Clicker lecture 2 of Topic 1:
Transmission line theory and waveguides

$$
\text { Jan 17, } 2019
$$

Registration

Go with your mobile phone to presemo.aalto.fi/mwe1

Fill your full name into the text field for registration.

Standing wave in time domain

$$
V(z)=V^{+} e^{-j \beta z}+V^{-} e^{+j \beta z}
$$

- Blue curve = ?
- Red curve = ?
- Black curve = ?
- Red dots = ?
- The part between the red dots = ?
- Animation Source:
https://commons.wikimedia.org/wiki/File:Standing_wave.gif

Q1a. What is the voltage amplitude V^{-}of the reverse voltage wave when $\mathbf{V}^{+}=\boldsymbol{+ 1} \mathbf{V}$?

1. $\mathrm{V}=-2 \mathrm{~V}$
2. $\mathrm{V}=-1 \mathrm{~V}$
3. $\mathrm{V}=0 \mathrm{~V}$
4. $\mathrm{V}=+1 \mathrm{~V}$
5. $\mathrm{V}=+2 \mathrm{~V}$
6. I don't know

$$
\begin{aligned}
& V(z)=V^{+} e^{-j \beta z}+V^{-} e^{+j \beta z} \\
& I(z)=\frac{V^{+}}{Z_{0}} e^{-j \beta z}-\frac{V^{+}}{Z_{0}} e^{+j \beta z}
\end{aligned}
$$

Q1b. What is the voltage amplitude \boldsymbol{V}^{-}of the reverse voltage wave when $\mathbf{V}^{+}=+\mathbf{1} \mathbf{V}$?

$$
\begin{array}{ll}
\text { 1. } \mathrm{V}^{-}=-2 \mathrm{~V} & +1 \mathrm{~V} \\
\text { 2. } \mathrm{V}^{-}=-1 \mathrm{~V} & V(z)=V^{+} e^{-j \beta z}+V^{-} e^{+j \beta z} \\
\text { 3. } \mathrm{V}^{-}=0 \mathrm{~V} & \mathrm{~V}^{-}=+1 \mathrm{~V} \\
\text { 5. } & \mathrm{V}^{-}=+2 \mathrm{~V}
\end{array} \quad I(z)=\frac{V^{+}}{Z_{0}} e^{-j \beta z}-\frac{V^{+}}{Z_{0}} e^{+j \beta z}
$$

Q2a. What kind of wave in the region $z<0$? (choose one!)

Z

$$
V(z \leq 0)=V^{+} e^{-j \beta z}
$$

$$
+V^{-} e^{+j \beta z}
$$

$$
V(z>0)=V^{T} e^{-j \beta z}
$$

transmitted voltage
2. A pure reverse (to negative z) propageting wave - i.e., $V^{+}=0$.
3. A pure standing wave - i.e., $\left|U^{+}\right|=\left|U^{-}\right|$.
4. A partial standing wave with a net power flow forward (to positive z) - i.e., $\left|U^{+}\right|>\left|U^{-}\right|$.
5. Transmitted wave through the interface at $z=0$.
6. I don't know

Q2b. What kind of wave in the region $z<0$? (choose one!)

$$
V(z \leq 0)=V^{+} e^{-j \beta z}
$$

$$
+V^{-} e^{+j \beta z}
$$

Z

$$
\begin{array}{ll}
V(z>0)=V^{T} e^{-j \beta z} \\
& \begin{array}{l}
\text { transmitted } \\
\text { voltage }
\end{array}
\end{array}
$$

2. A pure reverse (to negative z) propageting wave - i.e., $V^{+}=0$.
3. A pure standing wave - i.e., $\left|U^{+}\right|=\left|U^{-}\right|$.
4. A partial standing wave with a net power flow forward (to positive z) - i.e., $\left|U^{+}\right|>\left|U^{-}\right|$.
5. Transmitted wave through the interface at $z=0$.
6. I don't know

Voltage reflection coefficient ρ

Voltage reflection coeffficient ρ definition (remember!):

$$
\rho=\frac{\text { reflected voltage at } z=0}{\text { forward voltage at } z=0}=\frac{V^{-} e^{+j \beta \cdot 0}}{V^{+} e^{+j \beta \cdot 0}}=\frac{V^{-}}{V^{+}}
$$

Q3a. $U^{+}=1 \mathrm{~V}$. What is the voltage reflection coefficient ρ at $z=0$?

1. $\rho=0$
2. $\rho=-1$
3. $\rho=1$
4. $0<\rho<1$
5. $-1<\rho<0$
6. I don't know

$$
\begin{aligned}
& +1 \mathrm{~V} \\
V(z \leq 0) & =V^{+}+e^{-j \beta z}+V^{-} e^{+j \beta z} \\
V(z>0) & =V^{T} e^{-j \beta z} \\
& +0.5 \mathrm{~V}
\end{aligned}
$$

Q3b. $U^{+}=1 \mathrm{~V}$. What is the voltage reflection coefficient ρ at $z=0$?

1. $\rho=0$
2. $\rho=-1$
3. $\rho=1$
4. $0<\rho<1$
5. $-1<\rho<0$

$$
\begin{aligned}
& +1 \mathrm{~V} \\
V(z \leq 0) & =V^{+}+e^{-j \beta z}+V^{-} e^{+j \beta z} \\
V(z>0) & =V^{T} e^{-j \beta z} \\
& +0.5 \mathrm{~V}
\end{aligned}
$$

Voltage reflection ρ and transmission τ coefficients

Z_{L} is the characteristic impedance when $z>0$.

At $z=0$, the voltage and current must be continuous!

$$
\rho=\frac{V^{-}}{V^{+}}
$$

$$
V(z=0)=V^{+} e^{-j \beta \cdot 0}+V^{-} e^{+j \beta \cdot 0}=V^{T} e^{-j \beta \cdot 0}
$$

Transmission Coefficient:

$$
I(z=0)=\frac{V^{+}}{Z_{0}} e^{-j \beta \cdot 0}-\frac{V^{-}}{Z_{0}} e^{+j \beta \cdot 0}=\frac{V^{T}}{Z_{L}} e^{-j \beta \cdot 0}
$$

$$
\tau=\frac{V^{T}}{V^{+}}
$$

$$
\rho=? ? ? \quad \tau=? ? ?
$$

Voltage reflection ρ and transmission τ coefficients

Z_{L} is the characteristic impedance when $z>0$.

At $z=0$, the voltage and current must be continuous!

$$
\rho=\frac{V^{-}}{V^{+}}
$$

$$
V(z=0)=V^{+} e^{-j \beta \cdot 0}+V^{-} e^{+j \beta \cdot 0}=V^{T} e^{-j \beta \cdot 0}
$$

Transmission coefficient

$$
I(z=0)=\frac{V^{+}}{Z_{0}} e^{-j \beta \cdot 0}-\frac{V^{-}}{Z_{0}} e^{+j \beta \cdot 0}=\frac{V^{T}}{Z_{L}} e^{-j \beta \cdot 0}
$$

$$
\tau=\frac{V^{T}}{V^{+}}
$$

$$
\rho=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

$$
\tau=1+\rho
$$

Q4a: $\boldsymbol{\rho}=\mathbf{- 0 . 5}$ and $\boldsymbol{V}^{+}=\mathbf{1} \mathrm{V}$. What is the maximum voltage (absolute value) of the standing wave in $z \leq 0$?

$$
\begin{gathered}
V(z \leq 0)=V^{+} e^{-j \beta z} \\
+V^{-} e^{+j \beta z} \\
V(z>0)=V^{T} e^{-j \beta z}
\end{gathered}
$$

$$
\begin{aligned}
& V^{+}=1 \mathrm{~V}, \rho=-0.5 \\
& V^{\top}=0.5 \mathrm{~V}
\end{aligned}
$$

3. 1.5 V
4. 2.0 V
5. 2.5 V
6. I don't know

Q4b: $\boldsymbol{\rho}=\mathbf{- 0 . 5}$ and $\boldsymbol{V}^{+}=\mathbf{1} \mathrm{V}$. What is the maximum voltage

 (absolute value) of the standing wave in $z \leq 0$?

$$
\begin{gathered}
V(z \leq 0)=V^{+} e^{-j \beta z} \\
+V^{-} e^{+j \beta z} \\
V(z>0)=V^{T} e^{-j \beta z}
\end{gathered}
$$

$$
\begin{aligned}
& V^{+}=1 \mathrm{~V}, \rho=-0.5 \\
& V^{\top}=0.5 \mathrm{~V}
\end{aligned}
$$

2. 1 V
3. 1.5 V
4. 2.0 V
5. 2.5 V
6. I don't know

$V^{+}=1 \mathrm{~V}, \rho=-0.5$ $V^{\top}=0.5 \mathrm{~V}$

$V(z \leq 0)=1 V \cdot e^{-j \beta z}$ $-0.5 \mathrm{~V} \cdot e^{+j \beta z}$
$V(z>0)=0.5 \mathrm{~V} \cdot e^{-j \beta z}$

Standing wave along a transmission line $(z \leq 0)$

$$
\rho=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

$$
\tau=1+\rho
$$

$V(z)=V^{+} e^{-j \beta \cdot z}+V^{-} e^{+j \beta \cdot z}=V^{+} e^{-j \beta \cdot z}\left(1+\rho \cdot e^{+j 2 \beta z}\right)$
$I(z)=\frac{V^{+}}{Z_{0}} e^{-j \beta \cdot z}-\frac{V^{-}}{Z_{0}} e^{+j \beta \cdot z}=\frac{V^{+}}{Z_{0}} e^{-j \beta \cdot z}\left(1-\rho \cdot e^{+j 2 \beta z}\right)$
absolute values / envelope curves of the standing wave:
$|V(z)|=V^{+}\left|1+\rho \cdot e^{+j 2 \beta z}\right| \quad|I(z)|=\frac{V^{+}}{z_{0}}\left|1-\rho \cdot e^{+j 2 \beta z}\right|$

Q5a: Which of the statements is incorrect?

$$
\begin{aligned}
& |V(z)|=V^{+}\left|1+\rho \cdot e^{+j 2 \beta z}\right| \\
& |I(z)|=\frac{V^{+}}{z_{0}}\left|1-\rho \cdot e^{+j 2 \beta z}\right|
\end{aligned}
$$

In the antinode (voltage maximum) of the standing wave...

1. electrical breakdown is possible in high-power applications.
2. the current has the maximum too.
3. the impedance - defined as $Z(z)=V(z) / I(z)$ - has the maximum.
4. in the time domain the voltage oscillates between maximum positive and minimum negative voltage values
5. the distance to the next voltage maximum is half wavelength, $\lambda / 2$
6. I don't know

Q5b: Which of the statements is incorrect?

$$
\begin{aligned}
& |V(z)|=V^{+}\left|1+\rho \cdot e^{+j 2 \beta z}\right| \\
& |I(z)|=\frac{V^{+}}{Z_{0}}\left|1-\rho \cdot e^{+j 2 \beta z}\right|
\end{aligned}
$$

In the antinode (voltage maximum) of the standing wave...

1. electrical breakdown is possible in high-power applications.
2. the current has the maximum too.
3. the impedance - defined as $Z(z)=V(z) / /(z)$ - has the maximum.
4. in the time domain the voltage oscillates between maximum positive and minimum negative voltage values
5. the distance to the next voltage maximum is half wavelength, $\lambda / 2$
