

CS-E4530 Computational Complexity Theory

Lecture 3: Representations, Universality, Undecidability

Aalto University School of Science Department of Computer Science

Spring 2019

Agenda

- Decision problems
- Instance (= input) representations
- Turing machine representations
- The universal Turing machine
- Undecidability

Decision Problems

• Recall our definition of *decision problems*:

• Decision problem \sim language $L \subseteq \{0,1\}^*$

• We model all computational tasks as decision problems:

- How to handle optimisation problems?
- How to handle non-binary string inputs, like graphs?

Decision Problems: Example

Travelling Salesman Problem (Decision Version)

- Instance: Graph G = (V, E) with positive edge weights, integer $W \ge 0$, a vertex $v \in V$.
- **Question:** Is there a tour starting from vertex *v* that visits all other vertices exactly once and then returns to *v* with weight at most *W*?

Representations

• For general inputs:

- Encode all inputs as binary
- Just like we actually do with computers

• More formally:

▶ Define an encoding function that maps instance x into a binary string ⊥x ⊥

Representations: Numbers

Numbers are represented in binary

- $\lfloor n \rfloor$ is the binary representation of *n*
- Leading zeros can be ignored

Representations: Non-binary strings

• Encoding strings over non-binary alphabet Γ :

- Encode each symbol using $\lceil \log_2 |\Gamma| \rceil$ bits
- Encode strings by concatenating the binary representations
- Example: $\Gamma = \{a, b, c, d\}, \lceil \log_2 |\Gamma| \rceil = 2$

 $_ababcd _ = 000100011011 = 000100011011$

Representations: Pairs and tuples

• Encoding pairs of objects:

- Assume we already have a encoding function $\lfloor \cdot \rfloor$ for objects x and y using alphabet Γ
- Let # be a symbol not in Γ
- ▶ **Pairs:** encode (x, y) as $\lfloor x \rfloor \# \lfloor y \rfloor$
- **Tuples:** encode (x_1, x_2, \ldots, x_k) as $\lfloor x_1 \rfloor \# \lfloor x_2 \rfloor \# \cdots \# \lfloor x_k \rfloor$
- Encode the resulting string in binary
- Apply recursively for nested pairs and tuples

Representations: Graphs

- Convenient to assume: vertex set is $V = \{1, 2, ..., n\}$
- Two common encoding schemes for graphs:
 - Adjacency lists
 - Adjacency matrices

Representations: Adjacency Lists

Adjacency list representation:

- For each v, list the neighbours of v
- List all the adjacency lists
- Encode using the tuple encoding

Representations: Adjacency Matrices

- Adjacency matrix representation of G = (V, E):
 - Matrix M_G such that

$$M_G(v,u) = \begin{cases} 1\\ 0 \end{cases}$$

if $v \neq u$ and v and u are adjacent, otherwise.

- Encode the matrix as a string:
 - Example: $\Box G \lrcorner = 0110\#1010\#1101\#0010$

Adjacency Lists vs. Adjacency Matrices

- Graph G = (V, E) with n vertices and m edges
 - Adjacency list encoding: $O(n + m \log n)$ bits
 - Adjacency matrix encoding: $O(n^2)$ bits
- Representations can be extended to handle directed graphs and weighted graphs
- Equivalent in terms of polynomial-time algorithms
 - Can convert from one to the others in polynomial time
 - However, can matter in other settings for *sparse graphs* (meaning $m = o(n^2)$)

Representations in Practice

• We assume that representations are 'reasonable':

- Encoding is injective, i.e. one-to-one
- Conversion between two reasonable representations can be done in polynomial time
- We can decide in polynomial time if a given string x ∈ {0,1}* represents a valid object

• We assume encoding happens in the background:

- We don't distinguish between the input and its encoding
- ► For non-encoding strings, output 0

Decision Problems: Example

Travelling Salesman Problem (Decision Version)

- Instance: Graph G = (V, E) with positive edge weights, a vertex $v \in V$, and an integer $W \ge 0$, .
- **Question:** Is there there a tour starting from vertex *v* that visits all other vertices exactly once and then returns to *v* with weight at most *W*?
- Input is an encoding of a tuple (G, v, W), where G is a weighted graph, v is an integer (i.e. a vertex), and W is an integer
- If the encoding is not valid, output 0
- Otherwise, output is 1 or 0 depending on the instance

Representations: Turing Machines

- Turing machines are finite objects, and we can obviously represent them as binary strings
- Concretely:
 - Map the alphabet and the state space to integers
 - Turing machine is a tuple $M = (\Gamma, Q, \delta)$
 - Γ can be interpreted as a tuple of integers
 - Q can be interpreted as a tuple of integers
 - Each entry in δ can be interpreted as a tuple, and δ itself can be interpreted as a tuple
- Apply encoding for tuples

Representations: Turing Machines

- Convenient to tweak the semantics so that we have certain nice properties
- Each TM is represented by infinitely many strings
 - Allow 'empty symbols' at the end of the representation
- Each string represents some Turing machine
 - Non-valid encodings are mapped to a single TM
 - E.g. a TM that always halts immediately
- Notation: M_{α} = Turing machine represented by string $\alpha \in \{0,1\}^*$

Turing Machines as Data

• Simple, yet important consequences of previous:

- Turing machines (\sim programs) can be treated as data
- One can define computational problems that refer to Turing machines
- The set \mathcal{M} of all Turing machines can be *enumerated*:

•
$$\mathcal{M} = \{M_{\alpha} \mid \alpha \in \{0,1\}^*\},$$
 or

• $\mathcal{M} = \{M_1, M_2, \dots\}$, via the correspondence

 $\alpha \sim$ number represented by binary string 1α

Universal Turing Machine: The Idea

- Since Turing machines can be treated as data, one can have Turing machines simulate other Turing machines provided as input
- Actually, there is a *universal Turing machine* U:
 - ► Input: an encoding α of a Turing machine $M = M_{\alpha}$ and a string x
 - \mathcal{U} simulates M on input x and produces output M(x)
 - Moreover, one can make this simulation efficient

• Hence, a single Turing machine captures all computation

• In modern terms, *U* is an *interpreter* for the TM programming language, written in the same language

Universal Turing Machine: The Theorem

Theorem

There is a Turing machine \mathcal{U} such that for every $\alpha, x \in \{0, 1\}^*$,

- if M_{α} halts on input x, then $\mathcal{U}((\alpha, x)) = M_{\alpha}(x)$, and
- if M_{α} does not halt on input *x*, then *U* does not halt on (α, x) .

Moreover, if M_{α} halts on input *x* in *T* steps, then *U* halts on input (α, x) in CT^2 steps, where *C* is a constant that only depends on M_{α} .

• Turing machine \mathcal{U} has as inputs:

- string $\alpha \in \{0,1\}^*$, representing a *k*-tape TM M_{α}
- string $x \in \{0,1\}^*$, the intended input for M_{α}

• Basic construction for U:

- Simulated input tape: simulates the input tape of M_α
- Machine tape: stores the representation of M_α
- State tape: stores the current state of M_α
- Simulation tape: simulates all worktapes of M_α
- Output tape of *U* simulates the output tape of M_α

• Simulation of the working tapes:

- Using the same tricks as last lecture
- In interleaved positions, store full contents of all working tapes of M_α in binary
- Use special marking characters to indicate which positions hold the heads of M_{α}

Setup:

- Copy the representation of M_{α} and x to the corresponding tapes
- Set the current state of M_{α} to starting state

Simulation step:

- Scan the simulation tape and store the symbols under head to the state tape
- Scan the representation of M_{α} to find a transition corresponding to the current configuration of M_{α} , write down the written symbols and head movements
- Pass over simulation tape, apply changes

Time complexity:

- Assume M_{α} runs for T steps on input x
- Any tape of M_{α} can have at most T symbols on it
- Each simulation step takes at most *CT* steps for some constant *C*
- At most T simulation steps
- Total CT^2 , C subsumes constant factors from setup

Universal Turing Machine (Strong Version)

Theorem

There is a TM $\mathcal U$ such that for every $\alpha, x \in \{0,1\}^*$,

- if M_{α} halts on input x, then $\mathcal{U}((\alpha, x)) = M_{\alpha}(x)$, and
- if M_{α} does not halt on input *x*, then *U* does not halt on (α, x) .

Moreover, if M_{α} halts on input x in T steps, then \mathcal{U} halts on input (α, x) in $CT \log T$ steps, where C is a constant that only depends on M_{α} .

• Proof: complicated.

Undecidability: A Simple Counting Argument

- For any language *L*, is there a Turing machine that *decides*, or more weakly *accepts L*?
 - ► For definiteness, let us consider languages and Turing machines over the binary alphabet {0,1}
 - ► Let *M*₁,*M*₂,... be the enumeration of all Turing machines described earlier
 - Denote L_i = language accepted by machine M_i
 - ► This gives an enumeration of all TM-acceptable (binary) languages *L*₁, *L*₂, ...
 - ► However we know that the family *L* of *all* (binary) languages cannot be thus enumerated (cf. tutorial problem T1.2)
 - ► Hence there exists a language L ∈ L that does not appear in the enumeration L₁, L₂,...
 - In summary: there are only countably many Turing machines, but uncountably many languages; thus, there are not enough Turing machines for even accepting every language

What about concrete examples of undecidable languages?

The Diagonal Language

Definition

The *diagonal function* f_D : $\{0,1\}^* \to \{0,1\}$ is defined as

$$f_D(lpha) = egin{cases} 0 & ext{if } M_lpha(lpha) = 1, ext{ and } \ 1 & ext{otherwise.} \end{cases}$$

• The corresponding language is the diagonal language

$$D = \{ \alpha \mid f_D(\alpha) = 1 \} = \{ \alpha \mid M_\alpha(\alpha) \neq 1 \}$$

 Note that here the condition M_α(α) ≠ 1 includes the possibility that M_α does not halt on input α, denoted M_α(α) ↑.

Undecidability of D

Theorem

The diagonal language D is undecidable.

- Proof:
 - Assume D is decidable
 - ► Then there exists a TM *M* such that for all $\alpha \in \{0, 1\}^*$, $M(\alpha) = f_D(\alpha)$
 - ▶ In particular, $M(_M_) = f_D(_M_)$
 - ▶ This is a *contradiction*: by definition of *D*,
 - $\bullet \ M(\llcorner M \lrcorner) = 1 \text{ implies } f_D(\llcorner M \lrcorner) = 0,$
 - $M(\llcorner M \lrcorner) = 0$ implies $f_D(\llcorner M \lrcorner) = 1$

The Halting Problem

Definition

The halting function f_{HALT} is defined as

$$f_{\text{HALT}}((\alpha, x)) = \begin{cases} 1 & \text{if } M_{\alpha} \text{ halts on input } x \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

• The corresponding language is the halting problem

 $HALT = \{(\alpha, x) \mid M_{\alpha} \text{ halts on input } x\}$

The Halting Problem

Theorem

The halting problem is undecidable.

• The proof is by a *reduction* argument:

- We show how to effectively transform any instance of the diagonal problem into a "corresponding" instance of the halting problem
- Then, if we could decide the halting problem, we could also decide the diagonal language, which we know is impossible
- This shows that in some sense the halting problem is more difficult than the diagonal problem

Proof: Halting Problem Is Undecidable

• Recall that $\alpha \in D$ iff either $M_{\alpha}(\alpha) \neq 1$ (properly) or $M_{\alpha}(\alpha) \uparrow$

- Assume there is a Turing machine *M_H* that decides the halting problem
- Then we can decide the diagonal language as follows:
 - On input $\alpha \in \{0,1\}^*$, simulate M_H on instance (α, α)
 - If $M_H(\alpha, \alpha) = 0$, i.e. $M_{\alpha}(\alpha) \uparrow$:
 - Output 1
 - If $M_H(\alpha, \alpha) = 1$, i.e. $M_{\alpha}(\alpha) \downarrow$:
 - Use the UTM \mathcal{U} to compute $M_{\alpha}(\alpha)$
 - If $M_{\alpha}(\alpha) = 1$ then output 0, otherwise output 1

Implications of Undecidability

• Halting problem is relevant in practice

- Implication: one cannot check programmatically that programs function correctly
- Specifically, one cannot check for *infinite loops*
- More generally: Rice's theorem
 - All semantic properties of Turing machines, i.e. properties that concern only their input/output characteristics, are undecidable

For example:

- Does TM M on input x produce output y?
- Does TM M on some input produce output 0?
- Does TM M halt on all inputs?
- Does TM M halt on some input?

Lecture 3: Summary

- Encoding objects as binary strings
- Encoding Turing machines as binary strings
- The universal Turing machine
- Existence of undecidable problems
- Halting problem is undecidable

