

CS-E4530 Computational Complexity Theory

Lecture 4: Reductions

Aalto University School of Science Department of Computer Science

Spring 2019

Agenda

- Many-to-one reductions
- Example: Graph colouring
- Turing reductions
- Closure and completeness

Reductions

- Recall our previous discussions about reductions
- Reduction R from problem L₁ to problem L₂:
 - an algorithm that transforms an instance x of problem L_1 to an equivalent instance R(x) of problem L_2
- Relates the complexities of problems L₁ and L₂
 - Technical requirement: efficiency
 - Different notions of reduction
- This lecture: formalise these notions

Many-to-one Reductions

Our basic notion of reduction:

 Most reductions we meet on this course are so called "many-to-one" reductions

• Reduction between decision problems L_1 and L_2

- Maps instances from L₁ to L₂
- Preserves yes-instances and no-instances
- No postprocessing

Many-to-one Reductions: Definitions

Definition

Let $L_1, L_2 \subseteq \{0,1\}^*$ be languages. A *many-to-one reduction* (often called simply *reduction*) from L_1 to L_2 is a computable function $R \colon \{0,1\}^* \to \{0,1\}^*$ such that for every $x \in \{0,1\}^*$

 $x \in L_1$ if and only if $R(x) \in L_2$.

Definition

If there is a reduction from L_1 to L_2 , we say that L_1 reduces to L_2 , and write $L_1 \leq L_2$.

Using Reductions

Assume we have:

- A reduction from R from L₁ to L₂
- A Turing machine M that decides L₂

• Then we can decide L_1 :

- ► Transform instance x of L₁ into an instance R(x) of L₂
- Decide R(x) using M

Using Reductions

Assume we have:

- ▶ A reduction from R from L_1 to L_2 running in time $T_1(n)$
- ▶ A Turing machine M that decides L_2 in time $T_2(n)$

• Then we can decide L_1 in time $O(T_1(n) + T_2(T_1(n)))$:

- Transform instance x of L₁ into an instance R(x) of L₂
- Decide R(x) using M
- ▶ *Note:* $|R(x)| \le T_1(|x|)$

Polynomial-time Reductions

Definition

Let $L_1, L_2 \subseteq \{0,1\}^*$ be languages. A *polynomial-time many-to-one reduction* or *Karp reduction*^a from L_1 to L_2 is a polynomial-time computable function $R \colon \{0,1\}^* \to \{0,1\}^*$ such that for every $x \in \{0,1\}^*$

$$x \in L_1$$
 if and only if $R(x) \in L_2$.

Definition

If there is a polynomial-time reduction from L_1 to L_2 , we say that L_1 reduces to L_2 in polynomial time, and write $L_1 \leq_p L_2$.

^aIn honour of Richard Karp, who first used this notion in his 1972 paper listing 21 fundamental NP-complete problems.

Using Reductions

Assume we have:

- A *polynomial-time* reduction R from L_1 to L_2
- ▶ A *polynomial-time* Turing machine *M* that decides *L*₂

• Then we can decide L_1 in *polynomial time*:

- ▶ Transform instance x of L_1 into an instance R(x) of L_2
- ▶ Decide R(x) using M
- q(p(n)) is polynomial for polynomials q and p

Transitivity and Reflexivity

Theorem (Transitivity)

Let L_1 , L_2 and L_3 be languages. If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

Proof: Apply reductions sequentially.

Theorem (Transitivity)

Let *L* be a language. Then $L \leq_p L$.

- Proof: Trivial.
- Together, these imply that \leq_p is a *preorder*.

Example: Graph Colourings

Definition

Let k be a fixed positive integer, and let G=(V,E) be an undirected graph. A k-colouring of G is a function

$$c: V \rightarrow \{1, 2, \ldots, k\}$$

such that for any two adjacent vertices v and u, $c(v) \neq c(u)$.

Some Colourings of a Simple Graph

The *k*-colouring Problem

k-colouring problem (*k*-COL)

• Instance: Graph G = (V, E).

• **Question:** Is there a *k*-colouring of *G*?

- We shall use reductions to study relative complexity of the following k-colouring problems:
 - ▶ 2-colouring
 - ► 3-colouring
 - ► 4-colouring

2-colouring to 3-colouring

Theorem

The is a polynomial-time reduction from 2-colouring to 3-colouring.

- We have to show that there is a polynomial time reduction R such that:
 - R maps any graph G to a new graph R(G)
 - ▶ If G has a 2-colouring, then R(G) has a 3-colouring
 - If R(G) has a 3-colouring, then G has a 2-colouring

- Given input graph G, construct R(G):
 - Add a new vertex x to the graph
 - Connect x to all original vertices

- If G has a 2-colouring, then R(G) has 3-colouring:
 - Colour original vertices the same way
 - Colour x with colour 3

• If R(G) has a 3-colouring, then G has 2-colouring:

- Original vertices cannot use the colour of x
- Thus, original vertices are coloured with 2 colours
- This is a 2-colouring of the original graph after renaming the colours

- Construction is clearly polynomial-time computable
- We have: $2\text{-COL} \leq_p 3\text{-COL}$

3-colouring to 4-colouring

Theorem

The is a polynomial-time reduction from 3-colouring to 4-colouring.

- We have to show that there is a polynomial time reduction R such that:
 - R maps any graph G to a new graph R(G)
 - ▶ If G has a 3-colouring, then R(G) has a 4-colouring
 - ▶ If R(G) has a 4-colouring, then G has a 3-colouring
- Do you immediately see why?

3-colouring to 4-colouring

- Same construction works for reduction from 3-colouring to 4-colouring
 - ▶ In fact, from k-colouring to (k+1)-colouring
 - ▶ We have 2-COL \leq_p 3-COL \leq_p 4-COL \leq_p ···
 - What about the other direction?

4-colouring to 3-colouring

Theorem

The is a polynomial-time reduction from 4-colouring to 3-colouring.

- We have to show that there is a polynomial time reduction R such that:
 - R maps any graph G to a new graph R(G)
 - If G has a 4-colouring, then R(G) has a 3-colouring
 - If R(G) has a 3-colouring, then G has a 4-colouring
- This requires considerably more work

- Given input graph G, construct R(G):
 - We start with a base vertex x
 - ▶ For each original vertex v, add two new vertices v^+ and v^-
 - ightharpoonup Connect v^+ and v^- to the vertex x

- The construction forces all 3-colourings of R(G) to have certain form (if they exist):
 - Vertex x has some colour (say, 3)
 - ▶ All vertices v^+ , v^- have to use colours 1 and 2
 - ▶ **Idea:** use the tuple $(c(v^+), c(v^-))$ to define the colour in the original graph G

- For each edge $(u,v) \in E$ in the original graph G, we add a specific *gadget* to the new graph R(G):
 - ► Forces $(c(v^+), c(v^-)) \neq (c(u^+), c(u^-))$
 - ▶ That is, using $(c(v^+), c(v^-))$ as colour for v in the original graph gives a valid 4-colouring

- Construction forces certain colours in the gadget
 - Assume $c(v^-) = c(u^-)$
 - We show this implies $c(v^+) \neq c(u^+)$

- Construction forces certain colours in the gadget
 - Assume $c(v^-) = c(u^-)$
 - We show this implies $c(v^+) \neq c(u^+)$

- Construction forces certain colours in the gadget
 - Assume $c(v^-) = c(u^-)$
 - We show this implies $c(v^+) \neq c(u^+)$

- Construction forces certain colours in the gadget
 - Assume $c(v^-) = c(u^-)$
 - We show this implies $c(v^+) \neq c(u^+)$

- Construction forces certain colours in the gadget
 - Assume $c(v^-) = c(u^-)$
 - We show this implies $c(v^+) \neq c(u^+)$

- Construction forces certain colours in the gadget
 - Assume $c(v^-) = c(u^-)$
 - We show this implies $c(v^+) \neq c(u^+)$

- Construction forces certain colours in the gadget
 - Assume $c(v^-) = c(u^-)$
 - We show this implies $c(v^+) \neq c(u^+)$

- Construction forces certain colours in the gadget
 - Assume $c(v^-) = c(u^-)$
 - We show this implies $c(v^+) \neq c(u^+)$

- Similar proof shows that if the original graph G has a 4-colouring, then we can colour R(G) with 3 colours
 - Reverse of the previous mapping
 - ▶ Use two colours for all nodes v⁺ and v⁻
 - Base vertex x uses the third colour
 - Each gadget can be completed in an obvious way
- Complexity of the reduction
 - If G has n vertices and m edges, then R(G) has 1 + 2n + 7m vertices
 - ▶ Clearly R(G) can be computed in polynomial time

Complexity of Colouring Problems

- We have proved that 4-COL $\leq_p 3$ -COL
 - ▶ Similar reduction works for k-COL $\leq_p 3$ -COL for $k \geq 5$
 - All colouring problems are *equally hard* relative to polynomial reductions for $k \ge 3$
- What about polynomial-time reduction from 3-colouring to 2-colouring?

Complexity of Colouring Problems

- We have proved that 4-COL $\leq_p 3$ -COL
 - ▶ Similar reduction works for k-COL $\leq_p 3$ -COL for $k \geq 5$
 - All colouring problems are *equally hard* relative to polynomial reductions for $k \ge 3$
- What about polynomial-time reduction from 3-colouring to 2-colouring?
 - 2-colouring: in class P
 - 3-colouring: believed to be not in class P
 - This would imply that the reduction does not exist

Turing Reductions

• More powerful notion of reduction:

- Corresponds to subroutine calls
- Turing reduction may make multiple calls to the target language
- Turing reduction may perform postprocessing

Oracle Turing Machines

- Let $L \subseteq \{0,1\}^*$ be a language
- An oracle Turing machine M with oracle L is a TM:
 - ► *M* has a special *oracle tape* (working tape)
 - M has a special state q_{query}
 - ▶ When M enters the state q_{query} and a string $x \in \{0,1\}^*$ is written on the oracle tape:
 - The head on the oracle tape moves to position 1
 - If $x \in L$, the oracle tape is rewritten with string 1
 - If $x \notin L$, the oracle tape is rewritten with string 0
 - The oracle call counts as one step in execution

Turing Reductions

Definition

Let $L_1, L_2 \subseteq \{0,1\}^*$ be languages. A *Turing reduction* from L_1 to L_2 is an oracle Turing machine with oracle L_2 that decides L_1 .

Definition

Let $L_1, L_2 \subseteq \{0,1\}^*$ be languages. A *polynomial-time Turing reduction* or *Cook reduction*^a from L_1 to L_2 is a polynomial-time oracle Turing machine with oracle L_2 that decides L_1 .

^aIn honour of Stephen Cook, who introduced the notion of NP-completeness in 1971 using this reduction type.

Using Turing Reductions

- Assume we have:
 - ▶ A Turing reduction from R from L_1 to L_2 in time $T_1(n)$
 - ▶ A Turing machine M that decides L_2 in time $T_2(n)$
- Then we can decide L_1 in time $O(T_1(n) + T_1(n) \cdot T_2(T_1(n)))$:
 - Simulate all oracle calls with M
 - ▶ At most $T_1(n)$ calls, each instance at most $T_1(n)$ bits
- Polynomial T_1, T_2 implies polynomial time for L_1

Closure Under Reductions

Definition

Let R be a class of reductions, and let C be a class of decision problems. We say that C is *closed under R-reductions* if for all languages L_1 and L_2 the following holds: if $L_1 \leq_R L_2$ and $L_2 \in C$, then also $L_1 \in C$.

Hardness and Completeness

Definition

Let R be a class of reductions, and let C be a class of decision problems. We say that a language L is C-hard under R-reductions if for any language $L' \in C$, there is an R-reduction from L' to L.

Definition

We say that L is C-complete under R-reductions if L is C-hard under R-reductions and $L \in C$.

Completeness: Discussion

- Complete problems are the most difficult problems:
 - Assume that R-reductions are fast to compute compared to problems in C
 - If there is a fast algorithm for a complete problem, then there is a fast algorithm for all problems in C
- Completeness allows discussion of a class in terms of a single complete problem
 - Existence of concrete complete problems not obvious
 - We will make this idea more concrete in the next lectures

Reductions: Discussion

- Meta-mathematical question: what is the right notion of reduction to use?
 - Why many-to-one reductions instead of Turing reductions?
 - Why specifically polynomial-time reductions?
- General rule of thumb: reductions should be easy compared to the complexity class we are studying
 - Weaker reductions means more fine-grained complexity picture
 - Stronger reductions are easier to work with
 - Use different reductions for studying different classes

Lecture 4: Summary

- Many-to-one reductions
- Completeness and hardness
- (Turing reductions)