ME-C3100 Computer Graphics, Fall 2013

Lehtinen / HOlttid, Peussa

Math library handout

1 Intro

The lectures and lecture slides teach you the math theory and formulae you need to carry out the assignments.
This handout is a guide to carrying out those computations in practice, using the Math library in the Nvidia
framework and C++ standard library. We also briefly discuss computation in the OpenGL shader language,
GLSL.

2 Technical preface

The Math library header framework/base/Math.hpp contains a large number of mathematical functions as
well as vector and matrix classes. (The vector classes represent mathematical vectors; do not confuse them
with std: :vector which is a dynamic array in the C++ standard library.) The class names in the library
specify dimension and type of the vector or matrix: for instance, Vec3i is vector of 3 signed integers, and
Mat4f is a 4x4 matrix of floating point numbers.

This handout does not attempt to exhaustively cover the Math library. To learn its full capabilities you can
read Math.hpp. It’s easy to browse it for names and types of functions you need, but figuring out how it
works exactly is unnecessary and quite hard if you are not experienced with C++-. In this section we discuss
the implementation; you do not need to understand everything here.

In Math.hpp, the patterns VectorBase<T, L, S> and MatrixBase<T, L, S> repeat often. These base
classes are C++ templates and contain functionality that is shared between all vector and matrix types.
The contents of the angle brackets are template arguments. T represents the type of elements in the vector
or matrix, L is the dimension, and S is the actual type of the implementation used. E.g. for Mat4f, T is
F32 (32-bit float type), L is 4, and S is Mat4f itself. This complicated implementation stems from various
performance reasons. On a practical level, knowing what these arguments are can occasionally help you: for
instance, there is a static utility function translate in MatrixBase<T, L, S> which produces a translation
matrix. It takes a VectorBase<T, L-1, V> argument. What’s going on? To translate something in L-1
dimensions, you need a L-dimension translation matrix. Once you know what the template argument L
stands for, it’s clear how to use translate: for instance, Mat4f::translate needs a Vec3f argument.

The matrices are stored in column-major order, i.e. the elements of the first column are stored consecutively
first in the memory, then the elements of the second column, etc. In the following matrix:

ot W
S =N



the single scalar values would be stored in memory in the following order: 1, 3, 5, 2, 4, 6. Note that
C+-+’s native multidimensional arrays are stored in row-major order, i.e. 1, 2, 3, 4, 5, 6. Because in 3D
calculations we care about matrices’ columns, column-major order is more convenient. The data layout used
by the library is also directly compatible with the OpenGL API. In Assignment 0 code you see us giving
OpenGL a pointer to the raw data (mymatrix.getPtr()) of a matrix to be used as a shader uniform (via a
glUniformMatrix4fv function call).

Some of the implementations of functions declared in Math.hpp are defined in Math.cpp. This is merely a
C++ implementation detail; reading Math. cpp doesn’t help you to use the library.

OpenGL shading language (GLSL) code is totally distinct from the C++ code, even if it looks a bit similar.
Shader code runs on the GPU and is a critical part of the modern graphics pipeline. In the assignments,
any shader code is enclosed in a GLContext: :Program object. You do not have to write GLSL code, except
possibly in the final assignment, but it is useful for extra credit work. More about GLSL in section 6.

3 Usage purposes

Note: The matrices or vectors are not constrained to just positions and normals, of course - they contain
simply numbers. Vec3f could be a position, normal, or even an RGB or HSV color. Vec3i contains integers
instead of floats, and can be used to store e.g. index numbers for a triangle’s corners. When several related
values are needed, vectors are usually more convenient than separate values (e.g. %, y, z, or i, j, k, or int
i[3]). The assignment starter codes usually use the vectors extensively where it is meaningful, and you will
see lots of good examples while reading the given sources.

4 Basic math

In math notation, we usually have row or column vectors. The vectors used in the code do not specify
dimensions, however - they are just ordered tuples of numbers, and some calculations assume a specific
format. You can e.g. replace a column or a row in a matrix with the same vector, provided just that their
sizes match. The matrices are 2-dimensional arrays, though, and their size and indexing does matter.

Basic matrix and vector math rules apply, and multiplication A * B works for sizes nxm and mx*k respectively.
It’s also okay to multiply a vector by a matrix (M * v); you get out another vector. More about this later.

4.1 Vectors

There are two ways to access individual elements of a vector. Indexing v[i] and members x, y, z and w
access the same values; often one of the forms is more logical than another. We suggest using the member
form only for vectors that actually have meaning in xyz space.

If you create a vector with no arguments, it is initially filled with zeroes. Giving one argument fills the
vector with that value. (Watch out: this means if you accidentally assign a scalar into a vector, the vector
is filled with that scalar and you do not get a warning!) Naturally, you can also specify a separate value for
each element.



Vec3f z; // z = {0, 0, 0}

Vec3f z2(1); // 22 = {1, 1, 1}

Vec3f z3 = 1; // same as 22 - but probably not intended...
Vecdf v(8, 6, 4, 2);

v[0]l] = vI[3]; // mow v = {2, 6, 4, 2}

v.y = 4; // v = {2, 4, 4, 2}

The integral typed Vec3i is useful for e.g. indices:

// © coordinate of the centroid of a triangle defined by points in a
// std::vector of 3D positions indezed by ’corners’
float middle_x (const std::vector<Vec3f>& points, Vec3i cormers) {
return (points[corners[0]].x + points[corners([1]].x + points([corners[2]].x) / 3.0f;

}

There are some convenient accessors for subsets of elements, and for transforming to and from homogenous
coordinates:

// v from the earlier listing

Vec3f v2(v.getXYZ()); // w2 = {2, 4, 4}

Vec3f v3(v.toCartesian()); // v3 = {2, 4, 4}/2 = {1, 2, 2}

Vec4f v4(v3, 1.0f); // w4 is a homogenous v3, w set to I

Vec4f v5(v3.toHomogenous()); // w65 == v4

Adding two vectors together works as expected, element by element. Other operators that would not normally
make sense for two column vectors, like division or multiplication, are also interpreted as element-wise. Same
goes for operations for a vector and a scalar.

Vec3f a(2); // a = {2, 2, 2}

Vec3f b(10, 20, 30), c;

c =ax*xb; // c = {20, 40, 60}

c %= 1.5; // ¢ = {30, 60, 90}

Dot and cross products are available in the library both as separate functions and as member functions.
As a special case, cross product of two-dimensional vectors is defined as the length of the resulting vector
(scalar).

Vec2f a(100, 10), b(4, 2);

float ¢ = dot(a, b); // ¢ = 420; can also write ¢ = a.dot(b)

Vec3f x(1, 0, 0), y(0, 1, 0), z;

z = cross(x, y); // {0, 0, 1}
float z_magnitude = cross(x.getXY(), y.getXY(Q); // 1

Dot product is also sometimes called the inner product, and the vectors are interpreted so that the result is
a scalar. If you need to multiply two vectors to produce a matrix, use the outerProduct function.

Frequently you need to normalize a vector to unit length. The framework offers multiple ways to do that:

Vec3f v;

//

Vec3f v2 = v.normalized(); // this returns a new wector
v.normalize(); // this normalizes v itself in place

v /= v.length(); // manual way

v %= 1.0f / v.length(); // multiplication %s faster than division

The division operation is usually quite slow compared to others: multiplying all the vector’s elements by
a constant 1.0f / 3.0f is faster than dividing them by 3. You usually need to worry about this only when



performing divisions several times per pizel, though! (Computing the length needs a square root, which is
also quite slow.)

Also note that when you want to compare lengths, you can instead compare squared lengths, which is much
faster as it avoids taking the square root. The lenSqr function for vectors gives you a squared length.

4.2 Matrices

The Math header provides specializations for the most common sizes. With little effort, you could write
your own 3x100 matrix if you need one in some corner case, using the template system. See the header file
for details (not good for novices, though!).

The contents of a matrix are initialized to identity.

Mat3f m; // m is an identity matric
m = Mat3f(); // also with ezplicit initialization like this

Remember that identity matrix has ones in the diagonal and zeros elsewhere. For 3x3:

O O =
o = O
= O O

Single elements can be accessed individually in many ways. The Mat*’s member functions getCol, getRow,
setCol and setRow get and set individual rows and columns. The data is transferred via vectors. Indexing
starts from zero as usual.

Mat3f m;

m(l, 0) = 42; // row 1, column 0

m.m01 = 1337; // even simpler. Tow 0, col 1.

m.setCol (2, Vec3f(2, 4, 6)); // replace column 2
Vec3f v(m.getRow (0));

Now m is:

1 1337 2
42 1 4
0 4 6

and v becomes {1, 1337, 2}.

The Mat4f version has a special getXYZ member function (confusingly, the same name as with Vec4f) for
getting a copy of the upper-left 3x3 submatrix.

5 3D transformations

Matrices work with practically no surprises if you compare them to the "textbook matrices".



The given classes have some utility members for building commonly used transformation matrices: rotation,
translation, fitToView, perspective. The interested can look at their code to get ideas to maybe write
own helper functions.

Vec3f orig(i, 0, 0);

Mat3f rotation(Mat3f::rotation(Vec3f (0, 0, 1), 90));

Mat3f translation(Mat4f::translate(Vec3f (-1, 0, 0)));

// Note the order: rotate first, then translate

Vec3f new_p = translation * rotation * orig;

// mew_p rotates first by the Z azis to {0, 1, 0},
// and then translates to {-1, 1, 0}

The framework only defines the form above. To multiply a vector from the right with a matrix, use this
formula:

vIR = (W' R)TT = (RTv)T

Because the result from R7v is already a vector, the last transpose can be ignored. Thus, just transpose the
matrix and multiply from left.

To obtain an inverted or transposed matrix without modifying the original, you can use the inverted or
transposed functions:

Mat4f inv = mat.inverted(); // can also chain: .inverted().transposed()...}

To instead modify the same matrix in place, use the invert and transpose functions like so:

mat.invert ();

You might have noticed already that this is consistent with the normalize vs. normalized and friends.

6 GLSL: the OpenGL shading language

In short, GLSL is a high-level (compared to ARB assembly) language for writing programs that run not on
the CPU but on your graphics processing unit, the GPU. The shaders determine the color of the pixels on
the screen.

The Wikipedia page on GLSL gives a decent overview. There is also an online textbook by Jason McKesson
that teaches basic graphics concepts step by step while making use of shaders and raw OpenGL calls. To
quickly find specific GLSL functions, use the online reference or downloadable reference cards or the wiki at
OpenGL.org.

You can do a lot in GLSL by just making local modifications inside a single shader, but learning more about
the pipeline and being able to pass values in and out of shaders adds to what you can accomplish. GLSL
has rich functionality for linear algebra computations, with a slightly different syntax compared to our C++
code.

A small table of differences with our math library:


http://en.wikipedia.org/wiki/ARB_assembly_language
http://en.wikipedia.org/wiki/OpenGL_Shading_Language
http://www.arcsynthesis.org/gltut/
http://www.opengl.org/sdk/docs/manglsl/
http://www.opengl.org/documentation/glsl/
http://www.opengl.org/wiki/OpenGL_Shading_Language

C++ GLSL
Mat4f mat4d
Vec3f vec3
Vec3i ivec3
float float

mat.inverted() inverse (mat)

mat.transposed() | transpose(mat)
m * v m* v

Some useful shorthand notations:

vecd v4 = vecd (1.0, 2.0, 3.0, 4.0);

vec3 v3 = véd.xyz; // picking components by "swizzling"

v3.yz = vec2(2.0, 3.0); // swizzling also works for assignment
vec4d v4b = vecd(v3, 1.0);

The shader code is compiled to machine code just as the C+—+ code is compiled for your CPU. The big
difference is that the shader code is compiled by the graphics driver when the source code is fed to it
(usually, once when the program is started). Some graphics drivers are less picky about the shader syntax
than others, so be sure to test any modifications in the school’s computers! For example; float f = 1;
might not work - you need to use floating-point numbers explicitly: float £ = 1.0; There are also some
restrictions built into GLSL that you’d just have to know: assignment to a variable declared uniform is
forbidden, for example.

6.1 Basic OpenGL pipeline

We first load data (vertex positions, vertex normals, textures, etc.) to the GPU, set a specific shader program
that is supposed to act on it, and then issue any number of draw calls. Upon receiving a draw call, the GPU
processes the data.

For each vertex, the GPU runs the vertex shader, which computes the position of the vertex but might
also compute the surface color at that vertex or other material-specific information. Three subsequent ver-
tices are taken to be a triangle.

For all pixels in the triangle that end up being visible (inside clip space), the GPU runs the pizel shader
(or more correctly fragment shader because these still have the depth information). In addition to data
given to it directly, the fragment shader can use data computed by the vertex shader. Frequently this data
is interpolated smoothly between the vertices, so that neighboring fragments have subtly different inputs.
The fragments produced by the shader are written in a buffer, which will normally then be displayed on the
screen, but could also be used as input data for another round of computation.

There are other, advanced shader types in OpenGL, but these two are mandatory.

For more in-depth information, see OpenGL wiki or another intro.


http://www.opengl.org/wiki/Rendering_Pipeline_Overview
http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Chapter-1:-The-Graphics-Pipeline.html

	Intro
	Technical preface
	Usage purposes
	Basic math
	Vectors
	Matrices

	3D transformations
	GLSL: the OpenGL shading language
	Basic OpenGL pipeline


