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• Bayes’ theorem

• Bayesian estimation of reliability parameters

• Bayesian networks for reliability and risk analysis
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Definition: Probability P is a function that maps all events 
𝐴 ⊂ 𝑆 onto real numbers and satisfies the following three 
axioms: 

1. If 𝑆 is the set of all possible outcomes, then 𝑃(𝑆) = 1

2. 0 ≤ 𝑃(𝐴) ≤ 1

3. If 𝐴 and B are mutually exclusive (𝐴 ∩ 𝐵 = ∅) then
𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)

Probability measure
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From the three axioms it follows that:

I. 𝑃(∅) = 0

II. If 𝐴 ⊂ 𝐵, then 𝑃(𝐴) ≤ 𝑃(𝐵)

III. 𝑃( ҧ𝐴) = 1 − 𝑃(𝐴)

IV. 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)

Probability measure
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• Definition of (statistical) independence: Two 
events A and B are independent if

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵)

• Conditional probability 𝑃(𝐴|𝐵) of A given that B 
has occurred is 

𝑃 𝐴 𝐵 =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)

Conditional probability
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• If A and B are independent, the probability of A 
(B) does not depend on whether B (A) has 
occurred or not: 

𝑃 𝐴 𝐵 =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
=
𝑃 𝐴 𝑃(𝐵)

𝑃(𝐵)
= 𝑃(𝐴)

Conditional probability
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• If 𝐵1,…., 𝐵𝑛 are mutually exclusive and collectively 
exhaustive events, then

𝑃(𝐴) = 𝑃(𝐴|𝐵1)𝑃(𝐵1) + ⋯+ 𝑃(𝐴|𝐵𝑛)𝑃(𝐵𝑛)

• Most frequent use of the law of total probability:
– Events 𝐵 and ത𝐵 are mutually exclusive and collectively 

exhaustive

– Probabilities 𝑃(𝐴|𝐵), 𝑃(𝐴| ത𝐵), and 𝑃(𝐵) are known
– These can be used to compute 

𝑃(𝐴) = 𝑃(𝐴|𝐵)𝑃(𝐵) + 𝑃(𝐴| ത𝐵)𝑃( ത𝐵)

Law of total probability
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𝑃 𝐴 𝐵 =
𝑃(𝐵|𝐴) ∙ 𝑃(𝐴)

𝑃(𝐵)

It follows from the definition of conditional 
probability:

𝑃 𝐴 𝐵 =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
; 𝑃 𝐵 𝐴 =

𝑃(𝐵∩𝐴)

𝑃(𝐴)

Commutative laws: 𝑃 𝐵 ∩ 𝐴 = 𝑃 𝐴 ∩ 𝐵 .

Bayes’ rule
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• The probability of a fire in a certain building is 
1/10000 any given day. 

• An alarm goes off whenever there is an actual 
fire, but also once in every 200 days for no reason 
(false alarm). 

• Suppose the alarm goes off. What is the 
probability that there is a fire?

Bayes’ rule example
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𝐹 = 𝐹𝑖𝑟𝑒, ത𝐹 = 𝑁𝑜 𝑓𝑖𝑟𝑒, 𝐴 = 𝐴𝑙𝑎𝑟𝑚, ҧ𝐴 = 𝑁𝑜 𝑎𝑙𝑎𝑟𝑚

𝑃 𝐹 = 0.0001, 𝑃( ത𝐹) = 0.9999, 𝑃(𝐴|𝐹) = 1, 
𝑃(𝐴| ത𝐹) = 0.005

Bayes: 𝑃(𝐹|𝐴) =
𝑃(𝐴|𝐹)𝑃 𝐹

𝑃 𝐴
=

1∙0.0001

0.0051
≈ 2%

Law of total probability:
𝑃(𝐴) = 𝑃(𝐴|𝐹)𝑃(𝐹) + 𝑃(𝐴| ത𝐹) 𝑃( ത𝐹) = 0.0051

Bayes’ rule example, solution
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• Random variable 𝑋
• Probability distribution function 𝐹(𝑥; 𝜃1, … , 𝜃𝑟)
• Parameters (𝜃1, … , 𝜃𝑟) unknown
• Observations (sample, evidence, data) (𝑥1, … , 𝑥𝑛)

• Which parameter values best fit the observations
for the given probability model? 

Parameter estimation



Aalto-yliopiston perustieteiden korkeakoulu

Matematiikan ja systeemianalyysin laitos

12MS-E2117 Riskianalyysi / Jan-Erik Holmberg ©

• Maximum likelihood method (MLE)
• Method of moments

• Example: failure probability per demand, 𝑝
– Data: 𝑘 failures in 𝑛 trials

– Classical (MLE/method of moments) estimate

ො𝑝 =
𝑘

𝑛

• What if 𝑘 = 0?
– Should we conclude that the failure probability is zero?

Classical parameter estimation



Aalto-yliopiston perustieteiden korkeakoulu

Matematiikan ja systeemianalyysin laitos

13MS-E2117 Riskianalyysi / Jan-Erik Holmberg ©

• We define:
– the vector 𝜃 = {𝜃1, … , 𝜃𝑟} of parameters, which are treated as 

random variables
– the set 𝐸 = {𝑥1, … , 𝑥𝑛} of observations (evidence)

• Then:
– Likelihood function 𝐿[𝐸|𝜃] is the conditional probability to observe 

𝐸 given certain parameters values
– 𝑝(𝜃) = prior probability distribution for parameters

• Application of Bayes’ rule:

𝑃 𝜃 𝐸 =
𝐿 𝐸 𝜃 𝑝(𝜃)

𝜃∈Θ׬ 𝐿 𝐸 𝜃 𝑝 𝜃 𝑑𝜃

which is the posterior probability distribution for parameters

• Expected values of 𝑃 𝜃 𝐸 are often applied as point 
estimates for the parameters 

Bayesian estimation of parameters
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• Hypothesis: 𝑋~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑝, 𝑛
– 𝑛 is the number of trials

– 𝑝 is the probability of failure per trial

– 𝑋 is the number of failures in 𝑛 trials

• Data: 𝑘 failures in 𝑛 trials
• Likelihood function of probability 𝑝 is

𝐿 𝑘|𝑝, 𝑛 = 𝑃 𝑋 = 𝑘|𝑝, 𝑛 =
𝑛

𝑘
𝑝𝑘(1 − 𝑝)𝑛−𝑘

Bayesian estimation of parameters
Binomial distribution (failure probability 
per demand)

14
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• Typical choice for a prior distribution is Beta because it is a conjugate 
distribution for binomial sampling → Posterior distribution is also Beta

𝑓 𝑝; 𝛼, 𝛽 =
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
𝑝𝛼−1(1 − 𝑝)𝛽−1

𝑝~𝐵𝑒𝑡𝑎 𝛼 + 𝑘, 𝛽 + 𝑛 − 𝑘

• Thus, the posterior mean is

𝔼[𝑝|𝑘, 𝑛] =
𝑘 + 1/2

𝑛 + 1

based on non-informative prior 𝐵𝑒𝑡𝑎 0.5,0.5 which is the most common 
in risk analysis.

Bayesian estimation of parameters
Binomial distribution

15
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Bayesian estimation of parameters
Binomial distribution, Example
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• Hypothesis: 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 λ𝑇
– λ is the failure rate

– 𝑇 is the time interval

– 𝑋 is the number of failures during [0, 𝑇]

• Data: 𝑘 failures during [0, 𝑇]
• Likelihood function of failure rate λ

𝐿 𝑘|λ, 𝑇 = 𝑃 𝑋 = 𝑘|λ, 𝑇 =
(λ𝑇)𝑘

𝑘!
exp(−λ𝑇)

Bayesian estimation of parameters
Poisson distribution (exponential failure 
rate)

17
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• Typical choice for a prior distribution is Gamma because it 
is a conjugate distribution for Poisson sampling → 
Posterior distribution is also Gamma

𝑓 𝜆; 𝛼, 𝛽 =
𝛽𝛼−1

Γ(𝛼)
𝜆𝛼−1𝑒−𝛽𝜆

𝜆~𝐺𝑎𝑚𝑚𝑎 𝛼 + 𝑘, 𝛽 + 𝑇

• Thus, the posterior mean is

𝔼[𝜆|𝑘, 𝑇] =
𝑘 + 1/2

𝑇

based on non-informative prior Gamma 0.5,0 which is the 
most common in risk analysis.

Bayesian estimation of parameters
Poisson distribution

18
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Primary techniques in Probabilistic Risk 

Assessment (PRA)
20

Scenario modeling and quantification are pursued through:

FAULT TREE ANALYSIS

(FTA)

1. Events are binary events

(operating/not-operating);

2. Events are statistically independent;

3. Relationships between events and 

causes are represented by logical AND 

and OR gates;

4. The undesirable event, called Top 

Event, is postulated and the possible 

ways for the occurrence of this event are 

systematically deduced.



Primary techniques in Probabilistic Risk 

Assessment (PRA)
21

Scenario modeling and quantification are pursued through:

EVENT TREE ANALYSIS

(ETA)

1. System evolution following the 

hazardous occurrence is divided into 

discrete events;

2. System evolution starts from an 

initiating event;

3. Each event has a finite set of outcomes 

(commonly there are two outcomes: 

occurring event or not occurring) 

associated with the occurrence 

probabilities; 

4. The leafs of the event tree represent the 

consequence scenarios to be analyzed.



Bow-Tie analysis 22

Reference: Khakzad N., Khan F., Amyotte P., 

Dynamic safety analysis of process systems by 

mapping bow-tie into Bayesian network, 

Process Safety and Environmental Protection 

91, pp. 46-53 (2013).

Bow-Tie (BT) combines the 

scenario modeling and 

quantification of FT and ET. 

Among the various techniques 

used for safety analysis of 

process systems, Bow-Tie 

analysis is becoming a popular 

technique as it represents an 

accident scenario from causes 

to effects.



Limitations of Bow-Tie analysis

The application of BT in reliability and risk analysis is limited due to:

1. The static nature of its components, Fault Tree and Event Tree.

Restrictions in describing system dynamical behavior.

2. Inability to represent conditional dependence.

Event dependence is common among primary events and safety 

barriers.

3. Difficulties in handling imprecise information (probabilities).

Limited availability of data is frequent in process safety analysis.

23



Bayesian Networks 24

To overcome these limitations, the Bow-Tie can be mapped into a 

Bayesian Network (BN). Formally, a BN is a directed acyclic graph 

consisting of:

• Nodes (circles) represent the BT random events whose combination can 

lead to system failure. In particular, when the BT is converted into BN, 

some BT events can be merged to the same node;

• Directed arcs indicate conditional dependencies among nodes. 

Specifically, the arc (𝑖, 𝑗) which connects node 𝑗 to node 𝑖 shows that the 

event at node 𝑗 is conditionally dependent to the event at node 𝑖.

Bayesian Networks have been successfully applied in many fields, such 

as ecology, medicine, reliability, computer science…



Why Bayesian Networks? 25

Bayesian networks are probabilistic graphical models, which offers a 

convenient and efficient way of generating joint distribution of all its events.

• Convenient: causal relationships between events are easy to 
model.

• Efficient: no redundancies in terms of graphical modelling and 
probability computations.

• Flexible: capable of handling imprecise information by capturing 
quantitative and qualitative data.

Wide applicability, for instance: 

• Diagnosis: Microsoft trouble shooting wizard, Medical expert system

• Classification: Spam email classification 

• Voice recognition



Mapping FT into Bayesian Network 26

Reference: Bobbio A., 

Portinale L., Minichino M., 

Ciancamerla E., “Improving 

the analysis of dependable 

systems by mapping fault 

trees into Bayesian 

networks”, Reliability 

Engineering and System 

Safety 71, pp. 249–260 

(2001) .

Switching 

from binary 

logic to 

probabilistic 

logic!



Any event tree with three events 𝒆𝟏, 𝒆𝟐, and 𝒆𝟑 can be represented 

by the BN shown below.

Two types of directed arc complete the network: 

 Consequence arcs (shown as dotted lines) connect each event node 

to the consequence node. This relationship is deterministic: the 

probability table for the consequence node encodes the logical 

relationship between the events and the consequences.

 Causal arcs (shown as solid lines) connect each event node to all 

events later in time. For instance, event 𝒆𝟏 is a causal factor for event 

𝒆𝟐, thus it influences the probability of event 𝒆𝟐.

27Mapping ET into Bayesian Network

Reference: Bearfield G., 

Marsh W., “Generalizing 

Event Trees Using 

Bayesian Networks with 

a Case Study of Train 

Derailment”, Computer 

Safety, Reliability, and 

Security (2005).



28Mapping ET into Bayesian Network 

(alternatives)



Advantages of Bayesian Networks 29

Advantages

• Multi-state modeling.

• Extension of concepts of 

AND/OR gates through 

probability distributions.

• Combining expert judgement 

and quantitative knowledge to 

estimate the risk.

Mapping of Bow Tie (slide 4) into Bayesian Network:



Failure probabilities

Information sources

• Information provided by AND/OR gates in BT.

• Statistical analyses / Simulations.

• Expert elicitation.

The probabilities of events are defined as follows:

 Initiating events  failure probabilities of system components.

 Intermediate and top events  conditional probability tables (CPT).

30



Bayesian Network representation 31

Electric failure Malfunction

Computer failure

Use backup power

Restart

P(E)

0.001

P(M)

0.02

E  M P(C)

T  T 0.95
T  F 0.94
F  T 0.29
F  F 0.001

C P(B)

T   0.80
F   0.01

C   P(R)
T   0.90
F   0.05



Inference on Bayesian Networks 32

Query: Assuming to collect some observations (evidence) from the 

system, how would this evidence impact the probabilities of the events? 

The conditional probability of a random event given the evidence is known as 

a posteriori belief, useful in case of:

• Prediction: computing the probability of an outcome event given the 

starting condition  Target is a descendent of the evidence!

• Diagnosis: computing the probability of disease/fault given 

symptoms  Target is an ancestor of the evidence!

Note: the direction between variables does not restrict the directions of the 

queries  Probabilistic inference can combine evidence from all parts of the 

network!



Examples of inference

Prediction
33

𝑃 𝐵 𝐸 = 𝑃 𝐵 𝐶 𝑃 𝐶 𝐸 + 𝑃 𝐵 ҧ𝐶 𝑃( ҧ𝐶|𝐸)

𝑃 𝐶 𝐸 = 𝑃 𝐶| ഥ𝑀, 𝐸 𝑃 ഥ𝑀 + 𝑃 𝐶|𝑀, 𝐸 𝑃 𝑀

𝑃 𝐶 𝐸 = 0.98 ∙ 0.94 + 0.02 ∙ 0.95 = 0.94

𝑃 𝐵 𝐸 = 𝑃 𝐶 𝐸 ∙ 0.8 + 𝑃( ҧ𝐶|𝐸) ∙ 0.01

𝑃 𝐵 𝐸 = 0.94 ∙ 0.8 + 0.06 ∙ 0.01 = 0.75

For the computer failure example, what it is the probability that the backup power is 

working given an electrical failure?



Examples of inference

Diagnosis
34

For the computer failure example, what it is the probability that the electricity is 

working given a backup power failure?

𝑃 𝐸 𝐵 =
𝑃 𝐵 𝐸 𝑃(𝐸)

𝑃(𝐵)

𝑃 𝐸 𝐵 =
0.75 ∙ 0.001

0.0161
= 0.0468

𝑃 𝐵 = 𝑃 𝐵 𝐶 𝑃 𝐶 + 𝑃 𝐵 ҧ𝐶 𝑃( ҧ𝐶)

𝑃 𝐵 = 0.8 ∙ 0.0077 + 0.01 ∙ 0.9923 = 0.0161

𝑃 𝐶
= 𝑃 𝐶 𝐸,𝑀 𝑃 𝐸 𝑃 𝑀
+ 𝑃 𝐶 𝐸, ഥ𝑀 𝑃 𝐸 𝑃 ഥ𝑀
+ 𝑃 𝐶 ത𝐸,𝑀 𝑃 ത𝐸 𝑃 𝑀
+ 𝑃 𝐶 ത𝐸, ഥ𝑀 𝑃 ത𝐸 𝑃 ഥ𝑀 = 0.0077



Computational issues 35

Theorem:  Computing event probabilities in a Bayesian network is NP-hard.

Hardness does not mean it is impossible to perform inference, but

• There is no general procedure that works efficiently for all networks.

• For particular families of networks, there are proved efficient procedures.

• Different algorithms are developed for inferences in Bayesian networks.

There are available softwares that efficiently perform Bayesian Network inference 

through a library of functions for several popular algorithms, among those:

• GeNIe Modeler: https://www.bayesfusion.com/genie-modeler

• HUGIN Expert: https://www.hugin.com/

https://www.bayesfusion.com/genie-modeler
https://www.hugin.com/

