2 = . €&
p AL 1 p AL 1

Mathematica code takes into account both inertia terms

| type properties geometry
1 | BEAM  ({{E, G, p}, {A, T, T}, {0,0,0}}  Line[{1,2}]
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| {XJYJZ} {UXJUYJUZ} {6){:@‘{:@2}
1 ‘ (6,0,0}  {0,0,0] (@, 6Y[1], 0}
2 | {L,0,0) {0,0,0) (@, 6Y[2], @)

EI (AL*+10T
{{w[lj—:»t?\/?@\/ — — )2 : ,{@YLlJel,@Y[ZJ—:»l}},
(A*L°+52AL T +420L°T%) p

ET (AL2+421j

, (8Y[1] - -1, 6Y[2] el}}}

{mlzj ezm\/

(A*L°+52AL*T+420L°T%) p
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PLATE MODEL

The generic element contribution of plate is obtained by combining the virtual work

expressions of thin slab and plate bending modes. Assuming that the origin of the material

coordinate system is placed at the mid-plane and material properties are constants through

the thickness, virtual work density is given by

(

SWHT = —3

"

ou
oV
ow

N

T

J

x

s PSS

oswi x| 3p [0/ ox
oow/oy| 12 |ow/oy|

The planar solution domain (reference-plane) can be represented by triangular or

rectangular elements. Interpolation of displacement components should be continuous and

w(x,y) should have also continuous derivatives at the element interfaces.
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e Let us consider (first) the virtual work density of the inertia forces under the kinematic

assumptions of the Reissner-Mindlin model u, =u+0z, u,=v—¢z,and u, =w.

y

Swile = — (pii-5ii)dz = (3 wil®)  + (W), +(SwiSS),, where
X y z

owitey, [ sugpinaz=—{ L [ [ ol
Q Jx X X _56 . 22 _9- )
ine ov T 1 -z v

(5 )y__J. 5“ pu dZ_ 5¢ J. _ 22 de ¢ )

(0 lne)zz—j ou,pii, dz-—5wj podzw .

e Assuming that thickness and density are constants, and the origin of the z—axis is

placed at the geometric centroid, integration over the thickness z e [—¢/2,¢/2] gives
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S me\ _ ou ! t 0 U

( wa )x__{_59} 0 l‘3/12 P{_é},
5 ine B ov B { 0 V
(One )y__{&/ﬁ} 0 £/12 p{()5}’

(SWES), = —Swipiv.

Summing up the terms with the Kirchhoff constraints ¢ =ow/0dy and 6 =—0ow/ Ox (to

end up with the Kirchhoff model expressions) gives the final form:

( T (o)
§
Sopite _ . 5Z> t <’;>_ 05w/ Ox Tﬁ_p O / Ox
5 P17 eswiay] 12 |awiay)
w w

" J " J
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EXAMPLE 2.7 Consider the thin triangular structure shown. Young’s modulus E,
Poisson’s ratio vV, and thickness / are constants. Assume plane-stress conditions and

derive the ordinary differential equations giving as their solutions the free vibrations of the

structure.

»Y

3—v 1+v||u I? U
Answer: 1 hE X1 +—hp “Xl =0
41-v2|1+v 3—v||luy| 12 ty |
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Nodes 2 are 3 are fixed and the non-zero displacements/rotations are uy; and uyq.

Linear shape functions Ny =(L—-x-y)/L, N,=x/L and Ny=y/L are easy to

deduce from the figure. Therefore

LV L Uyq

(Ou / Ox 1 [y ou / oy 1 [uxq q u| L-—x—y |y
B ’ Sl , an (= . .

| Ov/Ox L | uy; ov /oy L | uyy % L Uy

/\

Virtual work densities of internal and inertia forces are given by

( 5MX1 ! | hE _1 1% 0 1( qu )
5Wgt = —X 5”Y1 > > 5 1% 1 0 < Uy >y
\5“X1+5’/‘Y1, L 1-v _O 0 (1—V)/2_ \qu—i_qu,
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T .
. 5 v
Swiye = — VAL ppEEETYy2 L
5”Y1 L qu

e Integration over the triangular domain gives (integrand of the internal part is constant)

. ( 5MX1 ! | hE _1 1% 0 1( qu )
5W1nt = —x 5”Y1 > 5 v 1 0 S Uy > <
\5%}(1 +5”Y1, 1- V _O 0 (1 —V)/Z_ \qu +”Y1,

T
st _ OU yq 1 hE |3-v 1+v|juy,
5”1’1 41_V2 l+v 3-v Uy ’

T
- o L-
5W1ne:_{5uX1} hp{”Xl}J‘ J‘ x J‘ L— z y) dydx =

Uy
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T ..
5Wine:_ 5”)(1 éhp Ux1
5MY1 12 iin .
o Principle of virtual work in the form SW =6W™ +5W™ =0 V&a and the

fundamental lemma of variation calculus give
. T ..
ou 3—v 1+v||u I? i ou

s = {2 (LA T R L
\514)71 41_V2 l+v 3-v Uy 12 Uy o

(3—v 14+v||u 2 1
1 hE X1 +L—hp “Xl =0. €
41-v?|1+v 3=v||luy;) 12
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RIGID BODY

Inertia term takes into account translation and rotation parts which depend on the mass m

and the 33 inertia matrix J. For a sphere J = % mR°1 (I 1s the 3 x3 unit matrix).

(Suy)' (Fy) [60y)"
SWEXt = ouy ¢ s Fy 1 +400y ¢ < My
(ouz ) Iz ) (007
(Suy )" [(iiy) (06,
SWne = _ Suy ¢ my iy r—400, |

The form above assumes that the first moments of mass and the off-diagonal terms of the
second moments of mass vanish (origin of the material coordinate system at the center of

mass etc.). Expressions for large rotations are more complex.

Week 3-57



EXAMPLE 2.8. The mass of a cantilever (circular cross section) is negligible compared
to the mass of a rigid spherical body welded to the free end. Determine the angular speeds

and modes of the free vibrations. The mass of the sphere is m and the moment of inertia

J=VYim’1.

/ /EA
AnSWBI' CO3:CO4: 2£, a)s :(06: 3OE—]3’ (02: loﬂ,and(ol: _—
mL mlL N\ mL mL
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Frequency analysis by the Mathematica code gives

w[lj—h/i‘—; {uxm 1, uy[2] -0, uZ[(2] -0,
(2] >0, 8Y[2] >0, 8Z[2] >0}

w[2] >\ 10 31 [uX[2] -0, uY[2] >0, uZ[2] >0,
6X[2] »1, 6Y[2] -0, 5Z[2] > 0}

w[3] >V2 5 [ux(2] >0, uv[2] > E,uzm

: 0,
eX[2] >0, 6Y[2] -0, 6Z[2] > 1}
w[d] V2 5 {ux(2] > e, uv(2] >0, uz[2] > - 2F,

eX[2] » @, 6Y[2] > 1, 6Z[2] > @}

w[5] > 30 L:TI [ux[2] - e, uv[2] e—g, uzZ[(2] - o,
eX[2] » @, 6Y[2] -0, 6Z[2] > 1}

w[6] > 30 L:TI {ux(2] >, uv[2] -0, uZ[2] - g
ex[2] >0, 6Y[2] -1, 6Z[2] >0}
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