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Last session

Last time, we talked about

The multivariate Gaussian distribution

The interpretation of the parameters

T . X0
@ Marginalization
-2
@ Conditional distributions 4 5 0 2 a4
X1
@ How to sample from the distribution
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Conditioning one more time

@ Let x; and x» be a partitioning of x = x3 U x», then

p(x) = p(x1, x2) = N ([2] | [Zj ’ E; EZD

@ The conditional distribution of x; is given x» by:

p(x1]x2) = N (x1|B12355 [x2 — po] + my, B11 — T1235,) o1 )

Michael Riis Andersen GP Course: Session #2 16/1-19 3/33



Conditioning o

@ Let x; and x» be a partitioning of x = x3 U x», then

p(x) = p(x1, x2) = N ([2] | [Zj ’ E; EZD

@ The conditional distribution of x; is given x» by:

p(x1]x2) = N (x1|B12355 [x2 — po] + my, B11 — T1235,) o1 )

Michael Riis Andersen GP Course: Session #2 16/1-19



Conditioning o

@ Let x; and x» be a partitioning of x = x3 U x», then
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Conditioning o

@ Let x; and x» be a partitioning of x = x3 U x», then

p(x) = p(x1, x2) = N ([2] | [Zj ’ E; EZD

@ The conditional distribution of x; is given x» by:
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Gaussian processes for regression

Running example
@ Suppose we are given a data set of house prices in Helsinki

10 o '-‘3‘?
.-"o‘ “la
308 ‘Nc
£ o5 =
04, ?
- -

*  Data points

60 80 100 120 140 160
Area [m?]

@ Goal: Build a model using the data set and predict the average price
for a house of 70m? and 160m?

4/33
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Road map for today

© The Bayesian linear model

Price

Linear model

@ The linear model as special case of
60 80 100 120 140 160

a Gaussian process Area [m?]
. . .. 12 /
© Gaussian processes: definition & 10
properties 08
£os i
04
. . . 02 [ata i
@ Questions & exercise time oo Gaussian process
40 60 80 100 120 140 160

Area [m?]
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General setup for linear regression

. N
@ We are given a data set: D = {Xp, ¥n},_;
@ House example: y, = house price and x,, = house area

@ Goal: Learn some function f such that

Yn = f(X,,) + €n
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General setup for linear regression

@ We are given a data set: D = {x,,yn} ",

@ House example: y, = house price and x,, = house area

Goal: Learn some function f such that

Yn = f(xn) + €n

Assuming f is a linear model:

f(x) =wixs + waxo + ...+ xpxp = w' x

@ Linear models are linear wrt. parameters, not the data:

f(X) = W1¢1 (Xl) + W2¢2 (X2) —|— e + XquD (XD) = WTd) (X),

where ¢; (-) can be non-linear functions.
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Discuss with your neighbor

Which of the following models are linear models and why?

f(x) = wix; + waxs + wssin (x3) (Model 1)
f(x) = wixi + wixy + wixs (Model 2)
f(x) = <wa)2 (Model 3)
f(x) = wiexp(x1) + way/x2 + w3 (Model 4)
f(x) = wix1 + wixg + w33 (Model 5)
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Slope and intercept

@ The models so far have not included an intercept:

f(x) = waxys + waxa + ... wpxp

@ Most often we want to incorporate an intercept term

f(x) = Wo + WiX] + WoXo + ... WpXp

@ By assuming xp = 1, we can write

f(x)=wo-14+wixs +woxo+...wpxp
= Wp - Xg + Wi1X1 + WaXo + ... WpXp

= WTX
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Bayesian linear regression

@ The model
Yo=Ff(x)) +e=w'x, +e, 6~N(O,02)
@ Likelihood for one data point
p(Ya|Xn, w) = N(yn|f(xn),a2) =N (y,,|wa,,,c72)
@ Likelihood for all data points
N
p(y|X,w) = H p(ynlw " x,, w) = N (y’Xw, 0’2[)
n=1

@ Next step: we introduce a prior distribution p (w) for the weights w
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Bayesian linear regression

@ The prior p(w) contains our prior knowledge about w before we see any

data

@ Bayes rule gives us the posterior distribution

likelihood x prior

terior =
PO = A arginal likelihood
ply|w)p(w)
pwly) = =—5=2
(wly) p(y)

Michael Riis Andersen
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Bayesian linear regression

@ The prior p(w) contains our prior knowledge about w before we see any
data

@ Bayes rule gives us the posterior distribution

likelihood x prior

terior =
PO = A arginal likelihood
ply|w)p(w)
pwly) = =—5=2
(wly) p(y)

@ Marginal likelihood

ply) = / ply, w)dw = / p(y|w)p(w)dw
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Bayesian linear regression

@ The prior p(w) contains our prior knowledge about w before we see any
data

@ Bayes rule gives us the posterior distribution

likelihood x prior

terior =
PO = A arginal likelihood
ply|w)p(w)
pwly) = =—5=2
(wly) p(y)

@ Marginal likelihood
py) = / ply, w)dw = / p(y|w)p(w)dw

@ The posterior p(w}y) captures everything we know about w after seing the
data
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Bayesian linear regression: the posterior distribution

@ We choose a Gaussian prior for w

@ The posterior distribution becomes

_ ply|w)p(w)
plwly) = p(y)
N (y|Xw,o?l) N (w|0,%),)
p(y)
=N (w|p, A7)
where
u:iA—ley A:iXTX—FE‘l
0.2 0.2 P
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Bayesian linear regression: the predictive distribution

@ We often want to compute the predictive distribution for y, at new data
point x,

@ We obtain the predictive distribution by averaging over the posterior:
p(y-|y) = /p(y*|x*)p(W|y)dW

:/N(y*|wa*,02)N(w|u,A*1)dw
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Bayesian linear regression: the predictive distribution

@ We often want to compute the predictive distribution for y, at new data
point x,

@ We obtain the predictive distribution by averaging over the posterior:
p(y-|y) = /p(y*|x*)p(W|y)dW
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Bayesian linear regression: the predictive distribution

@ We often want to compute the predictive distribution for y, at new data
point x,

@ We obtain the predictive distribution by averaging over the posterior:

py:ly) = /p(y*|x*)p(W|y)dW
- /N(y*|wa*,o2)N(w|u,A*1)dw
=N (yilp"x, 0% + x] A7 x,)

@ The predictive distributions contains two sources of uncertainty:

@ 02: measurement noise

@ Al uncertainty of the weights w

@ x/A~lx,: uncertainty of the weights w projected to the data space
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House price example: Posterior and predictive distributions

@ The posterior distribution is distribution over

the parameter space

Prior distribution
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House price example: Posterior and predictive distributions

@ The posterior distribution is distribution over

the parameter space

@ The posterior is compromise between prior and

likelihood

Prior distribution
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p(w) = N(w|0,%,)
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House price example: Posterior and predictive distributions

Predictive distriblition

@ The posterior distribution is distribution over w2 =

the parameter space

@ The posterior is compromise between prior and

likelihood
@ The predictive distribution is a distribution o e 100 120 40 160
over the output space Area [m?] ) —_—
p(y*ly) =N (yslp” xx,0% + xT A7 x.)
Prior distribution Likelihood Posterior distribution
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Discuss with your neighbor

Determine which of the following statements are true or false:

@ Changing the prior distribution influences the posterior distribution
@ Changing the prior distribution influences the likelihood

© Changing the prior distribution influences the marginal likelihood
© Changing the prior distribution influences the predictive distribution

© The variance of the predictive distribution only depends on the measurement
noise
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Switching focus from parameters to functions (1)

Our goal is to learn the function f

f(x)=w'x

Until now we have focused on the weights w

p(y, w) = p(y|w)p(w)
o Let's introduce f = [f(x1), f(x2),...,f(xn)] € RN to the model
p(y. f,w) = p(y|f)p(f|w)p(w)

Our model is still the same

by, w) = / ply. . w)df = p(y|w)p(w)
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Switching focus from parameters to functions (II)

@ The augmented model
ply, f,w) = p(y|f)p(f|w)p(w)
@ What if we now marginalize over the weights
p(r.F) = [ by F.w)dw = p(y|) [ p(F|w)p(w)dw

@ We can also decompose it likelihood and prior

p(y, f) = p(y|F)p(f)

@ where

() = [ ptF, widw = [ p(f|w)p(w)aw
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Switching focus from parameters to functions (lII)

@ Let's study the prior distribution on f

p(f):/p(f|w)p(w)dw:/p(f|w)./\/(w|0,2p)dw =7

@ We could do the integral directly...
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Switching focus from parameters to functions (lII)

@ Let's study the prior distribution on f
p(f) = /p(f|w)p(w)dw = /p(f|w)./\/(w|0, ) dw =?
@ We could do the integral directly...

@ But let's instead use the result from last week
z~N(mV) = Az+b~N(Am+b AVA')
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Switching focus from parameters to functions (lII)

Let's study the prior distribution on f

p(f):/p(f|w)p(w)dw:/p(f|w)./\/(w|0,2p)dw =7

We could do the integral directly...

But let's instead use the result from last week
z~N(mV) = Az+b~N(Am+b AVA')

@ We know that w ~N(w|0, ¥,) and f = Xw
E[f]=X0+0=0 V[fl=XZ,XT

In other words

p(f) =N (F]0, X, XT)
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Weight view vs. function

f=Xw f~ N0, XZ,XT)
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Weight view vs. function view

f=Xw f~ N0, X2,XT)
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Weight view vs. function view

f=Xw f~ N0, X2 XT)
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Weight view vs. function view

f~ N(0, Xz,XT)
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Weight view vs. function view

f=Xw f~ N(0, XZ,XT)

Slope:
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Weight view vs

. function view

-0.02

-0.03
-10 05 00 05

Intercept

Price
o
S

10 50 75 100 125 150
Area [m?]

Price

f~ N0, X2 XT)
10

— /
Y
00 >‘_ —
-05 —
-10

5 75 100 125 150

Area [m?]

18 / 33

16/1-19

Michael Riis Andersen

GP Course: Session #2



Weight view vs. function view
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Weight view vs. function view

f=Xw f~ N0, XZ,XT)
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Weight view vs. function view

w ~ MO, 3p) f~ N0, X2, XT)

003

1.0 05 00 05 10
Intercept

Same distribution for f in both cases but with two different representations

Weight view Function view
@ Prior on weights: p (w) @ Prior on function values: p(f)
o ply,w) = p(y|w)p(w) o ply;f) = p(ylf)p(f)
@ Posterior of weights: p(w|y) @ Posterior of function values: p(fl|y)
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A closer look at the covariance matrix

@ Prior on linear functions: p(f) = N (f|0,K), where K = X3, X7

@ Let’s have a closer look on the covariance between f; and f;

Kj = cov (f;, f}) = cov (f(x;), f(x;)) = cov (w'x;, w' x;)
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A closer look at the covariance matrix

@ Prior on linear functions: p(f) = N (f|0,K), where K = X3, X7

@ Let's have a closer look on the covariance between f; and f;

Kj = cov (f;, f}) = cov (f(x;), f(x;)) = cov (w'x;, w' x;)
=E[(w'x;—0) (w'x; —0)] (Why zero mean?)
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A closer look at the covariance matrix

@ Prior on linear functions: p(f) = N (f|0,K), where K = X3, X7

@ Let's have a closer look on the covariance between f; and f;

Kj = cov (f;, f}) = cov (f(x;), f(x;)) = cov (w'x;, w' x;)
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A closer look at the covariance matrix

@ Prior on linear functions: p(f) = N (f|0,K), where K = X3, X7

@ Let's have a closer look on the covariance between f; and f;
Kj = cov (f;, f}) = cov (f(x;), f(x;)) = cov (w'x;, w' x;)
=E[(w'x;—0) (w'x; —0)] (Why zero mean?)
"x]

X

:E[w Xiw

=E [x,-T ww '
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A closer look at the covariance matrix

@ Prior on linear functions: p(f) = N (f|0,K), where K = X3, X7

@ Let's have a closer look on the covariance between f; and f;
Kj = cov (f;, f}) = cov (f(x;), f(x;)) = cov (w'x;, w' x;)
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A closer look at the covariance matrix

@ Prior on linear functions: p(f) = N (f|0,K), where K = X3, X7

@ Let's have a closer look on the covariance between f; and f;
Kj = cov (f;, f}) = cov (f(x;), f(x;)) = cov (w'x;, w' x;)
=E[(w'x;—0) (w'x; —0)] (Why zero mean?)
"x]

X

=K [w Xiw
=E [x,-Twa
=x'E [WWT] X;

— 5T .
=X; XpX;
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A closer look at the covariance matrix

@ Prior on linear functions: p(f) = N (f|0,K), where K = X3, X7

@ Let's have a closer look on the covariance between f; and f;
Kj = cov (f;, f}) = cov (f(x;), f(x;)) = cov (w'x;, w' x;)
=E[(w'x;—0) (w'x; —0)] (Why zero mean?)
"x]

X

=K [w Xiw
=E [x,-Twa
=x'E [WWT] X;
= x,-TEF,xj

= k(xi’XJ')
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A closer look at the covariance matrix

@ Prior on linear functions: p(f) = N (f|0,K), where K = X3, X7

@ Let's have a closer look on the covariance between f; and f;
Kj = cov (f;, f}) = cov (f(x;), f(x;)) = cov (w'x;, w' x;)
=E[(w'x;—0) (w'x; —0)] (Why zero mean?)
"x]

X

=K [w Xiw
=E [x,-Twa
=x'E [wa] X;
= x,-TEF,xj

= k(X,',XJ')

@ What happens if we change the form of the covariance function k (x;, x;)?
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Covariance functions

f ~N(0,K)

Linear

k(xi, x;) = xT Zpx;

Index i

Index j
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Squared exponential

k(Xh Xj) = exp (_ ”X;goxj| )

Index i

Index j
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Covariance functions

f ~N(0,K)

Linear

k(xi, x;) = xT Zpx;

Index i

Index j
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Covariance functions

Linear Squared exponential White noise
I\Xi*Xj|
k(xi, ) = xT Spx; k(xi, x;) = exp (_W k(xi,xj) =6 (xi — x;)
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The form of the covariance function determines the characteristics of functions
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Discuss with your neighbor

@ Consider the following covariance function:

k(xi,xj) =1 for all input pairs (x;, x;) (1)

@ What is the marginal distribution of f(x;)?
@ What is the covariance between f(x;) and f(x;)?
© What is the correlation between f(x;) and f(x;)?

© What kind of functions are represented by the kernel in eq. (1)?
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The big picture: Summary so far

@ We started with a Bayesian linear model

p(y, w) = p(y|w)p(w)

@ We introduced f into the model and marginalized over the weights w

ply. F) = / p(y|F)p(Flw)p(w)dw = p(y|F)p(F)

@ This gave us a prior for linear functions in function space p(f), where
the covariance function for f was given by

k(x,x") = x"2,x

@ By changing the form of the covariance function k(x, x’), we can
model much more interesting functions
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Definition of the multivariate Gaussian distribution

A random vector x = [x1, X2, - , xp] is said to have the multivariate Gaussian
distribution if all linear combinations of x are Gaussian distributed:

y:alx1+32X2+-~~+anDNN(m,v)

for all a € RP

Definition of Gaussian process

A Gaussian process is a collection of random variables, any finite number of
which have a joint Gaussian distribution.
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Characterization and notation

@ A Gaussian process can be considered as a prior distribution over functions
f: X — R (the domain X is typically RP)

@ A Gaussian process is completely characterized by its mean function m (x)
and its covariance function k (x, x’).

m(x) = E[f (x)]
k(x,x") = E[(f(x) = m (x)) (f(x) = m(x))]

@ This means that f(x) and f(x’) are jointly Gaussian distributed with
covariance k (x, x")

@ Not all functions are valid covariance functions - more on that next session

@ We'll use the notation

f~GP(m(x),k(x,x"))
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Gaussian processes are consistent wrt. marginalization

@ Assume the function f follows a Gaussian process distribution:

f~GP(m(x),k(x,x"))

The Gaussian process will induce a density for £ = [f(x1), f(x2)]:

p(F) = p(, £) —Nq;ﬂ | mj ) [21 ZZD

@ The induced density function for f; = f(x1) will always satisfy

p(f) = N (fi]mi, Ku)

In words: " Examination of a larger set of variables does not change the
distribution of the smaller set”

If ¥ = RP, the GP prior describes infinitely many random variable
{f(x) IX € RD}, but in practice we only have to deal with a finite subset
corresponding to the data set at hand
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Gaussian process intuition

@ Gaussian process implements the assumption:
x~x = f(x)=f(x)

@ In other words: If the inputs are similar, the outputs should be similar as
well.

@ Using the squared exponential covariance function as example
k(x,x") = exp <—HX_2X/”2)
@ Then covariance between f(x) and f(x)’ is given by
cov [f(x), f(x')] = k(x,x") = exp (—HX_2XIH2)

@ Note: the covariance between outputs are given in terms of the inputs
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Back to our house price example (1)

59
10 '."‘ L
Goal: To predict to the price for a house L 08 So T
with area x, = 70 based on the training £08 .
N ool 7 d
data {X"’-y”}nzl 02 +  Datapoints
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Area [m?]

@ Model: y, = f(x,), where f is an unknown function (no noise for now)
@ We impose a GP prior on f: GP (m(x), k (x,x"))

@ We choose m(x) =0 and k (x,x") to be the covariance function to be the
squared exponential (and linear + bias term)

@ The joint density for the training data becomes
p(f) = N ([0, Kr)

where f = [f (x1),f (x2),...,f (xn)] and (Kg); = k (xi, x;)
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Back to our house price example (II)

@ The joint density for the training data
p(f) = N (f|0, K)

@ But what about the predictions for the new point x, and the value of f(x.)?

@ Let f. = f(x.), then we can jointly model f and f. (consistency property)

B f K Kff*
p(f.f.) =N ([fj |0’ |:Kf*f K&h])

where Kz, ¢ = [k(x«, x1), K(Xi, X2), - - ., k(x, xn)] and Kr, g, = k(X, X4)

@ Now we can use the rule for conditioning in Gaussian distributions to
compute p(f,|F)

p(fIF) =N (f|KerKz 'y, Ker. — Ke Kz 'K )
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Back to our house price example (llI)

@ The joint model for f and f, is

B f Kg Kff*
p(f.f) =N ([fj ‘0’ |:Kf*f K&&])

where Kr ¢ = [k(xi, x1), k(Xs, %2), - .., k(xx, xn)] and Kr g, = k(xs, %)

@ Conditioning on f yields:
p(f|F) = N (f.

KerKyi'y, Ker. — K r K 'K/ ()
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Back to our house price example (1V)

@ Consider now the noisy model: y, = f(x,) + €,, where ¢, is Gaussian
distributed

@ Same likelihood as for the linear model:
py|f) =N (y
@ The joint model for the noisy case becomes

p(y’ f’ f*) = p(y’f)p(f, f*)

B ) f Kr  Krr
_j\/'(y f,o I)N([fj f|07 |:Kf*f K&&])

f,a2l)

@ Marginalizing over f gives

ply. £) = / oy |F)p(F. £.)df

y Ki + 021 K
= flO *
N({ﬁk] | ’[ Ks.r K&ﬂ])
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Back to our house price example (V)

@ The joint distribution

p(y,ﬁk):/p(ylf)p(f,ﬁk)df

_ y Kg 4+ 0%l Kgr
v (e e &)

@ Once again, we can use the rule for conditioning

p(ff) =N (f*|Kf*f (Kir +021) 'y, Ker, — Keor (Kip +021) Kfff)
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Back to our house price example (V)
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Ky + a2l K ¢
=N (Y0, |77 "
<[f* | K, ¢ K. .
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-1 —1
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Posterior distribution in the noiseless case:
p(flf) =N (f*\Kf*fo?ly, Kr.f, — Kf*fo?le*Tf>
Posterior distribution for the noisy case:
p(f|f) =N (f*\Kf*f (Ker + 02’)71 ¥, Ker, — Ker (K + 021)71 Kf?:f)

Is the following statements true or false?:
© Gaussian processes can fit high non-linear functions, but the predictive
means are given by a linear combination of the observed variables y.

@ The variance of the posterior distribution is indepedent of the
observed variables y.
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End of todays lecture

Next time:

@ Kernels and covariance functions
@ Model selection and hyperparameters

@ Read ch. 4.2 and ch. 5.1-5.4 in Gaussian processes for Machine
Learning by Carl Rasmussen (http://www.gaussianprocess.org/gpml)

Rest of the time today:

@ Time to work on assignment #1 (deadline 23rd of January)
@ Should be handed in through the my courses system

@ In notebook format or in PDF with the same content
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