

Geometrical Acoustics

CS-E5530 Virtual Acoustics, 15.1.2019

Lauri Savioja, Aalto University

Interactiveacoustics.info

Department of Computer Science 14.1.2019

2

Physics

VS

Computation

Modern ray-casting performance

Simulation performance	
Rays per second (NVIDIA Optix)	300M
Reverberation time	2s
Average path length	686m
Mean-free path	15m
Average number of reflections per ray	45,7
Maximum rays per second	6,56M

Is that enough for specular reflections?

- Beam-tracing is the solution, not plain ray-tracing.
- Current beam/frustum tracers are very good and efficient.

Image from http://gamma.cs.unc.edu/SOUND/ Department of Computer Science 14.1.2019

Is that enough for diffuse reflections?

Acoustic Radiance Transfer and Radiosity techniques

• Fast ray-casting helps, but has high memory cost

Fast ray-tracing

- No need for pre-computation
- Suitable for moving source and listener, and even for dynamic geometry at some degree

Is that enough for edge diffraction?

It depends on application!

Image from http://gamma.cs.unc.edu/BTM/

Hybrid model

Aalto University School of Science

Starting point

- 1. At the low-end the Geometrical Acoustics fails, and modeling edge diffraction won't fully solve the problem
- 1. At the high-end the Wave-based techniques come too expensive

Why not combine those two? ۲

The best of both worlds

- No need to compute everything with wave-based techniques
 - Only in the region where wave phenomena are important
- Use geometrical acoustics only at higher frequencies when it is valid
 - No need for separate diffraction modeling
 - Easy to incorporate air absorption
 - Modeling with energies is sufficient

Cross-over frequency

- There is a region in which both the diffraction and air absorption are important. Which one is easier?
 - Air absorption in wave-based, or \mathbf{V}

Diffraction in geometrical acoustics

• Go as high as possible with the wave-based techniques

Interactive auralization

Auralization

Aalto University

School of Science

Learn more of the black box: Department of Computer Science A. Southern, S. Siltanen, D. T. Murphy, L. Savioja, "Room Impulse Response 14.1.2019 Synthesis and Validation Using A Hybrid Acoustic Model", In IEEE Trans. Audio Speech Lang. Process., vol. 21, no. 9, pp. 1940 - 1952, 2013.

16

Interactivity

Aalto University School of Science

Learn more of the basics:

L. Savioja, J. Huopaniemi, T. Lokki, R. Väänänen, <u>"Creating</u> <u>interactive virtual acoustic environments"</u>, *In Journal of the Audio Engineering Society*, vol. 47, no. 9, pp. 675-705, 1999.

Conclusions

Conclusions

- Hybrid model
- Physics
 - More accurate boundary and source models are needed

Computation

- Numerical issues need to be solved
- Take the advantage offered by modern parallel processors (GPUs)

Tomorrow:

The assignments

Department of Computer Science 14.1.2019

20