References are to equations appearing in the course book.

Problem 2.1

a) Show that the angular momentum $\vec{r} \times \vec{p}$ of the circulating particle with respect to the center is $m r v \hat{n}$ where \hat{n} is a unit vector perpendicular to the plane of the circle. Here, \hat{n} points in a direction given by the right-hand rule applied to the particle's motion.
b) Show that the magnetic moment associated with the motion of the point charge is $q v r / 2$ and thus that the gyromagnetic ratio is given by (2.19).
c) Evaluate numerically the gyromagnetic ratio $\gamma(2.19)$, choosing the same mass $\left(1.67 \times 10^{-27} \mathrm{~kg}\right)$ and charge $\left(1.60 \times 10^{-19} \mathrm{C}\right)$ as for a proton. The difference between your answer and (2.17) is due to the more complicated motion of the proton constituents, the 'quarks.' For related reasons, a neutron has a nonvanishing magnetic moment despite its zero overall charge.

Problem 2.2

It will be useful in later discussions to have the answer (2.33) rederived as a solution to the differential equation (2.24).
a) For $\vec{B}=B_{0} \hat{z}$, show that the vector differential equation (2.24) decomposes into the three Cartesian equations

$$
\begin{align*}
\frac{d \mu_{x}}{d t} & =\gamma \mu_{y} B_{0}=\omega_{0} \mu_{y} \\
\frac{d \mu_{y}}{d t} & =-\gamma \mu_{x} B_{0}=-\omega_{0} \mu_{x} \\
\frac{d \mu_{z}}{d t} & =0 \tag{2.34}
\end{align*}
$$

b) By taking additional derivatives, show that the first two equations in (2.34) can be decoupled to give

$$
\begin{align*}
\frac{d^{2} \mu_{x}}{d t^{2}} & =-\omega_{0}^{2} \mu_{x} \\
\frac{d^{2} \mu_{y}}{d t^{2}} & =-\omega_{0}^{2} \mu_{y} \tag{2.35}
\end{align*}
$$

These decoupled second-order differential equations have familiar solutions of the general form $C_{1} \cos \omega_{0} t+C_{2} \sin \omega_{0} t$.

[^0]
[^0]: The problems are based on those in Robert W. Brown, Y.-C. Norman Cheng, E. Mark Haacke, Michael R. Thompson, Ramesh Venkatesan. Magnetic Resonance Imaging: Physical Principles and Sequence Design, 2nd Edition, Wiley, 2014.

