
CS-E4530 Computational Complexity Theory

Lecture 3: Representations, Universality, Undecidability

Aalto University
School of Science
Department of Computer Science

Spring 2019

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

2/32

Agenda

Decision problems

Instance (= input) representations

Turing machine representations

The universal Turing machine

Undecidability

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

3/32

Decision Problems

Recall our definition of decision problems:
I Decision problem ∼ language L⊆ {0,1}∗

We model all computational tasks as decision problems:
I How to handle optimisation problems?
I How to handle non-binary string inputs, like graphs?

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

4/32

Decision Problems: Example

Travelling Salesman Problem (Decision Version)

Instance: Graph G = (V,E) with positive edge weights, integer
W ≥ 0, a vertex v ∈ V .

Question: Is there a tour starting from vertex v that visits all
other vertices exactly once and then returns to v with weight at
most W?

5
3

4

4

4

6
3

2

1 1

1

3

2 4

35

2

7
5

42

9

53

4

5
7

1
3

2

3

2

6

v

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

5/32

Representations

For general inputs:
I Encode all inputs as binary
I Just like we actually do with computers

More formally:
I Define an encoding function that maps instance x into a binary

string xxy

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

6/32

Representations: Numbers

Numbers are represented in binary
I xny is the binary representation of n
I Leading zeros can be ignored

x1y= 1

x2y= 10

x3y= 11

x10y= 1010

x1203y= 10010110011

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

7/32

Representations: Non-binary strings

Encoding strings over non-binary alphabet Γ:
I Encode each symbol using dlog2 |Γ|e bits
I Encode strings by concatenating the binary representations

Example: Γ = {a,b,c,d}, dlog2 |Γ|e= 2

xay= 00 xby=01

xcy= 10 xdy=11

xababcdy= 000100011011 = 000100011011

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

8/32

Representations: Pairs and tuples

Encoding pairs of objects:
I Assume we already have a encoding function x·y for objects x and

y using alphabet Γ

I Let # be a symbol not in Γ

I Pairs: encode (x,y) as xxy#xyy
I Tuples: encode (x1,x2, . . . ,xk) as xx1y#xx2y# · · ·#xxky
I Encode the resulting string in binary

Apply recursively for nested pairs and tuples

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

9/32

Representations: Graphs

Convenient to assume: vertex set is V = {1,2, . . . ,n}

Two common encoding schemes for graphs:
I Adjacency lists
I Adjacency matrices

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

10/32

Representations: Adjacency Lists

Adjacency list representation:
I For each v, list the neighbours of v
I List all the adjacency lists
I Encode using the tuple encoding

3 4

2

1 ((1,(2,3)),

(2,(1,3)),

(3,(1,2,4)),

(4,(3)))

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

11/32

Representations: Adjacency Matrices

Adjacency matrix representation of G = (V,E):
I Matrix MG such that

MG(v,u) =

{
1 if v 6= u and v and u are adjacent,

0 otherwise.

Encode the matrix as a string:
I Example: xGy= 0110#1010#1101#0010

3 4

2

1

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

12/32

Adjacency Lists vs. Adjacency Matrices

Graph G = (V,E) with n vertices and m edges
I Adjacency list encoding: O(n+m logn) bits
I Adjacency matrix encoding: O(n2) bits

Representations can be extended to handle directed graphs
and weighted graphs

Equivalent in terms of polynomial-time algorithms
I Can convert from one to the others in polynomial time
I However, can matter in other settings for sparse graphs (meaning

m = o(n2))

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

13/32

Representations in Practice

We assume that representations are ‘reasonable’:
I Encoding is injective, i.e. one-to-one
I Conversion between two reasonable representations can be done

in polynomial time
I We can decide in polynomial time if a given string x ∈ {0,1}∗

represents a valid object

We assume encoding happens in the background:
I We don’t distinguish between the input and its encoding
I For non-encoding strings, output 0

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

14/32

Decision Problems: Example

Travelling Salesman Problem (Decision Version)

Instance: Graph G = (V,E) with positive edge weights, a vertex
v ∈ V , and an integer W ≥ 0, .

Question: Is there there a tour starting from vertex v that visits
all other vertices exactly once and then returns to v with weight at
most W?

Input is an encoding of a tuple (G,v,W), where G is a weighted
graph, v is an integer (i.e. a vertex), and W is an integer

If the encoding is not valid, output 0

Otherwise, output is 1 or 0 depending on the instance

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

15/32

Representations: Turing Machines

Turing machines are finite objects, and we can obviously
represent them as binary strings

Concretely:
I Map the alphabet and the state space to integers
I Turing machine is a tuple M = (Γ,Q,δ)
I Γ can be interpreted as a tuple of integers
I Q can be interpreted as a tuple of integers
I Each entry in δ can be interpreted as a tuple, and δ itself can be

interpreted as a tuple

Apply encoding for tuples

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

16/32

Representations: Turing Machines

Convenient to tweak the semantics so that we have certain
nice properties

Each TM is represented by infinitely many strings
I Allow ‘empty symbols’ at the end of the representation

Each string represents some Turing machine
I Non-valid encodings are mapped to a single TM
I E.g. a TM that always halts immediately

Notation: Mα = Turing machine represented by string α ∈ {0,1}∗

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

17/32

Turing Machines as Data

Simple, yet important consequences of previous:
I Turing machines (∼ programs) can be treated as data
I One can define computational problems that refer to Turing

machines
I The set M of all Turing machines can be enumerated:

• M = {Mα | α ∈ {0,1}∗}, or
• M = {M1,M2, . . .}, via the correspondence

α∼ number represented by binary string 1α

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

18/32

Universal Turing Machine: The Idea

Since Turing machines can be treated as data, one can have
Turing machines simulate other Turing machines provided as
input

Actually, there is a universal Turing machine U:
I Input: an encoding α of a Turing machine M = Mα and a string x
I U simulates M on input x and produces output M(x)
I Moreover, one can make this simulation efficient

Hence, a single Turing machine captures all computation

In modern terms, U is an interpreter for the TM programming
language, written in the same language

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

19/32

Universal Turing Machine: The Theorem

Theorem
There is a Turing machine U such that for every α,x ∈ {0,1}∗,

if Mα halts on input x, then U
(
(α,x)

)
= Mα(x), and

if Mα does not halt on input x, then U does not halt on (α,x).

Moreover, if Mα halts on input x in T steps, then U halts on input
(α,x) in CT2 steps, where C is a constant that only depends on Mα.

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

20/32

Universal Turing Machine: Proof Idea

Turing machine U has as inputs:
I string α ∈ {0,1}∗, representing a k-tape TM Mα

I string x ∈ {0,1}∗, the intended input for Mα

Basic construction for U:
I Simulated input tape: simulates the input tape of Mα

I Machine tape: stores the representation of Mα

I State tape: stores the current state of Mα

I Simulation tape: simulates all worktapes of Mα

I Output tape of U simulates the output tape of Mα

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

21/32

Universal Turing Machine: Proof Idea

Simulation of the working tapes:
I Using the same tricks as last lecture
I In interleaved positions, store full contents of all working tapes of

Mα in binary
I Use special marking characters to indicate which positions hold

the heads of Mα

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

22/32

Universal Turing Machine: Proof Idea

Setup:
I Copy the representation of Mα and x to the corresponding tapes
I Set the current state of Mα to starting state

Simulation step:
I Scan the simulation tape and store the symbols under head to the

state tape
I Scan the representation of Mα to find a transition corresponding

to the current configuration of Mα, write down the written symbols
and head movements

I Pass over simulation tape, apply changes

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

23/32

Universal Turing Machine: Proof Idea

Time complexity:
I Assume Mα runs for T steps on input x
I Any tape of Mα can have at most T symbols on it
I Each simulation step takes at most CT steps for some constant C
I At most T simulation steps
I Total CT2, C subsumes constant factors from setup

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

24/32

Universal Turing Machine (Strong Version)

Theorem
There is a TM U such that for every α,x ∈ {0,1}∗,

if Mα halts on input x, then U
(
(α,x)

)
= Mα(x), and

if Mα does not halt on input x, then U does not halt on (α,x).

Moreover, if Mα halts on input x in T steps, then U halts on input (α,x)
in CT logT steps, where C is a constant that only depends on Mα.

Proof: complicated.

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

25/32

Undecidability: A Simple Counting Argument
For any language L, is there a Turing machine that decides,
or more weakly accepts L?

I For definiteness, let us consider languages and Turing machines
over the binary alphabet {0,1}

I Let M1,M2, . . . be the enumeration of all Turing machines
described earlier

I Denote Li = language accepted by machine Mi
I This gives an enumeration of all TM-acceptable (binary)

languages L1,L2, . . .
I However we know that the family L of all (binary) languages

cannot be thus enumerated (cf. tutorial problem T1.2)
I Hence there exists a language L ∈ L that does not appear in the

enumeration L1,L2, . . .
I In summary: there are only countably many Turing machines, but

uncountably many languages; thus, there are not enough Turing
machines for even accepting every language

What about concrete examples of undecidable languages?

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

26/32

The Diagonal Language

Definition
The diagonal function fD : {0,1}∗→{0,1} is defined as

fD(α) =

{
0 if Mα(α) = 1, and

1 otherwise.

The corresponding language is the diagonal language

D = {α | fD(α) = 1}= {α |Mα(α) 6= 1}

Note that here the condition Mα(α) 6= 1 includes the possibility
that Mα does not halt on input α, denoted Mα(α) ↑.

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

27/32

Undecidability of D

Theorem
The diagonal language D is undecidable.

Proof:
I Assume D is decidable
I Then there exists a TM M such that for all α ∈ {0,1}∗,

M(α) = fD(α)
I In particular, M(xMy) = fD(xMy)
I This is a contradiction: by definition of D,

• M(xMy) = 1 implies fD(xMy) = 0,
• M(xMy) = 0 implies fD(xMy) = 1

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

28/32

The Halting Problem

Definition
The halting function fHALT is defined as

fHALT
(
(α,x)

)
=

{
1 if Mα halts on input x and

0 otherwise.

The corresponding language is the halting problem

HALT = {(α,x) |Mα halts on input x}

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

29/32

The Halting Problem

Theorem
The halting problem is undecidable.

The proof is by a reduction argument:
I We show how to effectively transform any instance of the diagonal

problem into a “corresponding” instance of the halting problem
I Then, if we could decide the halting problem, we could also decide

the diagonal language, which we know is impossible
I This shows that in some sense the halting problem is more difficult

than the diagonal problem

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

30/32

Proof: Halting Problem Is Undecidable

Recall that α ∈ D iff either Mα(α) 6= 1 (properly) or Mα(α) ↑

Assume there is a Turing machine MH that decides the
halting problem

Then we can decide the diagonal language as follows:
I On input α ∈ {0,1}∗, simulate MH on instance (α,α)
I If MH(α,α) = 0, i.e. Mα(α) ↑:

• Output 1
I If MH(α,α) = 1, i.e. Mα(α) ↓:

• Use the UTM U to compute Mα(α)
• If Mα(α) = 1 then output 0, otherwise output 1

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

31/32

Implications of Undecidability

Halting problem is relevant in practice
I Implication: one cannot check programmatically that programs

function correctly
I Specifically, one cannot check for infinite loops

More generally: Rice’s theorem
I All semantic properties ot Turing machines, i.e. properties that

concern only their input/output characteristics, are undecidable

For example:
I Does TM M on input x produce output y?
I Does TM M on some input produce output 0?
I Does TM M halt on all inputs?
I Does TM M halt on some input?

CS-E4530 Computational Complexity Theory / Lecture 3
Department of Computer Science

32/32

Lecture 3: Summary

Encoding objects as binary strings

Encoding Turing machines as binary strings

The universal Turing machine

Existence of undecidable problems

Halting problem is undecidable

