Decision making and problem solving Lecture 2

- Biases in probability assessment
- Expected Utility Theory (EUT)
- Assessment of utility functions

Last time

D Decision trees are a visual and easy way to model decisionmaking problems, which involve uncertainties
\square Paths of decisions and random events
\square Probabilities are used to model uncertainty
\square Data to estimate probabilities not necessarily available

We often need subjective judgements to estimate probabilities

Biases in probability assessment

- Subjective judgements by both "ordinary people" and "experts" are prone to numerous biases
- Cognitive bias: Systematic discrepancy between the 'correct' answer and the respondent's actual answer
- E.g., assessment of conditional probability differs from the correct value given by Bayes' rule
- Motivational biases: judgements are influenced by the desriability or undesirability of events
- E.g., overoptimism about success probabilities
- Strategic underestimation of failure probabilities

Some biases can be easy, some difficult to correct

Aalto University School of Science

Representativeness bias (cognitive)

- If x fits the description of A well, then $P(x \in A)$ is assumed to be large
The 'base rate' of A in the population (i.e., the probability of A) is not taken into account
\square Example: You see a very tall man in a bar. Is he more likely to be a professional basketball player or a teacher?

Representativeness bias

What is 'very tall'?

- 195 cm ?

I Assume all BB players are very tall
\square Based on 30 min of googling ${ }^{1}$, the share of Finnish men taller than 195 cm exceeds 0.3 \%
\square If BB players go the bar as often as teachers, it is more probable that the very tall man is a teacher, if the share of very tall men exceeds 0.31%

- 2018 students' responses: 80\% teacher, 20\% basketball player
- Your responses: 82\% teacher, 18 basketball player

Height	Males					
	$\begin{gathered} 20-29 \\ \text { years } \end{gathered}$	$\begin{array}{r} 30-39 \\ \text { years } \end{array}$	$\begin{gathered} 40-49 \\ \text { years } \end{gathered}$	$\begin{array}{r} 50-59 \\ \text { years } \end{array}$	$\begin{array}{r} 60-69 \\ \text { years } \end{array}$	$\begin{array}{r} 70-79 \\ \text { years } \end{array}$
$\begin{aligned} & \text { Percent under- } \\ & 4^{\prime} 10^{\prime \prime} \ldots . . . \text {. } \end{aligned}$	-	-	-	(B)	-	-
4'11"	-	-	-	(B)	(B)	-
5	(B)	-	-	(B)	(B)	-
5'1"	(B)	(B)	(B)	(B)	${ }^{1} 0.4$	(B)
$5{ }^{\prime} 2$ "	(B)	(B)	(B)	(B)	(B)	(B)
5'3'	(B)	${ }^{1} 3.1$	${ }^{1} 1.9$	(B)	${ }^{1} 2.3$	(B)
5'4"	3.7	${ }^{1} 4.4$	3.8	${ }^{1} 4.3$	4.4	5.8
5'5"	7.2	6.7	5.6	7.6	7.8	12.8
5'6"	11.6	13.1	9.8	12.2	14.7	23.0
5'7"	20.6	19.6	19.4	18.6	23.7	35.1
5'8"	33.1	32.2	30.3	30.3	37.7	47.7
$5{ }^{\prime} 9$ '	42.2	45.4	40.4	41.2	50.2	60.3
5'10"	58.6	58.1	54.4	54.3	65.2	75.2
5'11"	70.7	69.4	69.6	70.0	75.0	85.8
$6{ }^{\prime}$	79.9	78.5	79.1	81.2	84.3	91.0
$6^{\prime} 1{ }^{\prime \prime}$	89.0	89.0	87.4	91.6	93.6	94.9
6'2"	94.1	94.0	92.5	93.7	97.8	98.6
$6^{\prime} 3$ "	98.3	95.8	97.7	96.6	99.9	100.0
$6^{\prime} 4^{\prime \prime}$	100.0	97.6	99.0	99.5	100.0	100.0
$6^{\prime} 5$ "	100.0	99.4	99.4	99.6	100.0	100.0
6'6" \ldots.	100.0	99.5	99.9	100.0	100.0	100.0

Representativeness bias

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in antinuclear demonstrations. Please check the most likely alternative:
a. Linda is a bank teller.
b. Linda is a bank teller and active in the feminist movement.
Many choose b, although bca whereby $\mathrm{P}(\mathrm{b})<\mathrm{P}(\mathrm{a})$

- 2018 students' responses: 67% a, 33% b.
- Your responses: $74 \% \mathrm{a}, 26 \% \mathrm{~b}$.

Bank tellers

Bank tellers who are active in the feminist movement

Conservativism bias (cognitive)

\square When information about some uncertain event is obtained, people typically do not adjust their initial probability estimate about this event as much as they should based on Bayes' theorem.

- Example: Consider two bags X and Y. Bag X contains 30 white balls and 10 black balls, whereas bag Y contains 30 black balls and 10 white balls. Suppose that you select one of these bags at random, and randomly draw five balls one-by-one by replacing them in the bag after each draw. Suppose you get four white balls and one black. What is the probability that you selected bag X with mainly white balls?
\square Typically people answer something between 70-80\%. Yet, the correct probability is 27/28 $\approx 96 \%$.
- 2018 students' responses: mean response 59\%. The majority (57\%) answered 50\%.
\square Your responses: mean response 68\%. Many (32\%) answered 50\%.

55 Aalto University School of Science

Representativeness and conservativism bias - debiasing

Demonstrate the logic of joint and conditional probabilities and Bayes' rule
\square Split the task into an assessment of

- The base rates for the event (i.e., prior probability)
- E.g., what is the relative share of bank tellers in the population? What are the relative shares of teachers and pro basketball players?
- The likelihood of the data, given the event (i.e., conditional probabilities)
- E.g., what is the relative share of people active in the feminist movement? Is this share roughly the same among bank tellers as it is among the general population or higher/lower?
- What is the likelihood that a male teacher is taller than 195 cm ? How about a pro basketball player?

Aalto University School of Science

Availability bias (cognitive)

- People assess the probability of an event by the ease with which instances or occurences of this event can be brought to mind.
- Example: In a typical sample of English text, is it more likely that a word starts with the letter K or that K is the third letter?
- Most people think that words beginning with K are more likely, because it is easier to think of words that begin with " K " than words with "K" as the third letter
- Yet, there are twice as many words with K as the third letter
- 2018 students' responses: 13% first letter, 87% third letter.
- Your responses: 46% first letter, 54% third letter.
- Other examples:
- Due to media coverage, the number of violent crimes such as child murders seems to have increased
- Yet, compared to 2000's, 18 times as many children were killed per capita in 1950's and twice as many in 1990's

Availability bias - debiasing

\square Conduct probability training
\square Provide counterexamples
\square Provide statistics
\square Based on empirical evidence, availability bias is difficult to correct

Anchoring bias (cognitive)

When assessing probabilities, respondents sometimes consider some reference assessment
Often, the respondent is anchored to the reference assessment
Example: Is the percentage of African countries in the UN
A. Greater or less than 65 ? What is the exact percentage?

- Average answer: Less, 45\%.
- 2018 students' responses: Less, median 22%, mean 34%.
- Your responses: Less, median 40%, mean 48%.
B. Greater or less than 10 ? What is the exact percentage?
- Average answer: Greater, 25\%.
- 2018 students' responses: Greater, median 23\%, mean 27%.
- Your responses: Greater, median 20\%, mean 27\%.

Anchoring bias - debiasing

- Avoid providing anchors
\square Provide multiple and counteranchors
\square =if you have to provide an anchor, provide several which differ significantly from each other
Use different experts who use different anchors

Based on empirical evidence, anchoring bias is difficult to correct

Overconfidence (cognitive)

- People tend to assign overly narrow confidence intervals to their probability estimates

1. Martin Luther King's age at death 39 years
2. Length of the Nile River 6738 km
3. Number of Countries that are members of OPEC 13
4. Number of Books in the Old Testament 39
5. Diameter of the moon 3476 km
6. Weight of an empty Boeing 747176900 kg
7. Year of Wolfgang Amadeus Mozart's birth 1756
8. Gestation period of an Asian elephant 645 days
9. Air distance from London to Tokyo 9590 km
10. Depth of the deepest known point in the oceans 11033 m

Your responses:

I. If 3 or more of your intervals missed the correct value, you have demonstrated overconfidence

- 89\% of you did

Overconfidence - debiasing

- Provide probability training

Start with extreme estimates (low and high)
U Use fixed values instead of fixed probability elicitations:

- Do not say: "Give a value x such that the probability for a change in GDP lower than x is $0.05^{\prime \prime}$
- Do say: "What is the probability that the change in GDP is lower than -3\%?"

Based on empirical evidence, overconfidence is difficult to correct

Desirability / undesirability of events (motivational)

- People tend to believe that there is a less than 50% probability that negative outcomes will occur compared with peers
- I am less likely to develop a drinking problem
- Your responses: 20\% (25\% in 2018) more likely, 34\% (31\%) less likely, 46\% (44\%) equally likely
- People tend to believe that there is a greater than 50% probability that positive outcomes will occur compared with peers
- I am more likely to become a homeowner / have a starting salary of more than 3,500€
- Your responses on owning a home: 49% (44\%) more likely, 12% (13\%) less likely, 39% (44\%) equally likely
- Your responses on salary: 54\% (38 \%) more likely, 8\% (19\%) less likely, 38\% (44\%) equally likely

People tend to underestimate the probability of negative outcomes and overestimate the probability of positive outcomes

Desirability / undesirability of events debiasing

- Use multiple experts with alternative points of view
\square Place hypothetical bets against the desired event
\square "Make the respondent's money involved"
U Use decomposition and realistic assessment of partial probabilities - "Split the events"
- Yet, empirical evidence suggests that all motivational biases are difficult to correct

Further reading: Montibeller, G., and D. von Winterfeldt, 2015. Cognitive and Motivational Biases in Decision and Risk Analysis, Risk Analysis

Risky or not risky?

Which one would you choose:
a) Participate in a lottery, where you have a 50% chance of getting nothing and 50% chance of getting $10000 €$
b) Take $4000 €$

. Many choose the certain outcome of $4000 €$, although a)'s expected monetary gain is higher

Option b) involves less risk

How to compare risky alternatives?

[Last week

- We learned how to support decision-making under uncertainty, when the DM's objective is to maximize the expected monetary value
- Maximizing expected value is rational only if the DM is risk neutral, i.e., indifferent between
- obtaining x for sure and
- a gamble with uncertain payoff Y such that $x=E[Y]$
- Usually, DMs are risk averse = they prefer obtaining x for sure to a gamble with payoff Y such that $x=E[Y]$
- Next:

Expectation = 14500

- We learn how to accommodate the DM's risk attitude
(=preference over alternatives with uncertain outcomes) in decision models

Expected utility theory (EUT)

] John von Neumann and Oscar Morgenstern (1944) in Theory of Games and Economic Behavior:

- Axioms of rationality for preferences over alternatives with uncertain outcomes
- If the DM follows these axioms, she should prefer the alternative with the highest expected utility

- Elements of EUT

- Set of outcomes and lotteries
- Preference relation over the lotteries satisfying four axioms
- Representation of preference relation with expected utility

EUT: Sets of outcomes and lotteries

- Set of possible outcomes T :
- E.g., revenue T euros / demand T
- Set of all possible lotteries L :
- A lottery $f \in L$ associates a probability $f(t) \in[0,1]$ with each possible outcome $t \in T$
- Finite number of outcomes with a positive probability $f(t)>0$
- Probabilities sum up to one $\sum_{t} f(t)=1$
- Lotteries are thus discrete PMFs / decision trees with a single chance node
- Deterministic outcomes are modeled as degenerate lotteries

Lottery
Decision tree

$f(t)=\left\{\begin{array}{c}0.6, t=20000 \\ 0.3, t=10000 \\ 0.1, t=-5000 \\ 0, \text { elsewhere }\end{array}\right.$

Degenerate lottery

Decision tree PDF
$\bigcirc 10000 \quad f(t)=\left\{\begin{array}{l}1, t=10000 \\ 0, \text { elsewhere }\end{array}\right.$

EUT: Compound lotteries

- Compound lottery:
- Get lottery $f_{X} \in L$ with probability λ
- Get lottery $f_{Y} \in L$ with probability $1-\lambda$
\square Compound lottery can be modeled as lottery $f_{Z} \in L$:

$$
f_{Z}(t)=\lambda f_{X}(t)+(1-\lambda) f_{Y}(t) \forall t \in T \simeq f_{Z}=\lambda f_{X}+(1-\lambda) f_{Y}
$$

- Example:
- You have a 50-50 chance of getting a ticket to lottery $f_{X} \in L$ or to lottery $f_{Y} \in L$

Preference relation

- Let \geqslant be preference relation among lotteries in L
- Preference $f_{X} \geqslant f_{Y}: f_{X}$ at least as preferable as f_{Y}
- Strict preference $f_{X}>f_{Y}$ defined as $\neg\left(f_{Y} \geqslant f_{X}\right)$
- Indifference $f_{X} \sim f_{Y}$ defined as $f_{X} \geqslant f_{Y} \wedge f_{Y} \succcurlyeq f_{X}$

EUT axioms A1-A4 for preference relation

- A1: \succcurlyeq is complete
- For any $f_{X}, f_{Y} \in L$, either $f_{X} \succcurlyeq f_{Y}$ or $f_{Y} \succcurlyeq f_{X}$ or both
\square A2: \succcurlyeq is transitive
- If $f_{X} \succcurlyeq f_{Y}$ and $f_{Y} \succcurlyeq f_{Z}$, then $f_{X} \succcurlyeq f_{Z}$
- A3: Archimedean axiom
- If $f_{X}>f_{Y} \succ f_{Z}$, then $\exists \lambda, \mu \in(0,1)$ such that

$$
\lambda f_{X}+(1-\lambda) f_{Z}>f_{Y} \text { and } f_{Y}>\mu f_{X}+(1-\mu) f_{Z}
$$

\square A4: Independence axiom

- Let $\lambda \in(0,1)$. Then,

$$
f_{X}>f_{Y} \Leftrightarrow \lambda f_{X}+(1-\lambda) f_{Z}>\lambda f_{Y}+(1-\lambda) f_{Z}
$$

If the EUT axioms hold for the DM's preferences

- A3: Archimedean axiom
- Let $f_{X}>f_{Y} \succ f_{Z}$. Then exists $p \in(0,1)$ so that $f_{Y} \sim p f_{X}+(1-p) f_{Z}$
\square A4: Independence axiom
$-f_{X} \sim f_{Y} \Leftrightarrow \lambda f_{X}+(1-\lambda) f_{Z} \sim \lambda f_{Y}+(1-\lambda) f_{Z}$
- Any lottery (or outcome = a degenerate lottery) can be replaced by an equally preferred lottery; According to A3, such lotteries / outcomes exist

- NOTE: f_{Z} can be any lottery and can have several possible outcomes

Main result: Preference representation with Expected Utility

- \succcurlyeq satisfies axioms A1-A4 if and only if there exists a real-valued utility function $u(t)$ over the set of outcomes T such that

$$
f_{X} \succcurlyeq f_{Y} \Leftrightarrow \sum_{t \in T} f_{X}(t) u(t) \geq \sum_{t \in T} f_{Y}(t) u(t)
$$

\square Implication: a rational DM following axioms A1-A4 selects the alternative with the highest expected utility

$$
E[u(X)]=\sum_{t \in T} f_{X}(t) u(t)
$$

- A similar result can be obtained for continuous distributions:
- $f_{X} \geqslant f_{Y} \Leftrightarrow E[u(X)] \geq E[u(Y)]$, where $E[u(X)]=\int f_{X}(t) u(t) d t$

Computing expected utility

- Example: Joe's utility function for the number of apples is $u(1)=2, u(2)=5, u(3)=7$. Would he prefer
- Two apples for certain (X), or

$$
E[u(Y)]=0.5 u(1)+0.5 u(3)
$$

- A 50-50 gamble between 1 and 3 apples (Y)?

$$
=0.5 \cdot 2+0.5 \cdot 7=4.5
$$

- Example: Jane's utility function for money is $u(t)=$ t^{2}. Which alternative would she prefer?
- X: 50-50 gamble between 3 and 5M€

$$
\begin{aligned}
& E[u(X)]=0.5 u(3)+0.5 u(5) \\
& \quad=0.5 \cdot 9+0.5 \cdot 25=17
\end{aligned}
$$

- Y: A random amount of money from Uni(3,5) distribution
- What if her utility function was $u(t)=\frac{t^{2}-9}{25-9}$?

$$
\begin{gathered}
E[u(Y)]=\int_{3}^{5} f_{Y}(t) u(t) d t=\int_{3}^{5} \frac{1}{2} t^{2} d t \\
=\frac{1}{6} 5^{3}-\frac{1}{6} 3^{3}=16.33333
\end{gathered}
$$

Let's practice!

The utility function of Dr. Cuckoo is $u(t)=\sqrt{ } t$. Would he
a) Participate in a lottery A with 50-50 chance of getting either 0 or $400 €$?
b) Participate in a lottery B in which the probability of getting $900 €$ is 30% and getting $0 €$ is 70% ?
$u(0)=0, u(400)=20, u(900)=30$
a) $E[u(A)]=0.5 \cdot 0+0.5 \cdot 20=10$
b) $E[u(B)]=0.7 \cdot 0+0.3 \cdot 30=9$

NOTE! the expectation of lottery $\mathbf{A}=200 €$ is smaller than that of $B=270 €$

Uniqueness up to positive affine transformations

- DM's preferences: $X \geqslant Y$
- $E[u(X)]=p_{1} \geq 0.9 p_{2}+0.2\left(1-p_{2}\right)$

- v : Multiply each utility u by 100
- $E[v(X)]=100 p_{1}=100 E[u(X)] \geq$ $100 E[u(Y)]=90 p_{2}+20\left(1-p_{2}\right)=E[v(Y)]$

- w: Add 20 to all utilities v
- $E[w(X)]=120 p_{1}+20\left(1-p_{1}\right)=100 p_{1}+$ $20=E[v(X)]+20 \geq E[v(Y)]+20=$ $90 p_{2}+20\left(1-p_{2}\right)+20\left(1+p_{2}-p_{2}\right)=$ $110 p_{2}+40\left(1-p_{2}\right)=E[w(Y)]$

17.1.2019

Uniqueness up to positive affine transformations

- DM's preferences: $X \geqslant Y$
- $E[u(X)]=p_{1} \geq 0.9 p_{2}+0.2\left(1-p_{2}\right)$

- v: Multiply u by $\alpha>{ }_{E[v(X)]=\alpha p_{1}=}$ $\alpha E[u(X)] \geq \alpha E[u(Y)]=0.9 \alpha p_{2}+0.2 \alpha\left(1-p_{2}\right)=$ $E[v(Y)]$

\square w: Add β to all utilities v
- $E[w(X)]=(1+\beta) p_{1}+\beta\left(1-p_{1}\right)=\alpha p_{1}+\beta=$ $E[v(X)]+\beta \geq E[v(Y)]+\beta=0.9 \alpha p_{2}+$ $0.2 \alpha\left(1-p_{2}\right)+\beta\left(1+p_{2}-p_{2}\right)=(0.9 \alpha+$ $\beta) p_{2}+(0.2 \alpha+\beta)\left(1-p_{2}\right)=E[w(Y)]$

17.1.2019

Uniqueness up to positive affine transformations

\square Let $f_{X} \succcurlyeq f_{Y} \Leftrightarrow E[u(X)] \geq E[u(Y)]$. Then $E[\alpha u(X)+\beta]=\alpha E[u(X)]+\beta \geq$ $\alpha E[u(Y)]+\beta=E[\alpha u(Y)+\beta]$ for any $\alpha>0$
\square Two utility functions $u_{1}(t)$ and $u_{2}(t)=\alpha u_{1}(t)+\beta,(\alpha>0)$ establish the same preference order among any lotteries:

$$
E\left[u_{2}(X)\right]=E\left[\alpha u_{1}(X)+\beta\right]=\alpha E\left[u_{1}(X)\right]+\beta .
$$

\square Implications:

- Any linear utility function $u_{L}(t)=\alpha t+\beta,(\alpha>0)$ is a positive affine transformation of the identity function $u_{1}(t)=t \Rightarrow u_{L}(t)$ establishes the same preference order as expected value
- Utilities for two outcomes can be freely chosen:
- E.g., scale utilities represented by u_{1} such that and $u_{2}\left(t^{*}\right)=1$ and $u_{2}\left(t^{0}\right)=0$:

$$
u_{2}(t)=\frac{u_{1}(t)-u_{1}\left(t^{0}\right)}{u_{1}\left(t^{*}\right)-u_{1}\left(t^{0}\right)}=\frac{1}{u_{1}\left(t^{*}\right)-u_{1}\left(t^{0}\right)} u_{1}(t)-\frac{u_{1}\left(t^{0}\right)}{u_{1}\left(t^{*}\right)-u_{1}\left(t^{0}\right)}
$$

Summary

- Probability elicitation is prone to cognitive and motivational biases
- Some cognitive biases can be easy to correct, but...
- Some other cognitive biases and all motivational biases can be difficult to overcome

The DM's preferences over alternatives with uncertain outcomes can be described by a utility function

A rational DM (according to the four axioms of rationality) should choose the alternative with the highest expected utility
\square NOT necessarily the alternative with the highest utility of expectation

