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Last session

Last time, we talked about

The multivariate Gaussian distribution

The interpretation of the parameters

Marginalization

Conditional distributions

How to sample from the distribution
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Conditioning one more time

Let x1 and x2 be a partitioning of x = x1 ∪ x2, then

p(x) = p(x1, x2) = N
([

x1
x2

] ∣∣ [m1

m2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
The conditional distribution of x1 is given x2 by:

p(x1|x2) = N
(
x1|Σ12Σ

−1
22 [x2 − µ2] + m1,Σ11 −Σ12Σ

−1
22 Σ21

)
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Gaussian processes for regression

Running example

Suppose we are given a data set of house prices in Helsinki

Goal: Build a model using the data set and predict the average price
for a house of 70m2 and 160m2
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Road map for today

1 The Bayesian linear model

2 The linear model as special case of
a Gaussian process

3 Gaussian processes: definition &
properties

4 Questions & exercise time
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General setup for linear regression

We are given a data set: D = {xn, yn}N
n=1

House example: yn = house price and xn = house area

Goal: Learn some function f such that

yn = f (xn) + εn

Assuming f is a linear model:

f (x) = w1x1 + w2x2 + . . .+ xDxD = wT x

Linear models are linear wrt. parameters, not the data:

f (x) = w1φ1 (x1) + w2φ2 (x2) + . . .+ xDφD (xD) = wTφ (x) ,

where φi (·) can be non-linear functions.
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Discuss with your neighbor

Which of the following models are linear models and why?

f (x) = w1x1 + w2x
2
2 + w3 sin (x3) (Model 1)

f (x) = w1x1 + w2
2 x2 + w3

3 x3 (Model 2)

f (x) =
(
wT x

)2
(Model 3)

f (x) = w1 exp (x1) + w2
√
x2 + w3 (Model 4)

f (x) = w1x1 + w2
2 x

2
2 + w3

3 x
3
3 (Model 5)
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Slope and intercept

The models so far have not included an intercept:

f (x) = w1x1 + w2x2 + . . .wDxD

Most often we want to incorporate an intercept term

f (x) = w0 + w1x1 + w2x2 + . . .wDxD

By assuming x0 = 1, we can write

f (x) = w0 · 1 + w1x1 + w2x2 + . . .wDxD

= w0 · x0 + w1x1 + w2x2 + . . .wDxD

= wT x
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Bayesian linear regression

The model

yn = f (xn) + ε = wT xn + ε, ε ∼ N
(
0, σ2

)
Likelihood for one data point

p(yn|xn,w) = N
(
yn

∣∣f (xn), σ2
)

= N
(
yn

∣∣wT xn, σ
2
)

Likelihood for all data points

p(y |X ,w) =
N∏

n=1

p(yn|wT xn,w) = N
(
y
∣∣Xw , σ2I

)
Next step: we introduce a prior distribution p (w) for the weights w
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Bayesian linear regression

The prior p(w) contains our prior knowledge about w before we see any
data

Bayes rule gives us the posterior distribution

posterior =
likelihood× prior

marginal likelihood

p(w
∣∣y) =

p(y |w)p(w)

p(y)

Marginal likelihood

p(y) =

∫
p(y ,w)dw =

∫
p(y |w)p(w)dw

The posterior p(w
∣∣y) captures everything we know about w after seing the

data
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Bayesian linear regression: the posterior distribution

We choose a Gaussian prior for w

p(w) = N
(
w
∣∣0,Σp

)
The posterior distribution becomes

p(w
∣∣y) =

p(y |w)p(w)

p(y)

=
N
(
y
∣∣Xw , σ2I

)
N
(
w
∣∣0,Σp

)
p(y)

= N
(
w
∣∣µ,A−1)

where

µ =
1

σ2
A−1XT y A =

1

σ2
XT X + Σ−1p
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Bayesian linear regression: the predictive distribution

We often want to compute the predictive distribution for y∗ at new data
point x∗

We obtain the predictive distribution by averaging over the posterior:

p(y∗
∣∣y) =

∫
p(y∗

∣∣x∗)p(w |y)dw

=

∫
N
(
y∗|wT x∗, σ2

)
N
(
w
∣∣µ,A−1) dw

= N
(
y∗|µT x∗, σ2 + xT

∗ A−1x∗
)

The predictive distributions contains two sources of uncertainty:

1 σ2: measurement noise

2 A−1: uncertainty of the weights w

xT
∗ A−1x∗: uncertainty of the weights w projected to the data space
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House price example: Posterior and predictive distributions

The posterior distribution is distribution over
the parameter space

The posterior is compromise between prior and
likelihood

The predictive distribution is a distribution
over the output space

p(y∗|y) = N
(
y∗|µT x∗, σ2 + xT

∗ A−1x∗
)

p(w) = N
(
w
∣∣0,Σp

)
p(y |w) = N

(
y
∣∣Xw , σ2I

)
p(w |y) = N

(
w
∣∣µ,A−1

)
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Discuss with your neighbor

Determine which of the following statements are true or false:

1 Changing the prior distribution influences the posterior distribution

2 Changing the prior distribution influences the likelihood

3 Changing the prior distribution influences the marginal likelihood

4 Changing the prior distribution influences the predictive distribution

5 The variance of the predictive distribution only depends on the measurement
noise
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Switching focus from parameters to functions (I)

Our goal is to learn the function f

f (x) = wT x

Until now we have focused on the weights w

p(y ,w) = p(y
∣∣w)p(w)

Let’s introduce f = [f (x1), f (x2), . . . , f (xN)] ∈ RN to the model

p(y , f ,w) = p(y
∣∣f )p(f

∣∣w)p(w)

Our model is still the same

p(y ,w) =

∫
p(y , f ,w)df = p(y

∣∣w)p(w)
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Switching focus from parameters to functions (II)

The augmented model

p(y , f ,w) = p(y
∣∣f )p(f

∣∣w)p(w)

What if we now marginalize over the weights

p(y , f ) =

∫
p(y , f ,w)dw = p(y

∣∣f )

∫
p(f
∣∣w)p(w)dw

We can also decompose it likelihood and prior

p(y , f ) = p(y
∣∣f )p(f )

where

p(f ) =

∫
p(f ,w)dw =

∫
p(f
∣∣w)p(w)dw

Michael Riis Andersen GP Course: Session #2 16/1-19 16 / 33



Switching focus from parameters to functions (III)

Let’s study the prior distribution on f

p(f ) =

∫
p(f
∣∣w)p(w)dw =

∫
p(f
∣∣w)N

(
w
∣∣0,Σp

)
dw =?

We could do the integral directly...

But let’s instead use the result from last week

z ∼ N (m,V ) ⇒ Az + b ∼ N
(
Am + b,AVAT

)
We know that w ∼ N

(
w
∣∣0,Σp

)
and f = Xw

E [f ] =

X0 + 0 = 0

V [f ] =

XΣpXT

In other words

p(f ) = N
(
f
∣∣0,XΣpXT

)
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Weight view vs. function view

Same distribution for f in both cases but with two different representations

Weight view

Prior on weights: p (w)

p(y ,w) = p(y |w)p(w)

Posterior of weights: p(w |y)

Function view

Prior on function values: p (f )

p(y , f ) = p(y |f )p(f )

Posterior of function values: p(f |y)
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A closer look at the covariance matrix

Prior on linear functions: p(f ) = N
(
f
∣∣0,K), where K = XΣpXT

Let’s have a closer look on the covariance between fi and fj

Kij = cov (fi , fj ) = cov (f (xi ), f (xj )) = cov
(
wT xi ,wT xj

)

= E
[(

wT xi − 0
) (

wT xj − 0
)]

(Why zero mean?)

= E
[
wT xiwT xj

]
= E

[
xT

i wwT xj

]
= xT

i E
[
wwT

]
xj

= xT
i Σpxj

= k (xi , xj )

What happens if we change the form of the covariance function k (xi , xj )?
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Covariance functions

k
(
xi , xj

)
= xT

i Σpxj

Linear

k
(
xi , xj

)
= exp

(
− ‖xi−xj

∣∣
300

)Squared exponential

k
(
xi , xj

)
= δ

(
xi − xj

)White noise

K
f
∼
N

(0
,K

)

The form of the covariance function determines the characteristics of functions
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Discuss with your neighbor

Consider the following covariance function:

k(xi , xj ) = 1 for all input pairs (xi , xj ) (1)

1 What is the marginal distribution of f (xi )?

2 What is the covariance between f (xi ) and f (xj )?

3 What is the correlation between f (xi ) and f (xj )?

4 What kind of functions are represented by the kernel in eq. (1)?
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The big picture: Summary so far

1 We started with a Bayesian linear model

p(y ,w) = p(y |w)p(w)

2 We introduced f into the model and marginalized over the weights w

p(y , f ) =

∫
p(y |f )p(f |w)p(w)dw = p(y |f )p(f )

3 This gave us a prior for linear functions in function space p(f ), where
the covariance function for f was given by

k(x , x ′) = xTΣpx

4 By changing the form of the covariance function k(x , x ′), we can
model much more interesting functions
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Definitions

Definition of the multivariate Gaussian distribution

A random vector x = [x1, x2, · · · , xD ] is said to have the multivariate Gaussian
distribution if all linear combinations of x are Gaussian distributed:

y = a1x1 + a2x2 + · · ·+ aDxD ∼ N (m, v)

for all a ∈ RD

Definition of Gaussian process

A Gaussian process is a collection of random variables, any finite number of
which have a joint Gaussian distribution.
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Characterization and notation

A Gaussian process can be considered as a prior distribution over functions
f : X → R (the domain X is typically RD)

A Gaussian process is completely characterized by its mean function m (x)
and its covariance function k (x , x ′).

m (x) = E [f (x)]

k (x , x ′) = E [(f (x)−m (x)) (f (x ′)−m (x ′))]

This means that f (x) and f (x ′) are jointly Gaussian distributed with
covariance k (x , x ′)

Not all functions are valid covariance functions - more on that next session

We’ll use the notation

f ∼ GP (m (x) , k (x , x ′))
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Gaussian processes are consistent wrt. marginalization

Assume the function f follows a Gaussian process distribution:

f ∼ GP (m (x) , k (x , x ′))

The Gaussian process will induce a density for f = [f (x1), f (x2)]:

p(f ) = p(f1, f2) = N
([

f1
f2

] ∣∣ [m1

m2

]
,

[
K11 K12

K21 K22

])
The induced density function for f1 = f (x1) will always satisfy

p(f1) = N
(
f1
∣∣m1,K11

)
In words: ”Examination of a larger set of variables does not change the
distribution of the smaller set”

If X = RD , the GP prior describes infinitely many random variable{
f (x) : x ∈ RD

}
, but in practice we only have to deal with a finite subset

corresponding to the data set at hand
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Gaussian process intuition

Gaussian process implements the assumption:

x ≈ x ′ ⇒ f (x) ≈ f (x ′)

In other words: If the inputs are similar, the outputs should be similar as
well.

Using the squared exponential covariance function as example

k (x , x ′) = exp

(
−‖x − x ′‖2

2

)
Then covariance between f (x) and f (x)′ is given by

cov [f (x), f (x ′)] = k (x , x ′) = exp

(
−‖x − x ′‖2

2

)
Note: the covariance between outputs are given in terms of the inputs
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Back to our house price example (I)

Goal: To predict to the price for a house
with area x∗ = 70 based on the training
data {xn, yn}N

n=1

Model: yn = f (xn), where f is an unknown function (no noise for now)

We impose a GP prior on f : GP (m (x) , k (x , x ′))

We choose m(x) = 0 and k (x , x ′) to be the covariance function to be the
squared exponential (and linear + bias term)

The joint density for the training data becomes

p(f ) = N
(
f
∣∣0,Kff

)
where f = [f (x1) , f (x2) , . . . , f (xN )] and (Kff )ij = k (xi , xj )
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Back to our house price example (II)

The joint density for the training data

p(f ) = N
(
f
∣∣0,Kff

)
But what about the predictions for the new point x∗ and the value of f (x∗)?

Let f∗ = f (x∗), then we can jointly model f and f∗ (consistency property)

p(f , f∗) = N
([

f
f∗

] ∣∣0, [Kff Kff∗

Kf∗f Kf∗f∗

])
where Kf∗f = [k(x∗, x1), k(x∗, x2), . . . , k(x∗, xN )] and Kf∗f∗ = k(x∗, x∗)

Now we can use the rule for conditioning in Gaussian distributions to
compute p(f∗|f )

p(f∗|f ) = N
(
f∗
∣∣Kf∗f K−1ff y ,Kf∗f∗ −Kf∗f K−1ff KT

f∗f

)
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Back to our house price example (III)

The joint model for f and f∗ is

p(f , f∗) = N
([

f
f∗

] ∣∣0, [Kff Kff∗

Kf∗f Kf∗f∗

])
where Kf∗f = [k(x∗, x1), k(x∗, x2), . . . , k(x∗, xN )] and Kf∗f∗ = k(x∗, x∗)

Conditioning on f yields:

p(f∗|f ) = N
(
f∗
∣∣Kf∗f K−1ff y ,Kf∗f∗ −Kf∗f K−1ff KT

f∗f

)
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Back to our house price example (IV)

Consider now the noisy model: yn = f (xn) + εn, where εn is Gaussian
distributed

Same likelihood as for the linear model:

p(y |f ) = N
(
y
∣∣f , σ2I

)
The joint model for the noisy case becomes

p(y , f , f∗) = p(y
∣∣f )p(f , f∗)

= N
(
y
∣∣f , σ2I

)
N
([

f
f∗

]
f
∣∣0, [Kff Kf∗f

Kf∗f Kf∗f∗

])
Marginalizing over f gives

p(y , f∗) =

∫
p(y
∣∣f )p(f , f∗)df

= N
([

y
f∗

]
f
∣∣0, [Kff + σ2I Kf∗f

Kf∗f Kf∗f∗

])
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Back to our house price example (V)

The joint distribution

p(y , f∗) =

∫
p(y
∣∣f )p(f , f∗)df

= N
([

y
f∗

] ∣∣0, [Kff + σ2I Kf∗f

Kf∗f Kf∗f∗

])
Once again, we can use the rule for conditioning

p(f∗|f ) = N
(
f∗
∣∣Kf∗f

(
Kff + σ2I

)−1 y ,Kf∗f∗ −Kf∗f

(
Kff + σ2I

)−1 KT
f∗f

)
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Questions

Posterior distribution in the noiseless case:

p(f∗|f ) = N
(
f∗
∣∣Kf∗f K

−1
ff y ,Kf∗f∗ −Kf∗f K

−1
ff KT

f∗f

)
Posterior distribution for the noisy case:

p(f∗|f ) = N
(
f∗
∣∣Kf∗f

(
Kff + σ2I

)−1 y ,Kf∗f∗ −Kf∗f

(
Kff + σ2I

)−1 KT
f∗f

)
Is the following statements true or false?:

1 Gaussian processes can fit high non-linear functions, but the predictive
means are given by a linear combination of the observed variables y .

2 The variance of the posterior distribution is indepedent of the
observed variables y .
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End of todays lecture

Next time:

Kernels and covariance functions

Model selection and hyperparameters

Read ch. 4.2 and ch. 5.1-5.4 in Gaussian processes for Machine
Learning by Carl Rasmussen (http://www.gaussianprocess.org/gpml)

Rest of the time today:

Time to work on assignment #1 (deadline 23rd of January)

Should be handed in through the my courses system

In notebook format or in PDF with the same content
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