MEC-E8001 Finite Element Analysis, week 3/2019

_ 4 0
1. Determine the eigenvalue decomposition A = XAX I and VA when A :{ }

-1 1
-3 0fl4 0} -1/3 O 2 0
Answer A=XaX"1= and \/X=i
1 1{{0 11| 1/3 1 -1/3 1

2. Derive the consistent mass matrix M of a two-node beam element (bending in xz-plane). As-

sume that density is constant and the beam element is thin in the sense ¢#/h <1, so that
ine _

owgn =—0wpAw.

[ 156 -22hi 54 13k ]

22k 4h* |13k —3h?
Answer M:pAh
420 54 —13h! 156 22h

| 13h —3h*| 22k 4h* |

3. The XZ-plane structure shown consists of two mass-

less beams and a homogeneous disk considered as a

rigid body. Derive the equations of motion in terms of

displacements u,, and 6y, . Young’s modulus of the

beam material and the second moment of area are E

and 7/, and the mass and moment of inertia of the disk

are m and J , respectively.

24 0 01(i
Answer E—g 5 {uzz}j{m HL.{ZZ}=O
L' 0 85 |(6y2) [0 J](by2
4. The rotor of the machine shown rotates with angular

speed Q2. Determine the bending stiffness £/ so that

the angular speed (free vibrations) of the foundation-

machine system coincides with Q2. The foundation is

modeled as two massless beams and the machine as a | L L |
1

particle of mass M. Assume that Oy =-0y; and
0Y2 = 0 .

Answer EI :%mﬁﬂz

5. XZ-plane structure shown consists of a beam and a homogeneous disk
considered as a rigid body. Derive the equations of motion in terms of
uzy,, By, and determine the angular speeds of free vibrations. As-

sume that mass of the beam is negligible compared to that of the disk

and that the beam is inextensible in the axial direction. Young’s mod-




ulus £ of the beam material and the second moment of area [ are constants. Mass and moment

of inertia of the disk are m and J = %mLZI, respectively.
EI / EI
Answer wlz\/fl:\/z E, 602:«/1 :\/% E

Node 4 of a thin rectangular slab (assume plane stress

conditions) is allowed to move horizontally and nodes

1, 2, and 3 are fixed. Derive the initial value problem
giving as its solution the horizontal displacement
uy4(t) of node 4 as function of time, if uy,4(0)=U L

and uy4(0) =0. Use just one bilinear element. Materi-

al parameters £, v=0, p and thickness % of the

slab are constants.

E
Answer iiX4 +%2_MX4 =0 >0, MX4(O) =U, UX4(O) =0
Lp
The beam of the figure is subjected to moment M when

t<0. At t=0, the moment is suddenly removed and the

beam starts to vibrate. Derive the initial value problem

giving Oy, (¢) for > 0. The beam is thin so that the rota-

tional part of the inertia term is negligible. The geomet-

VA
rical quantities of the cross-section are 4, / and the materi-
al constants £ and p.
EI pAL .. 1 ML
Answer 4—0y, + Oy, =0 t>0, By,(0)=——, Oy,(0)=0
TR y2(0) 2 5 y2(0)

Yy
Node 1 of a thin rectangular slab (assume plane stress

conditions) is allowed to move horizontally at node 1
whereas nodes 2, 3 and 4 are fixed. Derive the expres-
sion of horizontal displacement uy;(¢#) of node 1 as
function of time, if uy(0)=U and 1, (0)=0. Use

two linear triangle elements. Material parameters £, v,

p , and thickness 4 of the slab are constants. L

- E
Answer u y(t) =U cos(¢ 33 Vz_z) t>0
21-v* pL




10.

Bars 1 and 3 of the structure shown are massless and bar 2
is rigid. Force F' is acting on node 2. Determine the dis-
placement u;,(¢) of node 2 for ¢#> 0, if the force is re-
moved at £=0. Young’s modulus of bars 1 and 3 is £ and

density of bar 2 is p. Cross-sectional area is constant A.

Answer uy,(t) = F—c s(— / ) t>0

A plate is simply supported on two edges and free on
the other two edges as shown. Use the approximation
w(x, y,t)=a(t)xy/ I? to determine the transverse dis-
placement as function of time ¢>0. Material proper-
ties £, v, and p are constants and thickness of the
plate is 4. At t =0, initial conditions are w(x,y,0)=0
and w(x,y,0)=Uxy/ I?. Assume that the plate is thin

so that the rotation part of the inertia term is negligible.

Answer w(x, y,t)=U cos( 3git) 3 t>0
pI* L




_ 4 0
Determine the eigenvalue decomposition A = XAX I and VA when A :{ . 1]

Solution

Let us solve for the eigenvalues first from det(A —AI)=0

4-2 0
de{ o J=(4—A)(1—A):O o A=l or A=4.

The corresponding eigenvectors x follow from (A — AI)x =0 when the eigenvalues are substituted
there

Therefore
0 3|1 of 1/3 1
A=XaX"!= . €
1 110 4]-1/3 0

Let us use the definition: if A=XAX"! then f(A)=Xf (k)X_1 . When applied to the present case

of a square root

JX:X(HX)X_I{? ﬂ{{f jzml(; (1)}:{—12/3 (1)} €



Derive the consistent mass matrix M of a two-node beam element (bending in xz-plane). Assume
that density is constant and the beam element is thin in the sense ¢/h<1, so that

SWC = _Swp Aii.

Solution
The starting is the virtual work density of inertia forces and the element approximation of the beam

model (see the formulae collection)

T
1=&2A+28)| [ uy () Su ()" |1-8)*(1+28)
_£\2 -0 o0 —h(]— £)2
i t) = h(1-&)*& 1(0) L Sw(r.n) = 1(0) h(1-&)*& ’
(3-26)&? uz5(t) S5 (1) (3-28)&?
- | 700 0] | _pg2e -1y
2 T .
(1-&2A+28)| (i (1)
hedoa? | |6
w(x,t) = he(l=¢) __yl(t) (here ng),
3-20)¢ | i) 4
2= | 1020

Virtual work expression of the inertia forces consists of terms taking into account translation and

rotation of the cross-section. Here, rotation part is assumed to be negligible so that
ine _

owgn =—0wpAw.

When the approximation is substituted there, virtual work density takes the form

T 2 2 T .

suy |t [a-0Par2)| [a-02a+28)| (i

s __ |00t | =hEa=87 || -hé=8)” | O
R P 2 2 ii
2 (3-208° || -2 | |42

P} | e || a2ey | 0

Integration over the spatial domain gives (use Mathematica in this step)

5Wine - _

suy |t [ 156 22k
80,1 pAn|-22h 4h?
Suy, [ 420| 54 —13h
66,2 | 13h -3k

Therefore, the mass matrix

54 13h | (iiy
—13h 3K || 0y
156 224 ||ii.
2h an* |0



pAh
420

[ 156 —22h 54  13h |
20K 4h* —13h —3K3
54 —13h 156 22k |

| 13h 3h% 22k 4k?




The XZ-plane structure shown consists of two massless

beams and a homogeneous disk considered as a rigid

body. Derive the equations of motion in terms of dis-

placements u;, and 6y,. Young’s modulus of the beam

material and the second moment of area are £ and 7, and 7
the mass and moment of inertia of the disk are m and J,

respectively.

Solution
The non-zero displacement/rotation components of the structure are u;, and 60y, . Let us start with
the element contributions. Since the beam is assumed to be massless, only the virtual work expres-

sions of the internal forces (available in the formulae collection) is needed.

0 1T [12 -6L -12 —6L]( ¢
spl__) O | Er|-6L 4 6L 2I|] 0 | [duy Y EI[12 6L (uz,
51/{22 L3 -12 6L 12 6L Ugzy 59Y2 L3 6L 4L2 9Y2 ’
60y 6L 2I* 6L 417 |Or2
suy, )T [ 12 6L -12 -6L)(y,
T
sy?__) %02 | EI|-6L 42 6L 20 ||6yy| _ [Suzy| EI[ 12 —OL][ug,
0 P|-12 6L 12 6L || 0 80y, | Pl-6L 412 ||6yy]

0 —6L 217 6L 417 |l 0

Element contribution of the rigid body (formulae collection) simplifies to

01" (o 01" o 501 T 07 (i
sw3=—1 0\ ml 0 Llsgy, ! 1ud,t=—1"22 " Ptz
. 50y, [ |0 7|6y,
51/122 uZZ 0 0

Virtual work expression of structure is the sum of element contributions.

T .
S 24 0 0
5W=5W1+5W2+5W3=—{ ”22} (_E3[ , {”22}{’" HL.‘.ZZ}).
006y, L’ 0 87|06y, 0 J||6y,

Finally, principle of virtual work and the fundamental lemma of variation calculus imply a set of

ordinary differential equations:

24 0 01/(ii
Blo sellan (s oo <
L0 8L [Oy2] [0 J](6y
The angular speeds of free vibrations can be deduced from the stiffness and mass matrix of the

equation system



0 240 24/m 0
M{m } andK=E—3[ , L oot-mik=H |-
J L’| 0 8L 0 8L/ J

The angular speeds of free vibrations are the eigenvalues of €. Let us start with the eigenvalues of

Q2 -M'K

24/ m 0 1
det(2E , —ﬂ{ }) (24ﬂ—1)(8——1) 0 = repall gE
|y o 8L/J 0 1 ml? ml>  JL

Eigenvalues of Q are square roots of eigenvalues of o’

col\/7 24—anda)2 \//17—8%.(-



The rotor of the machine shown rotates with angular speed
Q. Determine the bending stiffness £/ so that the (small-
est) angular speed of free vibrations of the foundation-
machine system coincides with Q. The foundation is mod-

eled as two massless beams and the machine as particle of

mass M. Assume that QYI = —ey3 and Qyz =0.

Solution

The non-zero displacement/rotation components of the structure are u;,, 0y, and Oy3 = -0y . Let

us start with the element contributions. Since the beam is assumed to be massless, only the virtual

work expressions of the internal forces (available in formulae collection) is needed.

0o 1T [12 6L
sl )00 | EI| 6L 417
Suzy| P|-12 6L
0 | -6L 217
suy, |7 [ 12 6L
0 —6L 4I*
W =— B
0 >-12 6L
~60y, | —6L 217

~12 —6L]
6L 21
12 6L
6L 47 |
~12 —6L]
6L 21
12 6L
6L 4%

0
0

—by,

s

g

00y,
Sz,

L3

|

T
EI

L3

00y Tﬂ 417
51/{22

|

6L

41>
6L

6L {Qm}
Uzn ’

6L {Qm}
12 [luzn )

Element contribution of the rigid body (formulae collection) simplifies to

01" (o 0" (o T §
swi=—1 0o L mdo t=lol o =—{59Y1} {O OHQYI}
5 0 .. *

Ouzy lizy 0 vz iz

Virtual work expression of structure is the sum of element contributions.

T .
&%1}(£¥_8ﬁ 121 {@q}+{0 0} Oy )
Suzy| 120 24 |luzn) |0 mliiyy)
Finally, principle of virtual work and the fundamental lemma of variation calculus imply a differen-

tial algebraic system (DAE):

(2 8L2 12L {0Y1}+|:0 O:| éy1 —0

>l12r 24 [lugy) [0 m]liiy, '

Let us eliminate the rotation from the differential equation by using the algebraic equation
8120y, +12Luyy =0 < Oy, =—uy,3/(2L). Therefore

SW =Wl sw? + w3 =—{

£l or i +6—E[ Uz, =0
72 72 — Y-
mL3

El



The angular speed of free vibrations should match the angular speed of rotor (the condition of reso-

nance and increasing amplitude in vibrations)

o= /6E—[3:Q = = .B0? €
mL 6



The XZ-plane structure shown consists of a beam and a homogeneous disk
considered as a rigid body. Derive the equations of motion in terms of
uz,, By, and determine the angular speeds of free vibrations. Assume
that mass of the beam is negligible compared to that of the disk and that

the beam is inextensible in the axial direction. Young’s modulus £ of the

beam material and the second moment of area [ are constants. Mass and

moment of inertia of the disk are m and J = %mLzl , respectively.

Solution
Virtual work expressions of the beam and rigid body elements are given by (inertia contribution is

omitted from the beam contribution and rigid body has only the inertia part)

0o T [12 -6L —12 —6L][ .
12— 6—
- 0 | Er|-6L 4> 6L 20*|| 0 | ([Suzp)|'| B L2 |[uz
C Gug [ B -12 6L 12 6L ||ug| |56y sEL L EL |6y
% 6L 217 6L 41 |2 oL
01" (o 0" (o s T[m 0
. u u
SWr=—=1 0 t m{ 0 =180y, J16y, =—{ 22} 2 {..22}.
5 ) 80y, |0 — |02
Uzo Uz 0 0
Principle of virtual work 6/ =SW! +8W? =0 V8a gives
T 12ﬂ 6ﬂ ..
Suz) £ ||uzz| MmO |fig
oW =~ ( + 5 . )=0 =
66y, ¢EL 4EL|Oy2) [0 mL™/5] (O
L
12E—31 6E—21 m 0]
u u
e e S e T
El -, EL6y2) |0 —|[6r2
6= 4— 5
L L

The angular speeds @; and o, of free vibrations can be obtained (as square roots of the eigenval-
ues) from the eigenvalue decomposition Q% =M 'K = Xo’X"! . Let us start with

. El  EI
m 0 ]! 12%1 6E—21 P
. P I ml®>  mL
Q?=M'K=| _
mL” El  EI EI EI
0 5] |65 4—| |30= 20—
L L mL mL

and continue with the characteristic equation



det(Q% - AT) = (12£—1)(2o__1) 180E_12E_14 0
ml? m? mL”~ mL

giving the eigenvalue solutions

M= EI and 4, = 30—.
mL

Finally, the angular speeds are square roots of the eigenvalues

wlzﬁl:ﬁ% and @, =7 =30 % «



Node 4 of a thin rectangular slab (assume plane stress con-

ditions) is allowed to move horizontally and nodes 1, 2, and
3 are fixed. Derive the initial value problem giving as its
solution the horizontal displacement uy,(¢)of node 4 as L
function of time, if uy4(0)=U and uy4(0)=0. Use just

one bilinear element. Material parameters E, v =0, p v

and thickness 4 of the slab are constants.

Solution
Let us use the xy—coordinate system of the figure as the material coordinate system for the thin

slab element 1. Only the shape function of node 4 is needed in the approximations:

Xy ou_1y ou _x1 . X

V.
u= , — , =——Uy,, U=—=1 and v=0.
LL o 11 11 LL ~*

When the approximations are substituted there, virtual work densities of internal and inertia forces

simplify to (here v =0)

T
%5“)(4 20 0 %“)(4
Swit=_1 ¢ hf 020/ 0 —5uX4uX4}2—4(y +; 2y,
X Su 0 01 X
L2 X4 L2 X4
ine Su ! u 5”){411 ' iy . hp 2 2
Swo :_{5\»} hp{‘.}}=— OLL ho!" OLL —_SuX4uX4Fx yo.

Virtual work expressions are obtained by integrating the densities over the domain occupied by the

element

swint = j j Swilldydx = —Suy gy 4 th

i L L i . 1 2
swne = jo jo SWCdxdy = —Su y 4ii xaghel’.
Virtual work expression is the sum of the terms

hE
SW = W™ 4 s = —5uX4(—uX4+9hpLuX4)

Principle of virtual work oW =0 Vda and the fundamental lemma of variation calculus

s5a'F=0Vvéa < F=0 imply the ordinary differential equation



hE 1 7.
— Uy +—hpL Uiy, =0.
> X4 9 PLUx4

Initial value problem consists of the second order ordinary differential equation above and addition-

al conditions at r =0

9 F «

HX4+__”X4:0 t>0 and MX4=U, I/.lX4=0 at t=0.
2L2p



The beam of the figure is subjected to moment M when 7<0.

At ¢t =0, the moment is suddenly removed and the beam starts

to vibrate. Derive the initial value problem giving 6y, (¢) for

t>0. The beam is thin so that the rotational part of the inertia
term is negligible. The geometrical quantities of the cross-

section are A4, I and the material constants £ and p.

Solution
Virtual work expression consists of parts coming from internal and inertial forces. Finding the equa-
tion of motion is the first thing to do. The beam element contributions needed in the problem are

(the term having to do with rotational inertia is omitted)

o T [12 -6L -12 —6L]( o
: 0 —6L 41> 6L 21I* El
SWt =~ £ =—00y,4—0y7,
0 [ 2|-12 6L 12 6L L
60y | —6L 207 6L 4L2_ Oy
0 T (156 -22L 54 13L ][
e 0 | pAL|-22L 4r* —13L -3L*|| 0 pAL
5W = _— :_50Y2 OYZ
0 [ 420| 54 —13L 156 22L|] 0 105
60y, 132 312 221 4r? |92
giving

3
105 Oy2).

swl= —59Y2(4%9Y2 +

In terms of moment P(¢) (positive in the positive direction of Y-axis) which is piecewise constant
in time so that P(1)=M t<0 and P(¢)=0 ¢> 0, the element contribution of the moment is

SW? =80y,P.
Virtual work expression is the sum of element contributions:

3
105 QYZ_P)ZO'

SW=6W!+sw? = —59Y2(4%9Y2 +

Principle of virtual work and the fundamental lemma of variation calculus imply the ordinary dif-

ferential equation

El AL
5W=—59Y2(479Y2+/)105 QYZ_P)ZO V50Y2 =
3
4%9Y2+p14§ éYZ—PZO. €



When #<0, external moment P =M is acting on node 2 and the system is at rest. Therefore, the

equation of motion becomes an equilibrium equation giving as its solution the initial rotation

1ML

vy

When ¢ >0, external moment is zero and acceleration does not vanish. The initial value problem

giving as its solution Oy, (¢) for ¢ > 0 takes the form

EI pAL . 1 ML .
4—0y, + Oy, =0 >0, Oy,(0)=———, and Oy,(0)=0. €
[ It y2(0) 1 E y2(0)




Node 1 of a thin rectangular slab (assume plane stress condi-

tions) is allowed to move horizontally at node 1 whereas
nodes 2, 3 and 4 are fixed. Derive the expression of horizon-
tal displacement uy(¢) of node 1 as function of time, if [

uy1(0)=U and uy;(0)=0. Use two linear triangle ele-

ments. Material parameters £, v, p and thickness 4 of the

slab are constants.

Solution
Let us use the xy—coordinate system of the figure as the material coordinate system for the thin

slab elements 1 and 2. Only the displacement uy(¢) of node 1 in the X — direction matters.

Shape functions of element 1 can be deduced from the figure. However, only the shape function
N;=1-y/L is needed as the other nodes are fixed. Approximations to the in-plane displacement
components are v=0 and

Ou ou 1

Y . V...
u=>01->)u = —=0, —=——uyy, and ii=(1—=)iiy;.
( L) X1 . FRRAY ( L) X1

When the approximations above are substituted there, virtual work densities of internal and inertia

forces simplify to

T

0 . I v 0 0
5Wg1'121t =— 0 £ v 1 0 0 =—5MX1 hE Uxi,
1-v? 212(1+v)
_5MX1/L 0 0 (1—v)/2 _MXI/L

T ..
- o 1-y/L 1-y/L
Swike =_{ ux( . y )} hp{qu( Oy )

} =—0uyx (1 _%)2hPﬁX1 ~

Integration over the domain occupied by the element gives the virtual work expression. The limits

of the double integral over a triangle are not constants (equation of the tilted edge is y =x)

swl = jo jx (SWE 4 Swil)dydx =

L hE L X3, .
W=7 [~uy;———uy (L —x)—ZSuy; (1= hpiiy; Jdx =
J‘O X1 2L2(1+V) X1 3 X1 I X1
h E 2.
SW = —Suy,—@3 +pl .
Uy 12( Ty e tiyr)

In the same manner, shape functions of element 2 can be deduced from the figure. Only
N;=1-x/L is needed as the other nodes are fixed. Approximations to the in-plane displacement

components are v=0 and



X ou ou 1 X
u=>01--)u = —=0, —=——uy;, and ii=(1—)iiy;.
( L) X1 Y PR ( L) X1

When the approximations are substituted there, virtual work densities of internal and inertia forces

simplify to
T
—5MX1/L 1 v 0 _MXI/L hE
5w51t =— 0 3 v 1 0 0 =—5MX1ﬁMX1,
1-v L,(-v?)
0 0 0 (1-v)/2 0

T .
. 1-x/L)o l1-x/L
5wge=—{( X 0) u)(l} hp{( XO )qu}=—5uX1(l—%)2hpiiX1.

Integration over the domain occupied by the element gives the virtual work expression (notice the

limits of the double integral and the order of the integrations)
2 (L ¢x int ine
SW? = jo jo (W4 Swil)dydx =

hE

s = " [osuy —E

1
qux—z5uX1(l—%)2hpiiX1x]dx =

..
qu+pL UXI).

h
SW? = —Suy —(6
”X112( 2

Virtual work expression of a structure is sum over the element contributions

5W = 5W1 +5W2 = —5UX1£(3 £ UX1+pL2ﬁX1)—5MX1£(6LMX1 +pL27;in) =
12 1+v 120 -2
h 3-v ..
5W = —5MX1 —( 5 3EUX1+2PL2UX1) .
12 1-v

Principle of virtual work oW =0 Voa and the fundamental lemma of variation calculus
sa'F=0Vvéa < F=0 imply

3—-v

) 5 3EMX1+2PL21;1.X1 =0 or iin +Q2MX1 =0 n Wthh Qz :é 3-v _E
-V

21-v? pI*’

What remains, is solving for the displacement from the ordinary differential equation above for
¢t >0 and the initial conditions uy;(0)=U and uy(0)=0. Solution to equations is (this can be
shown, e.g., by substituting the solution in the equations above)

3-v izt) 1>0. €

-v© pL

uy1(t) =U cos(

N | W



Bars 1 and 3 of the structure shown are massless and bar 2 is rigid.
Force F is acting on node 2. Determine the displacement u,,(r) of £
node 2 for ¢ > 0, if the force is removed at 1 =0. Young’s modulus

ofbars 1 and 3 is £ and density of bar 2 is p. Cross-sectional area is

constant 4.

4
Solution ! - >

Only the displacement of nodes 2 and 3 in the Z-direction matter. As bar 2 is known to be rigid, ver-
tical displacements of nodes 2 and 3 coincide i.e. u;, =uz3. Bar element contributions of the for-

mulae collection are

T T ..
5Wint __ Sty E_A I —1|fuy and 5Wine - 7 pAh|2 1]y '
5I/lx2 h | -1 1 Uyo 5”)62 6 1 2 iixZ
From the figure, the nodal displacement and length of bar 1 are u =0, u, =uy, /2 and

h =2 . As the bar is assumed to be massless, inertia term vanishes and

1 Ouy T EAl 1 —1||ugy 0 \" E4a[1 -17[ 0 EA
oW =— —_— =- —— =—5M22—Ll22.
5I/lx2 h|-1 1 Uyo 51122 \/gL -1 1 Uzo \/gL
The relationships for bar 2 are u =uy,, u,, =uy, and h =L . As the axial displacements coin-

cide, internal part vanishes and

T .. T .
) 21 ) 21
s o )0l pdh | __JoUz2 pAL Uza | _ CpALS i
5I/lx2 6 1 2 Uyo 51122 6 1 2 Uzo
The relationships for bar 3 are u,; =0, u,, =—uy,/ V2 and i =+2L . As the bar is assumed to be

massless

3 Ou, T EAl 1 —1||ugy 0 VT Eal1 -1 0 EA
5I/lx2 h | -1 1 Uyo _5”22 \/gL -1 1 —Uzo \/gL
Point force P(¢) acting on node 2 is piecewise constant in time so that P(¢)=F ¢<0 and P(¢#)=0

t>0. Virtual work expression is
5W4 = 51/{221).

Virtual work expression of the structure is the sum of element contributions

SW =W+ W2+ W3 + W = —Suzy(

EA
Uzyy+ pALiizH — P).
3 72 TP z2

NG




Principle of virtual work o6W =0 Voda and the fundamental lemma of variation calculus
s5a'F=0Vvéa < F=0 imply that

\/EEALLIZZ +pALiiZZ—P:0.

When <0, uy, does not depend on time and therefore ii,, =1,, =0. As the second derivative

vanishes and P = F', the ordinary differential equation simplifies to an algebraic one giving

EA V2L

u»—F=0 < wu,»=——F when ¢t<0.
\/EL Z2 Z2 EA

When >0, P=0 and the initial value problem for the displacement becomes (notice that the ini-
tial conditions are taken from the solution for ¢ <0)

2L

EA
\/ELLIZZ—'_pALiiZZZO t>0, M22(0)=EF and azz(O):O.

Solution to the equations is given by

2L ¢ [E
H=F— — [—) >0. €&
w0 =F e [ o) o



A plate is simply supported on two edges and free on the
other two edges as shown. Use the approximation
w(x, y,t)=a(t)xy/ I? to determine the transverse dis-

placement as function of time ¢ > 0. Material properties

E, v, and p are constants and thickness of the plate is

h. At t=0, initial conditions are w(x,y,0)=0 and
w(x,y,0)=Uxy/ I?. Assume that the plate is thin so that

the rotation part of the inertia term is negligible.

Solution

Only the bending mode of the plate matters. When the approximation w=a(t)xy/ [? is substituted
there, virtual work densities of internal and inertia forces (without the rotation part) of the plate
simplify to (shear modulus G=E/(2+2v))

025w/ ox’ 1 v 0 o?w/ ox*
int 2 | K E 2 2 1A
owg =—4 0°0w/0oy B 5|V 1 0 0w/ 0y =—5a—4?Ga,
2 V210 0 a=vyr2||ye2 L
20°0w/ 0x0y 20“w/ Oxoy

T ..
Sl — _ oow/ ox ip ow/ ox —5wtpv'i/:—5a(£)2(l)2hpd
oow/ody| 12° |ow/0y L L

in which # is thickness of the plate. Integration over the domain occupied by the element gives the
virtual work expressions
n 1w

int _ L (L int _ L L _ i_ - Sqp—
ow —'[0 '[0 owg dydx—jo .[0 5aL4 3 Gadydx = 5aL2 3 Ga,

2
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Virtual work expression of the structure consists of the internal and inertia parts
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Principle of virtual work oW =0 Voa and the fundamental lemma of variation calculus
s5a'F=0Vvéa < F=0 imply
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What remains, is solving for the displacement from the initial value problem
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c'z'+3G—h4a=0 t>0, a(0)=U, a(0)=0.
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Solution to equations is (this can be shown e.g. by substituting the solution in the equations above)
G h

a(t) =U cos( 3——21‘) t>0.
P L

Finally, substituting the solution to parameter a(¢) into the approximation gives

w(x, y,£) = U cos( 39%0%. 'S
pI* L



