
Introduction and Overview
CS-E4500 Advanced Course on Algorithms

Spring 2019

Pe�eri Kaski
Department of Computer Science

Aalto University

Please register to the course in
Oodi

I What?

I Why?

I How?

I When and where?

What?

Spring 2019

Algorithms for
Polynomials and Integers

Short synopsis of lectures (1/3)

I Polynomials in one variable are among the most elementary and most useful
mathematical objects, with broad-ranging applications from signal processing to
error-correcting codes and advanced applications such as probabilistically checkable
proofs and error-tolerant computation

I One of the main reasons why polynomials are useful in a myriad of applications is
that highly e�icient algorithms are known for computing with polynomials

I These lectures introduce you to this near-linear-time toolbox and its select
applications, with some algorithmic ideas dating back millennia, and some introduced
only in the last few years

Short synopsis of lectures (2/3)

I By virtue of the positional number system, algorithms for computing with
polynomials are closely related to algorithms for computing with integers

I In most cases, algorithms for polynomials are conceptually easier and thus form our
principal object of study during our weekly lectures, with the corresponding
algorithms for integers le� for the exercises or for further study

Short synopsis of lectures (3/3)

I A tantalizing case where the connection between polynomials and integers apparently
breaks down occurs with factoring

I Namely, it is known how to e�iciently factor a given univariate polynomial over a
finite field into its irreducible components, whereas no such algorithms are known for
factoring a given integer into its prime factors

I Indeed, the best known algorithms for factoring integers run in time that scales
moderately exponentially in the number of digits in the input

I These lectures introduce you both to e�icient factoring algorithms for polynomials
and to moderately exponential algorithms for factoring integers

Lecture schedule and
more detailed synopsis

(tentative)

Lecture schedule

Tue 15 Jan: 1. Polynomials and integers
Tue 22 Jan: 2. The fast Fourier transform and fast multiplication
Tue 29 Jan: 3. �otient and remainder
Tue 5 Feb: 4. Batch evaluation and interpolation
Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data

Tue 19 Feb: Exam week — no lecture

Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs

Tue 5 Mar: Break — no lecture

Tue 12 Mar: 7. Finite fields
Tue 19 Mar: 8. Factoring polynomials over finite fields
Tue 26 Mar: 9. Factoring integers

Lecture 1 (Tue 16 Jan):
Polynomials and integers

I We start with elementary computational tasks involving polynomials, such as
polynomial addition, multiplication, division (quotient and remainder), greatest
common divisor, evaluation, and interpolation

I We observe that polynomials admit two natural representations: coe�icient
representation and evaluation representation

I We encounter the more-than-2000-year-old algorithm of Euclid for computing a
greatest common divisor

I We observe the connection between polynomials in coe�icient representation and
integers represented in the positional number system

Lecture 2 (Tue 23 Jan):
The fast Fourier transform and fast multiplication

I We derive one of the most fundamental and widely deployed algorithms in all of
computing, namely the fast Fourier transform and its inverse

I We explore the consequences of this near-linear-time-computable duality between the
coe�icient and evaluation representations of a polynomial

I A key consequence is that we can multiply two polynomials in near-linear-time

I We obtain an algorithm for integer multiplication by reduction to polynomial
multiplication

Lecture 3 (Tue 30 Jan):
�otient and remainder

I We continue the development of the fast polynomial toolbox with near-linear-time
polynomial division (quotient and remainder)

I The methodological protagonist for this lecture is Newton iteration

I We explore Newton iteration and its convergence both in the continuous and in the
discrete se�ings, including fast quotient and remainder over the integers

Lecture 4 (Tue 6 Feb):
Batch evaluation and interpolation

I We derive near-linear-time algorithms for batch evaluation and interpolation of
polynomials using recursive remaindering along a subproduct tree

I In terms of methodological principles, we encounter algebraic divide-and-conquer,
dynamic programming, and space-time tradeo�s

I As an application, we encounter secret sharing

Lecture 5 (Tue 20 Feb):
Extended Euclidean algorithm and interpolation from
erroneous data

I This lecture culminates our development of the near-linear-time toolbox for univariate
polynomials

I First, we develop a divide-and-conquer version of the extended Euclidean algorithm for
polynomials that recursively truncates the inputs to achieve near-linear running time

I Second, we present a near-linear-time polynomial interpolation algorithm that is
robust to errors in the input data up to the information-theoretic maximum number of
errors for correct recovery

I As an application, we encounter Reed–Solomon error-correcting codes together with
near-linear-time encoding and decoding algorithms

Lecture 6 (Tue 27 Feb):
Identity testing and probabilistically checkable proofs

I We investigate some further applications of the near-linear-time toolbox involving
randomization in algorithm design and proof systems with probabilistic soundness

I We find that the elementary fact that a low-degree nonzero polynomial has only a
small number of roots enables us to (probabilistically) verify the correctness of
intricate computations substantially faster than running the computation from scratch

I Furthermore, we observe that proof preparation intrinsically tolerates errors by virtue
of Reed–Solomon coding

Lecture 7 (Tue 6 Mar):
Finite fields

I This lecture develops basic theory of finite fields to enable our subsequent treatment
of factoring algorithms

I We recall finite fields of prime order, and extend to prime-power orders via irreducible
polynomials

I We establish Fermat’s li�le theorem for finite fields and its extension to products of
monic irreducible polynomials

I We also revisit formal derivatives and taking roots of polynomials

Lecture 8 (Tue 13 Mar):
Factoring polynomials over finite fields

I We develop an e�icient factoring algorithm for univariate polynomials over a finite
field by a sequence of reductions

I First, we reduce to square-free factorization via formal derivatives and greatest
common divisors

I Then, we perform distinct-degree factorization of a square-free polynomial via the
polynomial extension of Fermat’s li�le theorem

I Finally, we split to equal-degree irreducible factors using probabilistic spli�ing
polynomials

Lecture 9 (Tue 20 Mar):
Factoring integers

I While e�icient factoring algorithms are known for polynomials, for integers the
situation is more tantalizing in the sense that no e�icient algorithms for factoring are
known

I This lecture looks at a selection of known algorithms with exponential and moderately
exponential running times in the number of digits in the input

I We start with elementary trial division, proceed to look at an algorithm of Pollard and
Strassen that makes use of fast polynomial evaluation and interpolation, and finally
develop Dixon’s random squares method as an example of a randomized algorithm
with moderately exponential expected running time

Why?

Motivation (1/3)

I The toolbox of near-linear-time algorithms for univariate polynomials and large
integers provides a practical showcase of recurrent mathematical ideas in algorithm
design such as
I linearity

I duality

I divide-and-conquer

I dynamic programming

I iteration and invariants

I approximation

I parameterization

I tradeo�s between resources and objectives

I randomization

Motivation (2/3)

I We gain exposure to a number of classical and recent applications, such as
I secret-sharing

I error-correcting codes

I probabilistically checkable proofs

I error-tolerant computation

Motivation (3/3)

I A tantalizing open problem in the study of computation is whether one can factor
large integers e�iciently

I We will explore select factoring algorithms both for univariate polynomials (over a
finite field) and integers

Learning objectives (1/2)

I Terminology and objectives of modern algorithmics, including elements of algebraic,
approximation, online, and randomised algorithms

I Ways of coping with uncertainty in computation, including error-correction and
proofs of correctness

I The art of solving a large problem by reduction to one or more smaller instances of the
same or a related problem

I (Linear) independence, dependence, and their abstractions as enablers of e�icient
algorithms

Learning objectives (2/2)

I Making use of duality
I O�en a problem has a corresponding dual problem that is obtainable from the original

(the primal) problem by means of an easy transformation

I The primal and dual control each other, enabling an algorithm designer to use the
interplay between the two representations

I Relaxation and tradeo�s between objectives and resources as design tools
I Instead of computing the exact optimum solution at considerable cost, o�en a less costly

but principled approximation su�ices

I Instead of the complete dual, o�en only a randomly chosen partial dual or other
relaxation su�ices to arrive at a solution with high probability

Yet further motivation

I Gives a mathematical foundation towards current research done at Aalto CS
(e.g., some of which was presented only recently at ALENEX’18 [14])

I Possibility to continue with
I summer trainee work

I MSc thesis work

I doctoral studies

I Contact the lecturer for details

How?

Prerequisites

I Fundamentals of algorithm design and analysis
(e.g. CS-E3190 Principles of Algorithmic Techniques)

I Mathematical maturity

Taking the course

I No exam

I Weekly problem sets award points, 4 problems / week

I The total number of points determines the course grade

I 9 weeks of activity

Weekly schedule

I Lecture:
Tuesday 12–14, hall T5

(best e�ort to publish each problem set concurrently with lectures)

I Q & A session (review problem set & discuss):
Thursday 12–14, hall T5

(participation recommended)

I Deadline for submi�ing solutions to problem set:
Sunday 20:00 (8pm) Finnish time

I Tutorial (model solutions):
Monday 16–18, hall T6

Exercises

I 4 problems each week [= 4 × 9 = 36 graded problems total]

I Each solved problem awards up to 2 points
(0 – failure, 1 – glorious a�ack, 2 – solved to near-perfection)

I Get help for solving the problems in the Q&A session

I The tutorial session [Mon a�er Sun deadline] is for discussing the model
solutions & ge�ing commentary on your solutions

I Code of conduct: You must solve the exercises yourself

I Late submissions are not possible

Grading [tentative]

I Total points earned from exercises determine the course grade:

• Grade 0 (=fail): less than 40% max points
• Grade 1: at least 40% max points
• Grade 2: at least 50% max points
• Grade 3: at least 60% max points
• Grade 4: at least 70% max points
• Grade 5: at least 80% max points

I [tentative = can relax grading from this]

Workload [5 ECTS]

• Lectures 2 h
• Q&A session 2 h
• Tutorial session 2 h
• Independent work 9 h

• Total weekly workload 15 h

• Total (9 weeks) 135 h

When and where?

2019 K A L E N T E R I 2019

Tammikuu Helmikuu Maaliskuu Huhtikuu Toukokuu Kesäkuu

1 Ti Uudenvuodenpäivä 1 Pe 1 Pe 1 Ma Vk 14 1 Ke Vappu 1 La

2 Ke 2 La 2 La 2 Ti 2 To 2 Su

3 To 3 Su 3 Su 3 Ke 3 Pe 3 Ma Vk 23

4 Pe 4 Ma Vk 06 4 Ma Vk 10 4 To 4 La 4 Ti

5 La 5 Ti 5 Ti Laskiainen 5 Pe 5 Su 5 Ke

6 Su Loppiainen 6 Ke 6 Ke 6 La 6 Ma Vk 19 6 To

7 Ma Vk 02 7 To 7 To 7 Su 7 Ti 7 Pe

8 Ti 8 Pe 8 Pe 8 Ma Vk 15 8 Ke 8 La

9 Ke 9 La 9 La 9 Ti 9 To 9 Su Helluntaipäivä

10 To 10 Su 10 Su 10 Ke 10 Pe 10 Ma Vk 24

11 Pe 11 Ma Vk 07 11 Ma Vk 11 11 To 11 La 11 Ti

12 La 12 Ti 12 Ti 12 Pe 12 Su Äitienpäivä 12 Ke

13 Su 13 Ke 13 Ke 13 La 13 Ma Vk 20 13 To

14 Ma Vk 03 14 To 14 To 14 Su Palmusunnuntai 14 Ti 14 Pe

15 Ti 15 Pe 15 Pe 15 Ma Vk 16 15 Ke 15 La

16 Ke 16 La 16 La 16 Ti 16 To 16 Su

17 To 17 Su 17 Su 17 Ke 17 Pe 17 Ma Vk 25

18 Pe 18 Ma Vk 08 18 Ma Vk 12 18 To 18 La 18 Ti

19 La 19 Ti 19 Ti 19 Pe Pitkäperjantai 19 Su Kaatuneiden muistopäivä 19 Ke

20 Su 20 Ke 20 Ke Kevätpäiväntasaus 20 La 20 Ma Vk 21 20 To

21 Ma Vk 04 21 To 21 To 21 Su Pääsiäispäivä 21 Ti 21 Pe Kesäpäivänseisaus

22 Ti 22 Pe 22 Pe 22 Ma 2. pääsiäispäivä 22 Ke 22 La Juhannus

23 Ke 23 La 23 La 23 Ti 23 To 23 Su

24 To 24 Su 24 Su 24 Ke 24 Pe 24 Ma Vk 26

25 Pe 25 Ma Vk 09 25 Ma Vk 13 25 To 25 La 25 Ti

26 La 26 Ti 26 Ti 26 Pe 26 Su 26 Ke

27 Su 27 Ke 27 Ke 27 La 27 Ma Vk 22 27 To

28 Ma Vk 05 28 To 28 To 28 Su 28 Ti 28 Pe

29 Ti 29 Pe 29 Ma Vk 18 29 Ke 29 La

30 Ke 30 La 30 Ti 30 To Helatorstai 30 Su

31 To 31 Su Kesäaika alkaa 31 Pe

Vuotuinen kalenteri Marcel Steinger, luotu 9.11.2018 calendar-yearly.com
Käy meillä -> www.calendar-yearly.com L = Lecture; hall T5, Tue 12–14

Q = Q & A session; hall T5, Thu 12–14
D = Problem set deadline; Sun 20:00
 T = Tutorial (model solutions); hall T6, Mon 16–18

Exam
week

L1

Q1

T1
D1

L2

Q2

D2
T2

L3

Q3

D3
T3

L4

Q4

D4
T4

L5

Q5

D5
T5

Break

L6

Q6

D6
T6

L7

Q7

D7
T7

L8

Q8

D8
T8

L9

Q9

D9

T9

 CS-E4500 Advanced Course in Algorithms (5 ECTS, III–IV, Spring 2019)

1. Polynomials and Integers
CS-E4500 Advanced Course on Algorithms

Spring 2019

Pe�eri Kaski
Department of Computer Science

Aalto University

Key content for Lecture 1

I A boot camp of basic concepts and definitions in algebra

I Polynomials in one variable (univariate polynomials)

I Basic tasks and first algorithms for univariate polynomials
I addition

I multiplication

I division (quotient and remainder)

I evaluation

I interpolation

I greatest common divisor

I Evaluation–interpolation -duality of polynomials

I The (traditional) extended Euclidean algorithm and its analysis

A boot camp of basic concepts and definitions in algebra

(von zur Gathen and Gerhard [11],
Sections 2.2–3.2, 25.1–4)

Group

I A group is a nonempty set G with a binary operation · : G × G → G satisfying
1. for all a, b, c ∈ G we have (a · b) · c = a · (b · c), (Associativity)
2. there exists a 1 ∈ G such that a · 1 = 1 · a = a for all a ∈ G, (Identity)
3. for all a ∈ G there exists an a−1 ∈ G with a · a−1 = a−1 · a = 1 (Inverses)

I A group G is commutative if for all a, b ∈ G we have a · b = b · a

I Examples:
• (Z,+, 0) and (Zm,+, 0) for m ∈ Z≥2 are commutative groups

• (Q \ {0}, ·, 1) and (Z×m, ·, 1) for Z×m = {1 ≤ a < m : gcd(a,m) = 1} are commutative groups

(Commutative) ring

I A ring R is a set with two binary operations + : R × R → R and · : R × R → R
satisfying

1. R together with + is a commutative group with identity 0,
2. · is associative,
3. R has an identity element 1 for ·,
4. for all a, b, c ∈ R we have a(b + c) = (ab) + (ac) and (b + c)a = (ba) + (ca)

I A ring R is commutative if · is commutative

I A ring R is nontrivial if 0 , 1

I Unless mentioned otherwise, in what follows we always assume that a ring R is both
commutative and nontrivial

I Examples:
Z, Q, R, C, Zm for m ∈ Z≥2

Example: Z5 (the integers modulo 5)

I One way to represent a (finite) ring is to give the addition and multiplication tables for
the operations operations + and ·

I In the two tables below, the entries at row x column y are x+y and x ·y , respectively

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

(1)

Example: Z6 (the integers modulo 6)

I Below are the addition and multiplication tables for Z6

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

(2)

I Compare the multiplication tables for Z6 (above) and Z5 (see (1))
— what qualitative di�erences can you spot?

Example: Z10 (the integers modulo 10)

I Here is a yet further example, the integers modulo 10

+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3 4 5 6 7 8 9 0 1 2
4 4 5 6 7 8 9 0 1 2 3
5 5 6 7 8 9 0 1 2 3 4
6 6 7 8 9 0 1 2 3 4 5
7 7 8 9 0 1 2 3 4 5 6
8 8 9 0 1 2 3 4 5 6 7
9 9 0 1 2 3 4 5 6 7 8

· 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

(3)

I What pa�erns can you identify from the multiplication table?

Field, unit, associate

I A unit in a ring R is an element u ∈ R for which there exists a multiplicative inverse
v ∈ R with uv = 1

I The set R× of all units of R is a group under multiplication

I A ring R is a field if all nonzero elements of R are units

I Examples: (of fields)
Q, R, C, Zp for p prime

I We say that a ∈ R is an associate of b ∈ R and write a ∼ b if there exists a unit u ∈ R
such that a = ub

I ∼ is an equivalence relation on R

Examples / work points

I Study the multiplication table for Z5 in (1)
— how can you identify which elements are units?

I Based on the units that you identify, conclude that Z5 is a field

I By studying the multiplication table for Z6 in (2), conclude that Z6 is not a field by
identifying a nonzero element in Z6 that does not have a multiplicative inverse

I Study (2) and (3). Which elements are units in Z6? How about in Z10?

I Determine the equivalence classes for the associate relation ∼ in Z5, Z6, and Z10

Polynomials over a ring (1/2)

I Let R be a ring and let x be a formal indeterminate

I A polynomial a ∈ R[x] in x over R is a finite sequence (α0,α1, . . . ,αn) of elements of
R (the coe�icients of a) which we write as

a = α0 + α1x + α2x2 + . . . + αn−1xn−1 + αnxn =

n∑
i=0

αix i

I A polynomial a is nonzero if there exists a j = 0, 1, . . . , n with αj , 0

I For nonzero a, we assume that αn , 0 and say that n = deg a is the degree of a; the
coe�icient αn = lc(a) is the leading coe�icient of a

I For zero a, it is convenient to assume that a = (0) and set deg a = −∞

I A nonzero polynomial is monic if lc(a) = 1

Polynomials over a ring (2/2)

I The set R[x] equipped with the usual notions of addition and multiplication of
polynomials (recalled in what follows) is a ring with additive identity (0) and
multiplicative identity (1) for 0, 1 ∈ R

I As a notational convention when working with polynomials, we use symbols x, y, z,w
late in the Roman alphabet for formal indeterminates, and symbols a, b, c, . . . , s, t
early in the Roman alphabet for polynomials

I We use symbols α , β,γ , . . . ,ω in the Greek alphabet for elements in R

Complexity of an algorithm

I When studying algorithms that compute with given elements of R[x], we adopt the
convention of counting the number of arithmetic operations in R as a measure of
the "running time" of an algorithm

I Arithmetic operations in R include addition, subtraction, multiplication and taking a
multiplicative inverse (of a unit)

I We focus on worst-case running time (worst-case number of arithmetic operations
in R) as a function of the degree(s) of the input polynomial(s) in R[x]

I We will work with asymptotic notation O() and Õ()

Addition of polynomials

I Let a =
∑

i αix i, b =
∑

i βix i ∈ R[x] be given as input with deg a = n and deg b = m

I The sum c = a + b =
∑

i γix i ∈ R[x] is the polynomial with deg c ≤ max(n,m) defined
for all i = 0, 1, . . . ,max(n,m) by

γi = αi + βi ∈ R

I Given a, b as input, it is immediate that we can compute c in O(max(n,m)) operations
in R

I Subtraction and multiplication with a given element of R are defined analogously

Multiplication of polynomials

I Let a =
∑

i αix i, b =
∑

i βix i ∈ R[x] be given as input with deg a = n and deg b = m

I The product c = ab =
∑

i γix i ∈ R[x] is the polynomial with deg c ≤ n +m defined for
all i = 0, 1, . . . , n +m by

γi =

i∑
j=0

αjβi−j ∈ R

I Given a, b as input, it is immediate that we can compute c in O((n +m)2) operations
in R

I ... but could we do be�er? The output consists of only O(n +m) elements of R ...

Polynomial division (quotient and remainder)

I Let a =
∑

i αix i, b =
∑

i βix i ∈ R[x] be given as input with deg a = n, deg b = m,
n ≥ m ≥ 0, and suppose that βm ∈ R is a unit

I We want to compute q, r ∈ R[x] with a = qb + r and deg r < m

I The classical division algorithm:
1. r ← a, µ ← β−1

m
2. for i = n −m, n −m − 1, . . . , 0 do
3. if deg r = m + i then ηi ← lc(r)µ, r ← r − ηix ib

else ηi ← 0
4. return q =

∑n−m
i=0 ηix i and r

I We leave checking that a = qb + r and deg r < m as an exercise; given a, b as input, it
is immediate that we can compute q, r in O((n +m)2) operations in R

I ... but could we do be�er? The output consists of only O(n +m) elements of R ...

Example (quotient and remainder)

I a = x4 + x3 + x2 + 1 ∈ Z2[x], b = x2 + 1 ∈ Z2[x]

I n = 4, m = 2

I µ = β−1
m = 1−1 = 1 ∈ Z2

I Tracing the for-loop for i = n −m, n −m − 1, . . . , 0, we have

i ηi r
x4 + x3 + x2 + 1

2 1 x3 + 1
1 1 x + 1
0 0 x + 1

I q = η2x2 + η1x + η0 = x2 + x , r = x + 1

Evaluation (at a single point)

I Let a =
∑

i αix i ∈ R[x] and ξ ∈ R be given as input with deg a = n

I We want to compute a(ξ) =
∑n

i=0 αiξ
i ∈ R

I Horner’s rule:

a(ξ) = (· · · (((αnξ + αn−1)ξ + αn−2)ξ + αn−3)ξ + · · ·α1)ξ + α0

I Using Horner’s rule, it takes O(n) operations in R to compute a(ξ)

Batch evaluation (at m points)

I Let a =
∑

i αix i ∈ R[x] and ξ1, ξ2, . . . , ξm ∈ R be given as input with deg a = n

I We want to compute a(ξ1), a(ξ2), . . . , a(ξm) ∈ R

I Repeated application of Horner’s rule achieves this in O(mn) operations in R

I ... but could we do be�er yet again? ...

Interpolation

I Let F be a field

I Let distinct ξ0, ξ1, . . . , ξn ∈ F and η0,η1, . . . ,ηn ∈ F be given as input

I We want to compute the unique polynomial f ∈ F [x] of degree at most n that satisfies

f (ξ0) = η0, f (ξ1) = η1, . . . , f (ξn) = ηn

I A classical algorithm (with complexity bounded by a polynomial in n) for this task will
be studied in the exercises

I ... but could we do be�er yet again? ...

Integral domain

I An element a ∈ R in a ring R is a zero divisor if there exists a nonzero b ∈ R with
ab = 0

I A ring D is an integral domain if there are no nonzero zero divisors

I Examples: (of integral domains)
Z, any field (exercise: units are not zero divisors), F [x] for a field F

I Work point:
Using (1), (2), and (3), determine all zero divisors in Z5, Z6, and Z10, respectively

Greatest common divisor

I Let R be a ring and let a, b ∈ R

I We say that a divides b and write a|b if there exists a q ∈ R with aq = b

I For a, b, c ∈ R we say that c is a greatest common divisor (or gcd) of a and b if
1. c |a and c |b,
2. for all d ∈ R if d |a and d |b, then d |c

I A greatest common divisor need not exist, and need not be unique

I In an integral domain, any two greatest common divisors are associates

Euclidean domain

I An integral domain E together with a function d : E → Z≥0 ∪ {−∞} is a Euclidean
domain if for all a, b ∈ E with b , 0 there exist q, r ∈ E with a = qb + r and
d (r) < d (b)

I We say that q = a quo b is a quotient and r = a rem b a remainder in the division of
a by b

I We assume that we have available as a subroutine a division algorithm that for
given a, b ∈ E with b , 0 computes q, r ∈ E with a = qb + r and d (r) < d (b)

I Examples: (of Euclidean domains)
I Z with d (a) = |a| ∈ Z≥0

I �otient and remainder can be determined with a division algorithm for integers

I F [x] for a field F with d (a) = deg a
I �otient and remainder can be determined with a division algorithm for polynomials

Traditional Euclidean algorithm

I Let E be an Euclidean domain

I Let f , g ∈ E be given as input

I We seek to compute a greatest common divisor of f and g
I Since E is an integral domain, any two greatest common divisors of f and g are related to

each other by multiplication with a unit

I The Euclidean algorithm both (a) shows that greatest common divisors exist and
(b) gives a way of computing a greatest common divisor by iterative remainders

I Traditional Euclidean algorithm:
1. r0 ← f , r1 ← g
2. i ← 1,

while ri , 0 do ri+1 ← ri−1 rem ri , i ← i + 1
3. return ri−1 (a greatest common divisor)

I Why does this algorithm always stop? (Hint: d (ri+1) < d (ri))

Traditional extended Euclidean algorithm

I Let f , g ∈ E be given as input from an Euclidean domain E

I Traditional extended Euclidean algorithm:
1. r0 ← f , s0 ← 1, t0 ← 0,

r1 ← g, s1 ← 0, t1 ← 1
2. i ← 1,

while ri , 0 do
qi ← ri−1 quo ri

ri+1 ← ri−1 − qiri

si+1 ← si−1 − qisi

ti+1 ← ti−1 − qiti

i ← i + 1
3. ` ← i − 1

return `, ri, si, ti for i = 0, 1, . . . , ` + 1, and qi for i = 1, 2, . . . , `

Example (over Z)

I Let f = 1234 ∈ Z and g = 12 ∈ Z

I We obtain

i ri si ti qi

0 1234 1 0
1 12 0 1 102
2 10 1 −102 1
3 2 −1 103 5
4 0 6 −617

I In particular ` = 3 and r` = 2 is a greatest common divisor of 1234 and 12

Example (over Z2[x])

I Let f = x5 + x4 + x3 + x2 + x + 1 ∈ Z2[x] and g = x5 + x4 + 1 ∈ Z2[x]

I We obtain

i ri si ti qi

0 x5 + x4 + x3 + x2 + x + 1 1 0
1 x5 + x4 + 1 0 1 1
2 x3 + x2 + x 1 1 x2 + 1
3 x2 + x + 1 x2 + 1 x2 x
4 0 x3 + x + 1 x3 + 1

I In particular ` = 3 and r` = x2 + x + 1 is a greatest common divisor of
x5 + x4 + x3 + x2 + x + 1 and x5 + x4 + 1

Analysis using invariants (in this week’s problem set)

I Suppose on input f , g ∈ E we obtain the output `, ri, si, ti for i = 0, 1, . . . , ` + 1, and qi

for i = 1, 2, . . . , `

I Introduce the matrices

R0 =

[
s0 t0

s1 t1

]
∈ E2×2 , Qi =

[
0 1
1 −qi

]
∈ E2×2 for i = 1, 2, . . . , `,

and Ri = QiQi−1 · · ·Q1R0 ∈ E2×2 for i = 0, 1, . . . , `

I The following invariants hold for all i = 0, 1, . . . , `:

1. Ri

[
f
g

]
=

[
ri

ri+1

]
.

2. Ri =

[
si ti

si+1 ti+1

]
.

3. r` is a greatest common divisor of ri and ri+1.
4. sif + tig = ri .

Recap of key content in Lecture 1

I A boot camp of basic concepts and definitions in algebra

I Polynomials in one variable (univariate polynomials)

I Basic tasks and first algorithms for univariate polynomials
I addition

I multiplication

I division (quotient and remainder)

I evaluation

I interpolation (exercise)

I greatest common divisor

I Evaluation–interpolation -duality of polynomials (exercise)

I Analysis of the extended Euclidean algorithm via invariants (exercise)

What next?

I Register to the course in Oodi if you have not already done so
(or e-mail the lecturer in case you missed the registration period)

I Problem Set 1 available in MyCourses

I Q&A session on Thursday (12–14 hall T5)

I Problem Set 1 deadline Sun 20 Jan 20:00, Finnish time
(submit a single PDF file — submission instructions in problem sheet)

Addendum (1/2)

I To get a hands-on perspective to the concepts and algorithm designs, it is in most
cases useful to do some quick-and-dirty programming using your own favorite
programming language and/or computer algebra system

I E.g. the lecturer o�en uses the Scala programming language for dra�ing out concepts
and designs

https://www.scala-lang.org

I Here is a git repository that contains a quick-and-dirty, first-dra� Scala
implementation (with very limited documentation) of selected concepts in this lecture:

https://github.com/pkaski/cs-e4500-2018.git

https://www.scala-lang.org
https://github.com/pkaski/cs-e4500-2018.git

Addendum (2/2)

I Computer algebra systems that you may want to try out include
I Mathematica (https://download.aalto.fi/index-en.html)

I GAP (https://www.gap-system.org)

I Magma (http://magma.maths.usyd.edu.au/magma/)

I Sage (http://www.sagemath.org)

I ...

https://download.aalto.fi/index-en.html
https://www.gap-system.org
http://magma.maths.usyd.edu.au/magma/
http://www.sagemath.org

