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Summary of the Last Lecture

The purpose of is to estimate the state of a time-varying
system from noisy measurements obtained from it.
The linear theory dates back to 50’s, non-linear Bayesian
theory was founded in 60’s.
The efficient computational solutions can be divided into
prediction, filtering and smoothing.
Applications: tracking, navigation, telecommunications,
audio processing, control systems, etc.
The formal Bayesian estimation equations can be
approximated by e.g. Gaussian approximations, Monte
Carlo or Gaussian mixtures.
Formulating physical systems as state space models is a
challenging engineering topic as such.
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Batch Linear Regression [1/2]

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

t

y

 

 
Measurement

True signal

Consider the linear regression model

yk = θ1 + θ2 tk + εk , k = 1, . . . ,T ,

with εk ∼ N(0, σ2) and θ = (θ1, θ2) ∼ N(m0,P0).
In probabilistic notation this is:

p(yk |θ) = N(yk |Hk θ, σ
2)

p(θ) = N(θ |m0,P0),

where Hk = (1 tk ).
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Batch Linear Regression [2/2]

The Bayesian batch solution by the Bayes’ rule:

p(θ | y1:T ) ∝ p(θ)
∏T

k=1 p(yk |θ)

= N(θ |m0,P0)
∏T

k=1 N(yk |Hk θ, σ
2).

The posterior is Gaussian

p(θ | y1:T ) = N(θ |mT ,PT ).

The mean and covariance are given as

mT =

[
P−1

0 +
1
σ2 HTH

]−1 [ 1
σ2 HTy + P−1

0 m0

]
PT =

[
P−1

0 +
1
σ2 HTH

]−1

,

where Hk = (1 tk ), H = (H1;H2; . . . ;HT ), y = (y1; . . . ; yT ).
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Recursive Linear Regression [1/4]

Assume that we have already computed the posterior
distribution, which is conditioned on the measurements up
to k − 1:

p(θ | y1:k−1) = N(θ |mk−1,Pk−1).

Assume that we get the k th measurement yk . Using the
equations from the previous slide we get

p(θ | y1:k ) ∝ p(yk |θ)p(θ | y1:k−1)

∝ N(θ |mk ,Pk ).

The mean and covariance are given as

mk =

[
P−1

k−1 +
1
σ2 HT

k Hk

]−1 [ 1
σ2 HT

k yk + P−1
k−1mk−1

]
Pk =

[
P−1

k−1 +
1
σ2 HT

k Hk

]−1

.
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Recursive Linear Regression [2/4]

By the matrix inversion lemma (or Woodbury identity):

Pk = Pk−1 − Pk−1HT
k

[
HkPk−1HT

k + σ2
]−1

HkPk−1.

Now the equations for the mean and covariance reduce to

Sk = HkPk−1HT
k + σ2

Kk = Pk−1HT
k S−1

k

mk = mk−1 + Kk [yk − Hkmk−1]

Pk = Pk−1 − KkSkKT
k .

Computing these for k = 0, . . . ,T gives exactly the linear
regression solution.
A special case of Kalman filter.
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Recursive Linear Regression [3/4]
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Recursive Linear Regression [3/4]

Simo Särkkä From Linear Regression to Kalman Filter and Beyond



Recursive Linear Regression [3/4]
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Recursive Linear Regression [4/4]

Convergence of the recursive solution to the batch solution – on
the last step the solutions are exactly equal:
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Batch vs. Recursive Estimation [1/2]

General batch solution:
Specify the measurement model:

p(y1:T |θ) =
∏

k

p(yk |θ).

Specify the prior distribution p(θ).
Compute posterior distribution by the Bayes’ rule:

p(θ |y1:T ) =
1
Z

p(θ)
∏

k

p(yk |θ).

Compute point estimates, moments, predictive quantities
etc. from the posterior distribution.
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Batch vs. Recursive Estimation [2/2]

General recursive solution:
Specify the measurement likelihood p(yk |θ).
Specify the prior distribution p(θ).
Process measurements y1, . . . ,yT one at a time, starting
from the prior:

p(θ |y1) =
1
Z1

p(y1 |θ)p(θ)

p(θ |y1:2) =
1
Z2

p(y2 |θ)p(θ |y1)

p(θ |y1:3) =
1
Z3

p(y3 |θ)p(θ |y1:2)

...

p(θ |y1:T ) =
1

ZT
p(yT |θ)p(θ |y1:T−1).

The result at the last step is the batch solution.
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Advantages of Recursive Solution

The recursive solution can be considered as the online
learning solution to the Bayesian learning problem.
Batch Bayesian inference is a special case of recursive
Bayesian inference.
The parameter can be modeled to change between the
measurement steps⇒ basis of filtering theory.
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Drift Model for Linear Regression [1/3]

Let assume Gaussian random walk between the
measurements in the linear regression model:

p(yk |θk ) = N(yk |Hk θk , σ
2)

p(θk |θk−1) = N(θk |θk−1,Q)

p(θ0) = N(θ0 |m0,P0).

Again, assume that we already know

p(θk−1 | y1:k−1) = N(θk−1 |mk−1,Pk−1).

The joint distribution of θk and θk−1 is (due to Markovianity
of dynamics!):

p(θk ,θk−1 | y1:k−1) = p(θk |θk−1)p(θk−1 | y1:k−1).
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Drift Model for Linear Regression [2/3]

Integrating over θk−1 gives:

p(θk | y1:k−1) =

∫
p(θk |θk−1)p(θk−1 | y1:k−1)dθk−1.

This equation for Markov processes is called the
Chapman-Kolmogorov equation.
Because the distributions are Gaussian, the result is
Gaussian

p(θk | y1:k−1) = N(θk |m−
k ,P

−
k ),

where

m−
k = mk−1

P−
k = Pk−1 + Q.
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Drift Model for Linear Regression [3/3]

As in the pure recursive estimation, we get

p(θk | y1:k ) ∝ p(yk |θk )p(θk | y1:k−1)

∝ N(θk |mk ,Pk ).

After applying the matrix inversion lemma, mean and
covariance can be written as

Sk = HkP−
k HT

k + σ2

Kk = P−
k HT

k S−1
k

mk = m−
k + Kk [yk − Hkm−

k ]

Pk = P−
k − KkSkKT

k .

Again, we have derived a special case of the Kalman filter.
The batch version of this solution would be much more
complicated.
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State Space Notation

In the previous slide we formulated the model as

p(θk |θk−1) = N(θk |θk−1,Q)

p(yk |θk ) = N(yk |Hk θk , σ
2)

But in Kalman filtering and control theory the vector of
parameters θk is usually called “state” and denoted as xk .
More standard state space notation:

p(xk |xk−1) = N(xk |xk−1,Q)

p(yk |xk ) = N(yk |Hk xk , σ
2)

Or equivalently

xk = xk−1 + qk−1

yk = Hk xk + rk ,

where qk−1 ∼ N(0,Q), rk ∼ N(0, σ2).
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Kalman Filter [1/2]

The canonical Kalman filtering model is

p(xk |xk−1) = N(xk |Ak−1 xk−1,Qk−1)

p(yk |xk ) = N(yk |Hk xk ,Rk ).

More often, this model can be seen in the form

xk = Ak−1 xk−1 + qk−1

yk = Hk xk + rk .

The Kalman filter actually calculates the following
distributions:

p(xk |y1:k−1) = N(xk |m−
k ,P

−
k )

p(xk |y1:k ) = N(xk |mk ,Pk ).
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Kalman Filter [2/2]

Prediction step of the Kalman filter:

m−
k = Ak−1 mk−1

P−
k = Ak−1 Pk−1 AT

k−1 + Qk−1.

Update step of the Kalman filter:

Sk = Hk P−
k HT

k + Rk

Kk = P−
k HT

k S−1
k

mk = m−
k + Kk [yk − Hk m−

k ]

Pk = P−
k − Kk Sk KT

k .

These equations will be derived from the general Bayesian
filtering equations in the next lecture.
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Probabilistic State Space Models [1/2]

Generic non-linear state space models

xk = f(xk−1,qk−1)

yk = h(xk , rk ).

Generic Markov models

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk ).

Continuous-discrete state space models involving
stochastic differential equations:

dx
dt

= f(x, t) + w(t)

yk ∼ p(yk |x(tk )).
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Probabilistic State Space Models [2/2]

Non-linear state space model with unknown parameters:

xk = f(xk−1,qk−1,θ)

yk = h(xk , rk ,θ).

General Markovian state space model with unknown
parameters:

xk ∼ p(xk |xk−1,θ)

yk ∼ p(yk |xk ,θ).

Parameter estimation will be considered later – for now, we
will attempt to estimate the state.
Why Bayesian filtering and smoothing then?
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Bayesian Filtering, Prediction and Smoothing

In principle, we could just use the (batch) Bayes’ rule

p(x1, . . . ,xT |y1, . . . ,yT )

=
p(y1, . . . ,yT |x1, . . . ,xT )p(x1, . . . ,xT )

p(y1, . . . ,yT )
,

Curse of computational complexity: complexity grows more
than linearly with number of measurements (typically we
have O(T 3)).
Hence, we concentrate on the following:

Filtering distributions:

p(xk |y1, . . . ,yk ), k = 1, . . . ,T .

Prediction distributions:

p(xk+n |y1, . . . ,yk ), k = 1, . . . ,T , n = 1,2, . . . ,

Smoothing distributions:

p(xk |y1, . . . ,yT ), k = 1, . . . ,T .
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Bayesian Filtering, Prediction and Smoothing (cont.)

Measurements Estimate

0 Tk

Prediction:

Filtering:

Smoothing:
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Filtering Algorithms

Kalman filter is the classical optimal filter for
linear-Gaussian models.
Extended Kalman filter (EKF) is linearization based
extension of Kalman filter to non-linear models.
Unscented Kalman filter (UKF) is sigma-point
transformation based extension of Kalman filter.
Gauss-Hermite and Cubature Kalman filters (GHKF/CKF)
are numerical integration based extensions of Kalman filter.
Particle filter forms a Monte Carlo representation (particle
set) to the distribution of the state estimate.
Grid based filters approximate the probability distributions
on a finite grid.
Mixture Gaussian approximations are used, for example, in
multiple model Kalman filters and Rao-Blackwellized
Particle filters.
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Smoothing Algorithms

Rauch-Tung-Striebel (RTS) smoother is the closed form
smoother for linear Gaussian models.
Extended, statistically linearized and unscented RTS
smoothers are the approximate nonlinear smoothers
corresponding to EKF, SLF and UKF.
Gaussian RTS smoothers: cubature RTS smoother,
Gauss-Hermite RTS smoothers and various others
Particle smoothing is based on approximating the
smoothing solutions via Monte Carlo.
Rao-Blackwellized particle smoother is a combination of
particle smoothing and RTS smoothing.
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Summary

Linear regression problem can be solved as batch problem
or recursively – the latter solution is a special case of
Kalman filter.
A generic Bayesian estimation problem can also be solved
as batch problem or recursively.
If we let the linear regression parameter change between
the measurements, we get a simple linear state space
model – again solvable with Kalman filtering model.
By generalizing this idea and the solution we get the
Kalman filter algorithm.
By further generalizing to non-Gaussian models results in
generic probabilistic state space models.
Bayesian filtering and smoothing methods solve Bayesian
inference problems on state space models recursively.
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Demonstration

[Linear regression with Kalman filter]

Simo Särkkä From Linear Regression to Kalman Filter and Beyond


	Summary of the Last Lecture
	Batch and Recursive Estimation
	Towards Bayesian Filtering
	Kalman Filter and Bayesian Filtering and Smoothing
	Summary

