

Chapter 8: Dynamic Games

Introduction

- In a wide variety of markets firms compete sequentially
 - one firm makes a move
 - new product
 - advertising
- second firms sees this move and responds
- These are dynamic games
 - may create a first-mover advantage
 - or may give a second-mover advantage
 - may also allow early mover to *preempt* the market
- Can generate very different equilibria from
- simultaneous move games

Stackelberg

- Interpret first in terms of Cournot
- Firms choose outputs sequentially
 - leader sets output first, and visibly
 - follower then sets output
- The firm moving first has a *leadership advantage*
 - can anticipate the follower's actions
- can therefore manipulate the follower
- For this to work the leader must be able to *commit* to its choice of output
- Strategic commitment has value

- Stackelberg equilibrium Assume that there are two firms with identical products
- Marginal cost for each firm is c
- Firm 1 is the market leader and chooses q₁
- It knows how firm 2 will react and maximizes P[q1 + R2(q1)]q1 - cq1
- Which gives the condition
- $\boldsymbol{P} + \boldsymbol{q} \mathbf{1} \left[\frac{dP}{dQ} \right] \left[\mathbf{1} + R \left[q_{1} \right] \right] = P + q_{1} \left[\frac{dP}{dQ} \right] \left[1 + \frac{\partial q_{2}}{\partial q_{1}} \right] =$
 - If demand is linear ($P = A B.Q = A B(q_1 + q_2)$, the
 - **Residual demand for firm 2 is:** - $P = (A - Bq_1) - Bq_2$

Chapter 8: Dynamic Games

 $\therefore \mathbf{P} = (\mathbf{A} + \mathbf{c})/2 - \mathbf{B}\mathbf{q}_1/2$ Als equation Marginal revenue for firm 1 is: for on $MR_1 = (A + c)/2 - Bq_1$ $(\mathbf{A} - \mathbf{c})/2$ \therefore $\mathbf{q}^*_2 = (\mathbf{A} - \mathbf{c})\mathbf{4B}$

 \mathbf{R}_2

 $(\mathbf{A} - \mathbf{c})/\mathbf{B}$

 $\neg ut q_1$

Stackelberg and commitment

- It is crucial that the leader can *commit* to its output choice
 - without such commitment firm 2 should ignore any stated intent by firm 1 to produce (A c)/2B units
 - the only equilibrium would be the Cournot equilibrium
- So how to commit?
 - prior reputation
 - investment in additional capacity
 - place the stated output on the market
- Given such a commitment, the timing of decisions *matters*
- But is moving first always better than following?
- Consider price competition

Stackelberg and price competition With price competition matters are different – first-mover does not have an advantage

- suppose products are identical
 - suppose first-mover commits to a price greater than marginal cost
 - the second-mover will undercut this price and take the market
 - so the only equilibrium is *P* = *MC*
 - identical to simultaneous game
- now suppose that products are differentiated
 - perhaps as in the spatial model
 - suppose that there are two firms as in Chapter 7 but now firm 1
 - can set and commit to its price first
 - we know the demands to the two firms
 - and we know the best response function of firm 2

Stackelberg and price competition 2 **Demand to firm 1 is** $D^{1}(p_{1}, p_{2}) = N(p_{2} - p_{1} + t)/2t$ **Demand to firm 2 is** $D^2(p_1, p_2) = N(p_1 - p_2 + t)/2t$ **Best response function for firm 2 is** $p_{2}^{*} = (p_{1} + c + t)/2$ Firm 1 knows this so demand to firm 1 is $D^{1}(p_{1}, p_{2}^{*}) = N(p_{2}^{*} - p_{1} + t)/2t = N(c + 3t - p_{1})/4t$ Profit to firm 1 is then $\pi_1 = N(p_1 - c)(c + 3t - p_1)/4t$ - Differentiate with respect to p_1 : $\partial \pi_1 / \partial p_1 = N(c + 3t - p_1 - p_1 + c)/4t = N(2c + 3t - 2p_1)/4t$ Solving this gives: $p_1^* = c + 3t/2$

Stackelberg and price competition 3 $p_{1}^{*} = c + 3t/2$ **Substitute into the best response function for firm 2** $p_{2}^{*} = (p_{1}^{*} + c + t)/2 \Rightarrow p_{2}^{*} = c + 5t/4$ **Prices** are higher than in the simultaneous case: $p^* = c + t$ Firm 1 sets a higher price than firm 2 and so has lower market share: $c + 3t/2 + tx^m = c + 5t/4 + t(1 - x^m) \Rightarrow x^m = 3/8$ **Profit to firm 1 is then** $\pi_1 = 18Nt/32$ **Profit to firm 2 is** $\pi_2 = 25Nt/32$ Price competition gives a second mover advantage.