
CS-E4530 Computational Complexity Theory

Lecture 4: Reductions

Aalto University
School of Science
Department of Computer Science

Spring 2019

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

2/44

Agenda

Many-to-one reductions

Example: Graph colouring

Turing reductions

Closure and completeness

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

3/44

Reductions

Recall our previous discussions about reductions

Reduction R from problem L1 to problem L2:
I an algorithm that transforms an instance x of problem L1 to an

equivalent instance R(x) of problem L2

Relates the complexities of problems L1 and L2
I Technical requirement: efficiency
I Different notions of reduction

This lecture: formalise these notions

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

4/44

Many-to-one Reductions

Our basic notion of reduction:
I Most reductions we meet on this course are so called

“many-to-one” reductions

Reduction between decision problems L1 and L2
I Maps instances from L1 to L2
I Preserves yes-instances and no-instances
I No postprocessing

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

5/44

Many-to-one Reductions: Definitions

Definition
Let L1,L2 ⊆ {0,1}∗ be languages. A many-to-one reduction (often
called simply reduction) from L1 to L2 is a computable function
R : {0,1}∗→{0,1}∗ such that for every x ∈ {0,1}∗

x ∈ L1 if and only if R(x) ∈ L2 .

Definition
If there is a reduction from L1 to L2, we say that L1 reduces to L2, and
write L1 ≤ L2.

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

6/44

Using Reductions

Assume we have:
I A reduction from R from L1 to L2
I A Turing machine M that decides L2

Then we can decide L1:
I Transform instance x of L1 into an instance R(x) of L2
I Decide R(x) using M

Turing machine for L

Reduction R Turing machine M
for L

R(x)x 0/1

1

2

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

7/44

Using Reductions

Assume we have:
I A reduction from R from L1 to L2 running in time T1(n)
I A Turing machine M that decides L2 in time T2(n)

Then we can decide L1 in time O(T1(n)+T2(T1(n))):
I Transform instance x of L1 into an instance R(x) of L2
I Decide R(x) using M
I Note: |R(x)| ≤ T1(|x|)

Turing machine for L

Reduction R Turing machine M
for L

R(x)x 0/1

1

2

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

8/44

Polynomial-time Reductions

Definition
Let L1,L2 ⊆ {0,1}∗ be languages. A polynomial-time many-to-one
reduction or Karp reductiona from L1 to L2 is a polynomial-time
computable function R : {0,1}∗→{0,1}∗ such that for every
x ∈ {0,1}∗

x ∈ L1 if and only if R(x) ∈ L2 .

aIn honour of Richard Karp, who first used this notion in his 1972 paper listing 21
fundamental NP-complete problems.

Definition
If there is a polynomial-time reduction from L1 to L2, we say that L1
reduces to L2 in polynomial time, and write L1 ≤p L2.

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

9/44

Using Reductions

Assume we have:
I A polynomial-time reduction R from L1 to L2
I A polynomial-time Turing machine M that decides L2

Then we can decide L1 in polynomial time:
I Transform instance x of L1 into an instance R(x) of L2
I Decide R(x) using M
I q(p(n)) is polynomial for polynomials q and p

Turing machine for L

Reduction R Turing machine M
for L

R(x)x 0/1

1

2

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

10/44

Transitivity and Reflexivity

Theorem (Transitivity)
Let L1, L2 and L3 be languages. If L1 ≤p L2 and L2 ≤p L3, then
L1 ≤p L3.

Proof: Apply reductions sequentially.

Theorem (Transitivity)
Let L be a language. Then L≤p L.

Proof: Trivial.

Together, these imply that ≤p is a preorder.

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

11/44

Example: Graph Colourings

Definition
Let k be a fixed positive integer, and let G = (V,E) be an undirected
graph. A k-colouring of G is a function

c : V→{1,2, . . . ,k}

such that for any two adjacent vertices v and u, c(v) 6= c(u).

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

12/44

Some Colourings of a Simple Graph

2-colouring

not valid
2-colouring

3-colouring

4-colouring

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

13/44

The k-colouring Problem

k-colouring problem (k-COL)

Instance: Graph G = (V,E).

Question: Is there a k-colouring of G?

We shall use reductions to study relative complexity of the
following k-colouring problems:

I 2-colouring
I 3-colouring
I 4-colouring

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

14/44

2-colouring to 3-colouring

Theorem
The is a polynomial-time reduction from 2-colouring to 3-colouring.

We have to show that there is a polynomial time reduction R
such that:

I R maps any graph G to a new graph R(G)
I If G has a 2-colouring, then R(G) has a 3-colouring
I If R(G) has a 3-colouring, then G has a 2-colouring

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

15/44

2-colouring to 3-colouring: Proof

Given input graph G, construct R(G):
I Add a new vertex x to the graph
I Connect x to all original vertices

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

16/44

2-colouring to 3-colouring: Proof

If G has a 2-colouring, then R(G) has 3-colouring:
I Colour original vertices the same way
I Colour x with colour 3

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

17/44

2-colouring to 3-colouring: Proof

If R(G) has a 3-colouring, then G has 2-colouring:
I Original vertices cannot use the colour of x
I Thus, original vertices are coloured with 2 colours
I This is a 2-colouring of the original graph after renaming the

colours

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

18/44

2-colouring to 3-colouring: Proof

Construction is clearly polynomial-time computable

We have: 2-COL≤p 3-COL

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

19/44

3-colouring to 4-colouring

Theorem
The is a polynomial-time reduction from 3-colouring to 4-colouring.

We have to show that there is a polynomial time reduction R
such that:

I R maps any graph G to a new graph R(G)
I If G has a 3-colouring, then R(G) has a 4-colouring
I If R(G) has a 4-colouring, then G has a 3-colouring

Do you immediately see why?

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

20/44

3-colouring to 4-colouring

Same construction works for reduction from 3-colouring to
4-colouring

I In fact, from k-colouring to (k+1)-colouring
I We have 2-COL≤p 3-COL≤p 4-COL≤p · · ·
I What about the other direction?

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

21/44

4-colouring to 3-colouring

Theorem
The is a polynomial-time reduction from 4-colouring to 3-colouring.

We have to show that there is a polynomial time reduction R
such that:

I R maps any graph G to a new graph R(G)
I If G has a 4-colouring, then R(G) has a 3-colouring
I If R(G) has a 3-colouring, then G has a 4-colouring

This requires considerably more work

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

22/44

4-colouring to 3-colouring: Proof

Given input graph G, construct R(G):
I We start with a base vertex x
I For each original vertex v, add two new vertices v+ and v−
I Connect v+ and v− to the vertex x

+ –

+ –

+ – + –

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

23/44

4-colouring to 3-colouring: Proof

The construction forces all 3-colourings of R(G) to have
certain form (if they exist):

I Vertex x has some colour (say, 3)
I All vertices v+, v− have to use colours 1 and 2
I Idea: use the tuple (c(v+),c(v−)) to define the colour in the

original graph G

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

24/44

4-colouring to 3-colouring: Proof
For each edge (u,v) ∈ E in the original graph G, we add a
specific gadget to the new graph R(G):

I Forces (c(v+),c(v−)) 6= (c(u+),c(u−))
I That is, using (c(v+),c(v−)) as colour for v in the original graph

gives a valid 4-colouring

v+

v� u�

u+

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

25/44

4-colouring to 3-colouring: Proof

Construction forces certain colours in the gadget
I Assume c(v−) = c(u−)
I We show this implies c(v+) 6= c(u+)

v+

v� u�

u+

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

26/44

4-colouring to 3-colouring: Proof

Construction forces certain colours in the gadget
I Assume c(v−) = c(u−)
I We show this implies c(v+) 6= c(u+)

v+

v� u�

u+

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

27/44

4-colouring to 3-colouring: Proof

Construction forces certain colours in the gadget
I Assume c(v−) = c(u−)
I We show this implies c(v+) 6= c(u+)

v+

v� u�

u+

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

28/44

4-colouring to 3-colouring: Proof

Construction forces certain colours in the gadget
I Assume c(v−) = c(u−)
I We show this implies c(v+) 6= c(u+)

v+

v� u�

u+

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

29/44

4-colouring to 3-colouring: Proof

Construction forces certain colours in the gadget
I Assume c(v−) = c(u−)
I We show this implies c(v+) 6= c(u+)

v+

v� u�

u+

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

30/44

4-colouring to 3-colouring: Proof

Construction forces certain colours in the gadget
I Assume c(v−) = c(u−)
I We show this implies c(v+) 6= c(u+)

v+

v� u�

u+

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

31/44

4-colouring to 3-colouring: Proof

Construction forces certain colours in the gadget
I Assume c(v−) = c(u−)
I We show this implies c(v+) 6= c(u+)

v+

v� u�

u+

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

32/44

4-colouring to 3-colouring: Proof

Construction forces certain colours in the gadget
I Assume c(v−) = c(u−)
I We show this implies c(v+) 6= c(u+)

v+

v� u�

u+

x

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

33/44

4-colouring to 3-colouring: Proof

Similar proof shows that if the original graph G has a
4-colouring, then we can colour R(G) with 3 colours

I Reverse of the previous mapping
I Use two colours for all nodes v+ and v−
I Base vertex x uses the third colour
I Each gadget can be completed in an obvious way

Complexity of the reduction
I If G has n vertices and m edges, then R(G) has 1+2n+7m

vertices
I Clearly R(G) can be computed in polynomial time

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

34/44

Complexity of Colouring Problems

We have proved that 4-COL≤p 3-COL
I Similar reduction works for k-COL≤p 3-COL for k ≥ 5
I All colouring problems are equally hard relative to polynomial

reductions for k ≥ 3

What about polynomial-time reduction from 3-colouring to
2-colouring?

I 2-colouring: in class P
I 3-colouring: believed to be not in class P
I This would imply that the reduction does not exist

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

35/44

Complexity of Colouring Problems

We have proved that 4-COL≤p 3-COL
I Similar reduction works for k-COL≤p 3-COL for k ≥ 5
I All colouring problems are equally hard relative to polynomial

reductions for k ≥ 3

What about polynomial-time reduction from 3-colouring to
2-colouring?

I 2-colouring: in class P
I 3-colouring: believed to be not in class P
I This would imply that the reduction does not exist

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

36/44

Turing Reductions

More powerful notion of reduction:
I Corresponds to subroutine calls
I Turing reduction may make multiple calls to the target language
I Turing reduction may perform postprocessing

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

37/44

Oracle Turing Machines

Let L⊆ {0,1}∗ be a language

An oracle Turing machine M with oracle L is a TM:
I M has a special oracle tape (working tape)
I M has a special state qquery
I When M enters the state qquery and a string x ∈ {0,1}∗ is written

on the oracle tape:
• The head on the oracle tape moves to position 1
• If x ∈ L, the oracle tape is rewritten with string 1
• If x /∈ L, the oracle tape is rewritten with string 0

I The oracle call counts as one step in execution

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

38/44

Turing Reductions

Definition
Let L1,L2 ⊆ {0,1}∗ be languages. A Turing reduction from L1 to L2 is
an oracle Turing machine with oracle L2 that decides L1.

Definition
Let L1,L2 ⊆ {0,1}∗ be languages. A polynomial-time Turing reduction
or Cook reductiona from L1 to L2 is a polynomial-time oracle Turing
machine with oracle L2 that decides L1.

aIn honour of Stephen Cook, who introduced the notion of NP-completeness in
1971 using this reduction type.

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

39/44

Using Turing Reductions

Assume we have:
I A Turing reduction from R from L1 to L2 in time T1(n)
I A Turing machine M that decides L2 in time T2(n)

Then we can decide L1 in time O(T1(n)+T1(n) ·T2(T1(n))):
I Simulate all oracle calls with M
I At most T1(n) calls, each instance at most T1(n) bits

Polynomial T1,T2 implies polynomial time for L1

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

40/44

Closure Under Reductions

Definition
Let R be a class of reductions, and let C be a class of decision
problems. We say that C is closed under R-reductions if for all
languages L1 and L2 the following holds: if L1 ≤R L2 and L2 ∈ C, then
also L1 ∈ C.

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

41/44

Hardness and Completeness

Definition
Let R be a class of reductions, and let C be a class of decision
problems. We say that a language L is C-hard under R-reductions if
for any language L′ ∈ C, there is an R-reduction from L′ to L.

Definition
We say that L is C-complete under R-reductions if L is C-hard under
R-reductions and L ∈ C.

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

42/44

Completeness: Discussion

Complete problems are the most difficult problems:
I Assume that R-reductions are fast to compute compared to

problems in C
I If there is a fast algorithm for a complete problem, then there is a

fast algorithm for all problems in C

Completeness allows discussion of a class in terms of a
single complete problem

I Existence of concrete complete problems not obvious
I We will make this idea more concrete in the next lectures

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

43/44

Reductions: Discussion

Meta-mathematical question: what is the right notion of
reduction to use?

I Why many-to-one reductions instead of Turing reductions?
I Why specifically polynomial-time reductions?

General rule of thumb: reductions should be easy compared
to the complexity class we are studying

I Weaker reductions means more fine-grained complexity picture
I Stronger reductions are easier to work with
I Use different reductions for studying different classes

CS-E4530 Computational Complexity Theory / Lecture 4
Department of Computer Science

44/44

Lecture 4: Summary

Many-to-one reductions

Completeness and hardness

(Turing reductions)

