

CHEM-E1150 BIOMASS PRETREATMENT AND FRACTIONATION

CELLULOSE CHEMISTRY

Herbert Sixta, 2018

Sources of Cellulose

Plants

- Trees
- grasses

Naturally synthesized cellulose

- Heterotrophic bacteria, such as *Gluconacetobacter xylinus* > bacteria cellulose
- Slime molds, such as *Physarum polycephalum*
- Group of animals, the *tunicates, e.g. Halocynthia roretzi*
- Valonia ventricosa, also known as "bubble algae" and "sailors' eyeballs

Wood hierarchical structure

Cellulose Microfibril

Diameter: 3–4 nm (wood)

Aggregates: 15 nm (wood)

Individual fibre

- Diameter: 10–30 µm
- Length: 1–4 mm

Cellulose Molecule

- Conformation
- Chain length, molecular weight
- H-bonding

Cellulose – molecular structure

Linear homopolymer consisting of <u>D-anhydro-gluco-</u> <u>pyranose units</u> (AHG) connected by β -(1-4)-glycosidic bonds.

Atomistic toolkit. https://nano-hub.org/tools/ccamt

CH₂OH group conformation of C-6

DPs of different cellulose samples

Substrate	Allomorphie	[η], mL/g	DPw
Cotton Linters (untreated)	I	>2000	10 000-15 000
Cotton Linters Kier-boiled, bleached	I	2000	7 500
SW-Sulfite ether pulp HV	I	1700	6 000
SW-Sulfite ether pulp MV	I	1200	3 800
Birch Kraft-paper	I	1000	3 000
PHK acetate pulp	I	800	2 250
Sulfite viscosep	I	570	1 450
PHK viscose pulp	I	450	1 050
Lyocell fiber	II	400	950
Modal fiber	II	280	670
Regular viscose fiber	II	190	450

Mark-Houwink: $[\eta] = Q'DP^a$

Gruber and Gruber (1981), SCAN-CM 15:88: Q' = 0.42, a = 1: DP<950 Q' = 2.28, a=0,76: DP > 950

Molar Mass Distribution

Molar Mass Distribution

The higher the **amount of short chains**, **DP < 100**, the lower is the strength potential of viscose fibers.

Viscose fibers made under constant conditions from different pulps:

Cooperative networks of H-bonds in Cellulose Iβ

H-bonding system represented by two exclusive H-bonding schemes A and B

Network A

Network B

Within the Hydrogen-bonded planes $(110)_t$ and $(200)_m$ Arrows show the donor-acceptor-donor directions

Nishiyama, Y., et al., Biomacromolecules, 2008. 9: p. 3133-3140.

Cellulose Structure

- Crystal Structure
- Fibrillar Structure
- Morphological Structure
- Pore structure and inner Surface

Diddens, I., et al., Macromolecules 2008: 41 p. 9755-9759.

a

a

Cellulose polymorphs

• Cellulose I: naturally produced:

Kono, H., et al., Macromolecules, 2004. $\boldsymbol{37}$ p. 5310-5316.

- **I** α **allomorph**, higher plants (tunicates) mostly the
- Iβ allomorph. Thermodynamically metastable
- Cellulose II: stable structure from dissolution/regeneration and mercerization.
- Cellulose III: formed through liquid ammonia treatment
- Cellulose IV: formed through thermal treatment

Unit Cell - Coordinate System

•

- Simplest repeating unit in a crystal, charcterized by
- Vectors: a, b and c form the edges of a parallelepiped
- Angles: α (b/c), β (a/c), γ (a/b)
 - **Convention: c** cellulose chain axis; **b** forms the plane with c;
 - **a** forms the distance between the sheets
- Monoclinic: a≠b≠c, α=β=90° ≠γ
- Triclinic: a≠b≠c, α≠β≠γ

Cellulose polymorphs

Polymor ph	space group	chains / unit cell	Chain direction	a [Å]	b [Å]	c [Å]	α [°]	β [°]	¥ [°]
Ια	triclinic, P1	1	parallel	6.72	5.96	10.40	118.1	114.8	80.4
Iβ	Monoclinic, 2P1	2	parallel	7.78	8.20	10.38	90.0	90.0	96.5
Ш	Monoclinic, 2P1	2	antiparallel	8.10	9.08	10.36	90.0	90.0	117.3
III	Monoclinic, 2P1	1	parallel	4.48	7.85	10.31	90.0	90.0	105.1
IV	Triclinic, P1	2	parallel	8.03	8.13	10.4	90.0	90.0	90.0

Seong H. Kim et al. *Korean J.Chem.Eng.* (2013), 30(12), 2127-2141 Nishiyama, Y., et al., J. Am. Chem. Soc., 2003. **125** p. 14300-14306. Nishiyama, Y., P. Langan, and H. Chanzy, J. Am. Chem. Soc., 2002. **124** p. 9074-9082.

Kobayashi, K., et al., Carbohydr. Polym., 2011. **86** (p. 975-981 Bellesia, G., et al., J. Phys. Chem. B, 2012. **116** p. 8031-8037

Kono, H., et al., *J. Am. Chem. Soc.*, 2002. **124:** p. 7506-7511.

Kono, H., T. Erata, and M. Takai, *Macromolecules*, 2003. **36** : p. 3589-3592.

Independent chains (-A-A- and –B-B-

Idstroem, A., et al., Carbohydr. Polym., 2016. 151: p. 480-487. Kono, H. Polymer (2004)

NMR assignments

	¹³ C chemical shifts, ppm					Source	Comment	
Polymorph	C	31	С	4	C6			
Cellulose I_{α}	106.9		91.6	90.8	67.1		Kono,H. JACS (2002)	Cladophora sp.
	104.9		89.5					
Cellulose Iß	107.6	105.9	90.6	90.0	67.5	66.9		Tunicate
	105.6	103.9	88.7 (β+α)	88.4 (pc)			P.T. Larsson et al.	Cotton cellulose
			87.9	84.9 (am)			Carboh Res 302 (1997), 19-15	Cotton cellulose
			84.1 (surf)	83.2 (surf)				Cotton cellulose
Cellulose II	107.2	105.1	87.7	88.9	62.5	63.2	ldström, I. Carbohydr Polym (2016)	Regeneration of 13C enriched
	106.4	103.3	86.2	84.8	61.7	61.3	ldström, I. Carbohydr Polym (2016)	bacterial cellulose (EMIMOAc)
Cellulose III _I	106.6		89.6		64.0		Kono, H. Macromolecules (2003)	Ethylenediamine of Cell I
Cellulose IV ₁	105.6		84.4	83.6	63.3	63.8	Isogai, Macromolecules (1989)	
Cellulose IV _{II}	105.5		84.6	83.5	63.7		Isogai, Macromolecules (1989)	
Amorph	104.6		75.8		61.4		ldström, I. Carbohydr Polym (2016)	
	105		84		63		lsogai, Macromolecules (1989)	

Transition Cell I \longrightarrow Cell II

Tolonen, L.; Sixta, H. (2013)

X-ray diffraction

Dolymorph	Diffract	ion angl	Source				
Polymorph	100	010	002	110			
Cellulose I_{α}	14.2	16.9	21,05	22.6		Cellulose (2014) 21:885-896	
	1-10 (eq)	110 (eq)	102 (eq)	200 (eq)	004 (mer)		
Cellulose Iβ	14.8	16.3	20.6	22.4	34.4	Cellulose (2014) 21:885-896	
Polymorph 1-10 (eq) 110 (eq) 020 (eq) 004 (mer)							
Cellulose II	12.2	19.9	21.8	~35		Cellulose (2014) 21:885-896	
Cellulose Iβ Polymorph Cellulose II	1-10 (eq) 14.8 1-10 (eq) 12.2	110 (eq) 16.3 110 (eq) 19.9	102 (eq) 20.6 020 (eq) 21.8	200 (eq) 22.4 004 (mer) ~35	004 (mer) 34.4	Cellulose (2014) 21:885-896 Cellulose (2014) 21:885-896	

Isogai, A., et al., Macromolecules, 1989. **22** p. 3168-72. Hori, R. and M. Wada, Cellulose, 2006. **13:** p. 281-290. French 2014

Kafle, K., et al., Text. Res. J., 2014. **84** p. 1692-1699, 8 pp.

Transition Cell I $\alpha \rightarrow$ Cell I β

Transition Cell I \rightarrow Cell II

Tolonen, L. et al. Cellulose (2013) 20:2731–2744

Cellulose I Family

Unit cells of Cellulose Iα and Iβ

CH₂OH conformation of both crystal orms in tg conformation 0.53 nm 0.53 nm 0.64 nm 10 0.661 nm 10 0.6

Looking down the chain axis c. Lattice planes: 1: $(110)_t$, $(200)_m$ 2: $(010)_t$, $(110)_m$ 3: $(100)_t$, $(1-10)_m$

Relative configuration of Iα with respect to Iβ unit cell

Sugiyama, J., R. Vuong, and H. Chanzy. *Macromolecules*, 1991. **24**: p. 4168-75.

Displacement of the Hbonding for Iα of +c/4 Displacement of the Hbonding for Iβ alternating +c/4 and –c/4

Unit cell symmetry of cellulose III_I

Obtained through liquid ammonia treatment of cellulose I. **Single-chain unit cell**;

<u>All chains are parallel</u> and O6 atom has **gt conformation** which allows 3-dim H-bond network.

Seong H. Kim et al. Korean J.Chem.Eng. (2013), 30(12), 2127-2141

Parthasarathi, R., et al., J. Phys. Chem. A, 2011. 115 : p. 14191-14202

Cellulose II Family

Aalto University School of Chemical Technology

Conversion of Cellulose I to II

- 1. Dissolving the cellulose / regeneration ($\sqrt{}$)
- 2. Swelling in concentrated alkali (?)

NaOH into noncrystalline region \rightarrow Na-cellulose I.

Chains from the crystalline regions are *peeled-off* and added to the growing chain (re-arranging).

Washing removes alkali and converts to cellulose hydrate and after drying to Cellulose II.

Na-cellulose I formation

Microfibrils of Cell I are parallel-chain single crystals.

Aggregation of microfibrils into a fiber is a random process. Equal numbers of "up" and "down" pointing microfibrils:

A. Sarko, H. Nishimura, T. Okano, In ACS Series 340, edited by R.H. Atalla, p169pp

Cellulose II formation

Once all H-bonded cellulose structure has disappeared a more stable threefold helical Na-cellulose IIB structure forms:

O(3)---O(6)-intermol H-bonding Disrupted, therefore corner chain O(6) OHs is present in gt conformation Antiparallel origin and center chains; CH2OH groups of both chains are near gt conformation. 3 dimensional H-bonds: O3-H...O5 (intra), O2-H...O6 (inter in origin sheet), O6-H..O2 (inter in center sheets) and both O6-H...O6 and O2-H...O2 in sheets containing origin and center chains.

Cellulose-I→II Transfer by Alkali Treatment

Mercerization (I) of Euca-PHK

Cellulose I \rightarrow **II Transfer by Alkali Treatment** Na-Cell II 100 30% Proportion (%) 80. 110 100 90 80 70 60 ppm 60. ¹³C NMR shift (room temp) -O-Na-Cell. II 24% 40. 22% Cell I-Na 20-16% 0 20 25 5 10 15 30 NaOH Concentration (wt%)^{14%}

Euca-PHK pulp treated v 12% NaOH solutions from 9 t At room temperature

U 70

110

100

90

¹³C NMR shift (room temp)

¹³C NMR shift (room temp)

80

70

Cellulose II crystal

Cellulose II *d*-spacings Sebe, G., et al., Biomacromolecules, 2012. **13**: p. 570-578.

(A), hydrogen-bonded molecular sheet;

(B), van der Waalsassociated molecular sheet.

(1-10) Surface hydrophilic: high density of OH groups, parallel to the film surface

(110) Surface hydrophobic

Scattering vector q of (110) reveals the spacing of 0.45 nm between hydrophobically stacked cellulose molecules in the sheet.

Cellulose II hydrate

Ramie fibers $\xrightarrow{5 \text{ N NaOH}}$ ice water anhyd $N_2H_2, 2 d, 4^\circ C, dried$ \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow Cell - II hydrate

	a [Å]	b [Å]	C [Å]	¥ [°]
Cell-II	8.10	9.08	10.36	117.3
Cell-II hydrate	9.68	9.95	10.35	125.8

- Unit cell volume 19% larger than that of cellulose II
- D₁₋₁₀ spacing decreased from 8.86 Å at 100% RH to 7.36 Å at 0% RH (Cellulose II), while d₁₁₀ and d₂₀₀ remained almost constant.
- Cellulose II hydrate released water located between the hydrophobic stacking sheets; sheets became closer to each other (a-axis).

Supramolecular Cellulose Structure

Micellar Structure

Nägeli, C (1928) (reprint) Oswalds Klassiker No 227

Submicroscopic crystalline particles (=micelles) embedded in undefined intermicellar substances

Extended Micellar structure

Hengstenberg, J and Mark, H.F. (1928) Z.Krist 69, 271

Micelle dimensions in Ramie (rayon) fiber 600 (300) Å in length and 50 (40) Å in width.

Cellulose chains of 60-120 Glucose units (?) Too short, not fiber forming (Staudinger 1932)

Fringe-micellar theory

Mark, H. Nature, 313-314

highly oriented, *elementary cells,* double reflection;

cellulose chains bundled together with a considerable degree of order (micellar structure),

complicated framework of entangled fringes.

Fringed-fibril structure

Hess, Kratky, Frey-Wyssling (1955,..)

Elemental fibrils linked together in repeating units.

Crystallites held together by long molecules reaching from one crystallite to the next through less ordered regions.

Supramolecular Cellulose Structure

Two models:

- Elementary fibril one-phase model Concept of single crystal microfibrils with defects
- Fringed-fibrillar two-phase model Assembly of alternating crystalline and amorphous domains

Periodic Disorder Model - 2 Phase Model

The strongest point for the fringed micellar model is its well defined explanation of acid hydrolysis and LODP

Meridional Bragg reflection of ramie fiber, indicating a periodicity of 150 nm

• GPC of LODP matched exactly the periodicity observed by SANS.

 This supports a two-phase model comprising 5 disordered residues every 300 residues (matches with the observed yield loss of 1.5%)

Moon, R.J., et al.,. Chem. Soc. Rev., 2011. 40: p. 3941-3994.

Elementary Fibril 1-Phase Model

- Single crystal microfibrils.
- Amorphous contributions are considered to be lattice imperfections.
- Disordered surface structure

- Valonia microfibril has a bent shape
- With the ribbon wound as a helix the molecular chain becomes parallel to the fibril axis

Cellulose crystal with dimensions

Rämänen, P. et al. Cellulose (2012) 19:901-912

36-glucan-chain microfibril in primary cell wall (by AFM)

Marriott, P.E., et al., *New Phytol*, 2016. **209:** p. 1366-81. Ding, S.-Y. and M.E. Himmel, *J. Agric. Food Chem.*, 2006. **54**: p. 597-606. Cross-sectional crystallite dimensions corresponding to the (1-10) and (110) lattice planes are typically both between 3.7 and 4.7 nm.

The crystal lengths, using the 004 reflection, are between 19-22 nm.

Spruce cellulose microfibril shows a rectangular cross-section of 24 chain 3.2x3.1 nm: $\left(\frac{3.15^2\pi}{4}/0.317\right) \approx 24$

Fernandes, A.N., et al., Proc. Natl. Acad. Sci. U. S. A., 2011. 108 p. 18863.

Structural characterization methods

Structures	Information	XRD	SAXS	SANS	Comment
Crystallinity		Х			Peak height; peak deconvolution; amorphous substraction
Microfibrils	Diameter		Х	Х	Fitting the SAXS / SANS data to form factors of long cylinders; Guinier law: $I(q) \propto Exp(-\frac{R_g^2}{3}q^{-2})$
	Crystallite length	Х		Х	Peak width of 004 reflections in XRD; Bragg equation in SANS
	Crystallite Width	Х			Peak width of reflections 110, 1-10, 220 in XRD
	Microfibril angle	Х	Х		Angular intensity distributions of reflections 200 and 004
	Aggregates				Deconvolution of C-4 of ¹³ C CP MAS NMR
Pores	Porosity		Х	Х	Scattering invariant; or fitting the data to polydisperse spherical model
	Surface area		Х	Х	Inner surface, $O_s = \frac{s}{v} \propto \frac{1}{q}$; $Q = \int_0^\infty I(q)q^2 dq = Invariant$
	Pore size distribution		Х	Х	Information included in the shape of the SAXS curve. Pore size distributions are derived from model curve fits. Areas under the the curves are normalized to one. E.g. Bimodal Schulz-Zimm distribution
	Surface roughness		Х	Х	Surface fractal dimensions, $D_{surface} = 6 - x$; $x = power law exponent$; $I(q) = Aq^{\alpha} + B$ (power law); Smooth: $D_{surface} = 2$, rough: $D_{surface} = 2.5$
	Porod length		Х	Х	$O_{S} = \frac{S}{V} = \frac{4\phi(1-\phi)}{l_{P}}; \phi = volume \ fraction of \ pores \ and \ (1-\phi)of \ pore \ walls$
Dimensions of native cellulose microfibril

Cross section of a native cellulose microfibril in higher plants

CURRENT VIEW:

WOOD MICROFIBRILS ARE ca. 3.5 nm WIDE AND CONSIST OF 36 INDIVIDUAL CELLULOSE CHAINS.

Crystallite Dimensions Microfibril Aggregation

Microfibril Dimensions of Cellulose I

• FWHM of a specific diffraction peak at 2q can be related to the crystallite size along the d - spacing direction of that peak.

• $K \dots \dots shape \ factor \approx 0.89; \ \lambda \dots \dots X - ray \ wave \ length$

• Each chain occupies an area of 0.317 nm² in cellulose I_{β} (JACS (2002) 124: 9074)

UN	Biomacromolecules (2008), 9:57
/AL	Acta Polymerica (1990), 41: 131
ACC-CL	Cellulose (2009) 16:999
CL	Biomacromolecules (2008), 9:57
CL	Cellulose (2009) 16:999
CL	Acta Polymerica (1990), 41: 131
BC .	Acta Polymerica (1990), 41: 131
SKP	Cellulose (2009) 16:999
AVI	Biomacromolecules (2008), 9:57
AVI	Cellulose (2009) 16:999
RAM	Acta Polymerica (1990), 41: 131
PHK	Cellulose (2004), 11: 85
SPHK	Cellulose (2004), 11: 95
BAS	Cellulose (2004), 11: 85
OWP	Acta Polymerica (1990), 41: 131
BiSP	Cellulose (2009) 16:999
Spruce	Cellulose (2009) 16:999
Spruce	Macromolecules (1995), 26:8782
Spruce	Proc. Natl. Acad. Sci., (2011) 108: 18863

Sebe, G., et al., Biomacromolecules, 2012. **13**: p. 570-578. Seong H. Kim et al. *Korean J.Chem.Eng*. (2013), 30(12), 2127-2141

Microfibril Length of Cellulose I

TEM and AFM:

Microfibrils can be considered as a crystalline entity continuous over a <u>few microns</u>, having a range of lateral dimension depending on the biological origin and development stage Periodic defects along the microfibril have been expected from the acid hydrolysis behavior of cotton fibers.

An interesting observation is reported on cellulose microfibrils produced in vitro from membrane fragments, which cannot be fragmented by acid hydrolysis, whereas the in vivo counterpart will be fragmented as any other cellulose from higher plants.

The density of microfibrils in the cell wall would result in a tight lateral aggregation concentrating the internal strain in a limited zone distributed along the chain axis

Microfibril cross-sections

b

Leppaenen, K., et al., Cellulose 2009. **16** p. 999-1015.

Monoclinic unit cell of I_{β} & (II) with d-spacings

- 0.40 (0.40) nm (220)
- 0.54 (0.44) nm (110)
- 0.61 (0.72) nm (1-10)

Cellulose I d-spacings

Cellulose II d-spacings

Microfibril Dimensions of Cellulose II

$$A = D_{200} \cdot 0.5(D_{1-10} + D_{110})$$
$$D_{circ \ cross-sectio} = 2\sqrt{A/\pi}$$

со	Cotton	Sixta, H. Lenzing AG (2004)
CFN	Fortisan	Sixta, H. Lenzing AG (2004)
CUP	Cupro	Sixta, H. Lenzing AG (2004)
CPN	Polynosic	Sixta, H. Lenzing AG (2004)
CMD	Modal	Sixta, H. Lenzing AG (2004)
CTC	Tyre Cord	Sixta, H. Lenzing AG (2004)
CV	Rayon	Sixta, H. Lenzing AG (2004)
CCV	Carbamate	Sixta, H. Lenzing AG (2004)
CS	Biocelsol	Sixta, H. Lenzing AG (2004)
CLY	LYOCELL	Sixta, H. Lenzing AG (2004)
CLY,		Cellulose (2004), 11: 85
CV		Cellulose (1995), 2: 54

Crystal dimensions vs Orientation

Overview on Crystallinities

Fibril Aggregates

Microfibrils are arranged into bundles with outer lateral dimensions of ~ 20 nm

Penttilä, P.; PhD thesis (2013), University of Helsinki

Crystallite & Aggregate Dimensions

 $q_{aggregate} = \frac{I(AS)}{total C4 area}$

Fraction of fibril surface: $q = rac{4 \cdot (n-1)}{n^2}$ $n = \frac{2\left(1 + \sqrt{1 - q}\right)}{q}$ L = 0.57n

¹³C-CPMAS NMR of Euca-PHK pulp

Palme, A., et al., Cellulose 2014. 21 p. 4681-4691.

R.H. Newman, *Solid State Nuclear Magnetic Resonance* 15(1999), 21-29 P.T. Larsson, K. Wickholm, T. Iversen. *Carbohydrate Research* 302 (1997), 19-25 Structure-Property Relationship

Structure-Property Relationship

- 1. Pore structure and inner surface
- 2. Interaction with water
- 3. Swelling
- 4. Solution structure
- 5. Coagulation, Regneration
- 6. Structure formation during regeneration
- 7. Oxidized functionalities
- 8. Degradation of Cellulose
- 9. Cellulose Reactivity
- 10. Mechanical properties:
 - E-modulus

Pore Structure and Inner Surface

Pore Structure and Inner Surface

- Solute exclusion
- NMR spectroscopy
- Water sorption isotherms, water retetion value (WRV)
- SAXS
- Thermoporosity (Gibbs-Thompson)
- Cryoporometry (NMR)
- BET: nitrogen absorption
- Mercury-intrusion porosimetry (*Powder Technol* (2005)160:61)
- Others

Pore volume by ISEC

Pulp	V _p	FSP	WRV	D _p	O _p	
	mL/g	mL/g	%	nm	m²/g	
HW-S	0.60	0.50	73	5.1	235	
HW-PHK	0.65	0.55	71	5.5	240	
CL	0.45	0.39	54	4.8	190	

Treatment	V _p	WRV	Bright	[ŋ]	
HW-AS	mL/g	%	%ISO	mL/g	
Never-dried	0.92	91.2	91.2	581	
Freeze-dried	0.86				
Air-dried	0.69	91.2	91.2	581	
105°C-dried	0.60	90.1	90.1	546	
160°C-dried	0.43	79.1	79.1	350	

Water sorption isotherm - FSP

Fiber Saturation Point (FSP): When all water has been removed from the gross capillary structure, but no water has been removed from the cell wall.

Pore radius vs relative vapor pressure at which the pore loses its water: **Kelvin** equation:

$$ln\frac{p}{p_0} = \frac{-2\gamma M}{r \varrho RT}; \ \gamma = 0.0728 \frac{J}{m^2}$$

Wet cellulose samples placed upon a porous plate; application of gas pressure, which in equilibrium with the tension forces adjustes a certain water content in the pores: P vs. critical pore radius :

Young- Laplace:
$$P = \frac{2\gamma}{r}$$
; r into KELVIN \rightarrow gives p/p_0

Stone, J.E. and A.M. Scallan, Tappi, 1967. 50(10): p. 496-501.

Fibre wall pore sizes in water swollen state

 Based on solid-state NMR for determining the lateral fibril aggregate dimensions a:

$$q = (4n - 4)/n^{2};$$

$$a = n * 0.57$$

$$\sigma_{sat} = \frac{4}{a \cdot \varrho_{s}} \quad \sigma_{sat} \dots \text{specific surface area in water-swollen state assuming cylindrical pores, i.e. pore width corresponding to 4V/A}$$
• and FSP (Dextran 2000, R_H=101 nm) measurement FSP = $\sigma_{sat}\varrho_{L}t$ t... thickness; 2t = average pore size

	Juit
	OFOR
	JECD
0.	
74 —	

$\overline{\sigma_{sat}\varrho_L}$			Water-swc	llen sta	ate	
	Samples	FSP	a (LFAD)	σ _{sat}	Average pore	
			NMR	NMR	SIZE, ZI	
		g/g	nm	m²/g	nm	
	Cotton Linters	0,21	32,2	83	5,1	
	SW-Sulfite DP	0,94	16,9	158	11,9	
	HW-Sulfite DP	1,05	17,5	152	13,8	

Interaction with Water

Sorption & Desorption Isotherms (DVS) Cellulose-I und Cellulose-II Substrate

Sorption & Desorption Isotherms (DVS) Cellulose-I und Cellulose-II Substrate

Sorption-, desorption equilibria based on the model of Hailwood and Horrobin

	Sorption	Desorptior	l		Sorp	tion	Desor	ption
Sample	Monolay	/er water	Hysteresis*	Surface area	${\rm \Delta}G_{\rm h}$	ΔG_{d}	${\scriptstyle \Delta G_h}$	ΔG_{d}
	(g/g)	(g/g)	%	m²/g			J/g	J/g
Cotton lint	0,0323	0,0433	34	97	-217	26	-216	41
Polyester (PES)	0,0041	0,0041	0	12	-165	79	-200	83
Lyocell, 1.3 dtex (CLY)	0,0599	0,0779	30	180	-202	34	-253	51
Viscose, 1.3 dtex (CV)	0,0639	0,0925	45	192	-175	31	-220	54
HW-Sulfite DP	0,0470	0,0575	22	141	-295	32	-287	31

 $* H = (ML_d - ML_a/ML_a)$

Good correlation between the monolayer hydration and the water retention value (WRV).

WRV of an un-opened cotton ball (neverdried) was 140% (46% of field dried cotton)

Hailwood, A.J. and S. Horrobin, *Trans. Faraday Soc.*, 1946. **42B:** p. 84-92, discussion 94-102

Palme, A., et al., Cellulose 2014. 21 (p. 4681-4691.

Hydration vs. Crystallite Width

Driemeier, C. and J. Bragatto, J. Phys. Chem. B, 2013. 117 p. 415-421.

Main determinant of monolayer water sorption is structural (crystallite width) not compositional (hemi)

Swelling

Cellulose is an amphiphilic molecule

- Polymers are amphiphilic, i.e. contain both polar and nonpolar groups/segments.
- Equatorial direction of a glucopyranose unit is hydrophilic, the axial direction hydrophobic (C-H bonds).
- Significant hydrophobic pairing energy favoring the stacking association of cellulose chains (2.0 kcal/mol/residue).
- Thus, hydrophobic association favors a crystal-like structure over the solution state.

Swelling and dissolution

Cellulose in NMMO (CP-MAS)

- Measuring average distances between solvent and solute atoms by triangulation
- In the swollen state, the solvent molecules surround C-6 and C-2.
- Upon dissolution, the solvent approaches C-3.

Water Vapour Sorption

Absorption capacity of equivalent beds at 100 % RH

Lyocell beds help to make a comfortable sleeping climate.

Water absorption takes place in the capillaries between the fibrils only

Absorbed Water in Cellulose Fibers

Cotton absorbs only little water

Tencel shows uniform water absorption over the whole fiber cross section

Crystalline skin of **Modal** contains less water than the core

Visualization of water:

Solvent exchange procedure followed by isoprene polymerization and OsO₄ staining in aqueous solution: M. Abu-Rous et al. *Cellulose*, 13, 411-419 (2006)

Uneven water distribution in **viscose**

Cellulose Solution Structure

Cellulose dissolution in a vertical kneader

Dissolution of Cellulose in ILs

O3-H-O5 intrachain O2-H-O6 intrachain O6-H-O3 interchain

Intersheet bonds

O2-H-O6 intrachain O6-H-O3 interchain intersheet H-bond

Cho, H.M.; Gross, A; Chu J.-W. J. Am. Chem. Soc. 2011, doi 10.1021/ja2046155.

Regeneration of cellulose

Liu, H.; Sale, K.L.; Simmons, B.A.; Singh, S. Phys. Chem. B 2011, 115, 10251–10258.

Oscillatory rheology of spinning dope

Rheology as a function of T

- SW-Sulfite dissolving pulp: $DP_v = 1320$
- Solvent = [DBNH][OAc]

Effect of molar mass on rheology

Zero-shear viscosity vs weight-average molecular weight of the cellulose

 $tan\delta$ vs polydispersity index

Solution state

the formation of H-bonds.

As Xanthate in aqueous NaOH: diluted solution: ~1% cellulose

In a direct solvent in NMMO.H₂O: concentrated solution: 10wt% cellulose

high swollen aggregates
Coagulation, Regeneration

Regeneration

Dissolution vs Regeneration

- β decreases upon water addition.
- [emim][OAc] water-tolerant ~ 16 w/w%
- [TMGH]-ILs water-intolerant 1-4 w/w%
- [TMGH]⁺ hydrotrope, bulky, hydrophobic

Order of water tolerance:

[TMGH][OAc] < [TMGH][EtCO₂] << [emim]OAc

Coagulation – Phase Changes

formation of mutually interconnected polymer chains and pores.

Diffusion of water into the filament

Diffusion front of inside a pellet water monitored via microscope

Regeneration time and depth

The incipient diameter of a filament, $d_{\chi} = 2\sqrt{\frac{r_0^2}{DR}}$

Diffusion equation for water, $\frac{M_t}{M_{\infty}} = \frac{4}{\sqrt{\pi}} \sqrt{\frac{D_w t}{L_x^2}}$ is solved for the time where the diffusion front has reached the filament radius, or d = 1 = r, and $r_x^2 = r_0^2/DR$, to yield the regeneration time, t_{reg} :

$$1 = \frac{4}{\sqrt{\pi}} \sqrt{\frac{D_w t}{r_x^2}} \qquad \Rightarrow t_{reg} = \frac{r_0^2 \pi}{16 D_w} \frac{1}{DR}$$

Regeneration depth, $\Delta X_{reg} = v_x t_{reg}$ with $DR = v_x / v_0$

$$\Delta X_{reg} = \frac{v_0 \cdot \pi \cdot r_0^2}{16 \cdot D_w}$$

$$v_0 = extrusion \ velocity$$

 $v_x = take - up \ veölocity$
 $r_0 = spinneret \ diameter, 100 \ \mu m$
 $D_w = 1.55 \cdot 10^{-10} \ m^2/s$

Regeneration time and depth

D_w 2,70E-10 m²/s

Lauri Hauru, et al. Soft Matter, 2016, 12, 1487--1495

Structure formation during regeneration

Aalto University School of Chemica Technology

Solvent Effect on Spinnability

Pulp: Eucalyptus Prehydrolysis Kraft: Mw = 269 kg mol⁻¹, Mn= 79 kg mol⁻¹

Polymer concentration 13 wt%

NMMO.H₂O stabilized by propyl gallate and spun with a 18 x 100 mm spinneret; 1 cm air-gap, 100 μ m spinneret, 15° C air bath temperature, 0.04 mL min⁻¹ extrusion velocity.

Spinning result

Spinning solvent	d ₀	T _{extr}	T _{bath}	DR _{max}	Titer	Tenacity	
	[µm]	[°C]	[°C]		[dtex]	[cN tex ⁻¹]	
[DBNH][OAc]	100	70	15	7,5	3.0±0.9	38.5±8.4	
NMMO.H ₂ O	100	95	15	6,2	3.7±0.7	31.2±6.6	
[TMGH][OAc]	100	80	15	2,0	15.5±0.9	10.9±1.1	
[emim][OAc]	250	90	45	2,9	44.4±1.7	13,9±1.6	

NMMO.H₂O and [DBNH][OAc] give spinnable dopes, while the dopes made from [TMGH][OAc] and [emim][OAc] were not spinnable.

Solvent diffusion constants vs water content

Poorly orientable network indicative for poorly spinnable dopes as prepared from [TMGH][OAc] and [emim][OAc].

Gelatinous regenerated polymer network forms \rightarrow main resistance to further diffusion

Incipient [emim][OAc] filament

Telescopic-type breach because of very low resilience in the core during the onset of regeneration. Both, yield strain and stress decrease at 0.5 $n_{H2O}^{}/n_{IL}^{}$ obviously due to a low water diffusion.

Final fiber orientation vs. DR

[emim][OAc] fibers: orientation develops poorly due to low resilience in the core.

[TMGH][OAc] fibers: solidified gel->solution behaves as a permanent network.

Degradation of Cellulose

Fringed Fibrillar Model

What is known?

- Level-off degree of polymerization (LODP) upon acid hydrolysis,
- cellulose depolymerizes rapidly down to a certain level after which the degradation is minimal.
 - Proposition: amorphous domains are hydrolyzed leaving the crystalline domains intact.
 - Crystallite length by SAXS agrees with the level-off degree of polymerization (LODP).

Acid-catalysed Degradation

Gives an indication of the weight loss kinetics of the crystalline and amorphous fractions.

Amorphous fraction calculated from the experimental curve and the linearly extrapolated crystalline fraction.

Leveling-off DP (LODP) vs Substrate

Laine, R.; Tolonen, L.: Aalto, 2012 Sixta, H, 1999

Acid hydrolysis of crystalline cellulose

According to **Sharples**, crystallites are attacked from its ends: **end-attack model**

For Cellulose I the DP_w is not the only factor affecting the hydrolysis rate:

The presence of two different H-bonding patterns in Cellulose I might be the reason for this behavior:

They do not hydrolyse at the same rate

Lin, Ch-H., A.H. Conner, Ch.G. Hill, Jr, *J. Appl. Polym Sci.*, 417 (**1991**). Lin, Ch-H., A.H. Conner, Ch.G. Hill, Jr., *J. Appl Polym Sci.*, 45(10), 1811-1822 (**1992**).

A. Sharples, Trans. Faraday Soc., 53, 100313 (1957); 54, 913-17 (1958).

Alkaline degradation of cellulose

Parameter Values at 160°C					
h⁻¹	k _p	k _s	k _h	REG ₀ µmol/g	SREG ₀ µmol/g
CL	554	11	2.0 E-4	4.6 ± 1.1	4.7 ± 1.2
OX	2901	36	1.5 E-4	13.6 ± 2.6	0.1 ± 2.9

The REG values determined experimentally

- CL untreated
- OX treated with oxalic acid no stabilization
- REG reducing end groups,
- SREG stabilized reducing end groups

Yield-Loss Model

$$\begin{cases} \frac{dR}{dt} = -k_S R + k_H (\Gamma_0 - P - H) \\ \frac{dP}{dt} = k_P R \\ \frac{dH}{dt} = k_H (\Gamma - P - H) \end{cases}$$

Depolymerization Model

$$DP = \frac{DP_0 - P - H}{1 + H}$$
$$DP_0 = \frac{1}{\xi_0 + \eta_0}$$

 k_{S} - stopping

k_P - peeling

 k_{H} – alkaline hydrolysis

 Γ_0 – Total initial material R – amount of reducing endgroups

P – amount of peeled off material

H – amount of material removed by alkaline hydrolysis

ξ_0	initial REGs
η_0	initial SREGs

Laundering of cotton textile – DP Loss

Industrial laundering of cotton sheets (Pakistan):

Conditions:

 Temperature (max) = 84°C, Washing agent Clax Hellux free 3EP, alkaline detergent, pH=12-12.5

	Times laundered	Crystallinity	Microfibril width	Fibril aggre- gate width
		%	nm	nm
•	0	62,4	6.4±0.2	21.9 <u>+</u> 2
	2-4	63,6	7.0±0.2	25.6 <u>+</u> 2
	50	64,1	7.2±0.2	24.2 <u>+</u> 2
	>50	63,7	7.2±0.2	24.1±2

Endoglucanase treatment

Monocomponent endoglucanase Novozym® 476 produced by submerged fermentation of a genetically modified *Aspergillus oryzae* microorganism.

- 3 % pulp consistency in a
- phosphate buffer pH 7 (11 mM NaH₂PO4, 9 mM Na₂HPO₄; deionised water)
- at 50 °C for
- 60 min

Endoglucanase treatment

What affects depolymerization by EG treatment:

- Morphology, lignocellulose origin influence the accessibility of EG
- Cellulose II structure more accessible; increased unit cell dimensions, & WRV
- EG accessibility is facilitated in the absence of hemicellulose and
- In the absence of lignin.

Mechanical Properties E-Modulus

Elastic properties

Series model Microfibril model

stress transmitted through crystalline regions crystalline core and surface chains share the stress

E-Modulus:

• Axial:

115–140 GPa 220 GPa*

 Perpendicular: 14.8±0.8 GPa (H-bonded plane)

Modulus and tensile properties of Ramie fibres as Cellulose I, II, III_I and IV_I

Allomorph	Crystallinity	Cryst width	Cryst length	E_{f}	$\sigma_{\sf b}$	ε _b
	%	nm	nm	Gpa	Мра	%
Cellulose I	64	4,8	18,7	27	755	3,2
Cellulose II	53	5,1	15,4	21	798	5,0
$\text{Cellulose III}_{\text{I}}$	38	5,1	15,0	15	693	5,8
Cellulose IV_I	57	3,8	16,1	13	345	5,0

E_f: Young's modulus of a single fibre

 $\sigma_{\text{b}}\text{: strength}$

 ϵ_b : Strain

Lyocell vs Viscose

Schurz, J. *Lenz Ber.* 74 (1994), 37-40. Gindl, W. *Polymer* (2008) Mortimer, *Cell Chem Technol* (1996)

Mechanical vs. structural properties

Spinning of **anisotropic solutions** to exploit the full strength potential of **cellulose II**:

E _{max} :	~ 60 GPa (IC-F: 35)
σ _{max} :	~ 2.1 GPa (IC-F: 0.9)

Northolt, M.G. Lenzinger Berichte, (**1985**), 59, 71-79. De Vries. Appl. Sci. Res. A3, 111 (**1952**). Sixta, H. et al. *NPPRJ*, 30(1), **2015**, 43-57

Single-Phase Structure

Continuous chain modulus: serial arrangement of crystallites (SAXS patterns do not show meridional reflexes) for well-oriented cellulose fibres

Sci. Res. A3, 111 (1952). . Sixta, H. et al. NPPRJ, 30(1), 2015, 43-57

Two-Phase Aggregate Model

Two-Phase Aggregate Model

Tsai-Halpin equation: interphase coupling, linking crystalline and amorphous phases.

E can be predicted using the crystalline aspect ratio, $L/D=L_{004}/L_{200}$

Ganster, J. et al. *Acta Polymer*, **1994**, 15, 312