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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on the topics of week 4:

O Stability of structure, principle of virtual work for large displacements, Green-

Lagrange strain measure

O Principle of virtual work for stability analysis and stability analysis by FEM

O Non-linear stability term element contributions for beam and plate elements.
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3.1 NON-LINEAR ELASTICITY

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. €

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular
momentum within a material volume equals the external moment resultant acting on the

material volume. €
Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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DISPLACEMENT OF A SOLID BODY

Assuming equilibrium on the initial domain €2°, the aim is to find a new equilibrium on

the deformed domain €2, when e.g. external forces acting on the structure are changed.

tdA

The local forms of the balance laws are concerned with the deformed domain which
depends on the displacement! This brings a severe non-linearity into the boundary value
problem for the displacement components.
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DESCRIPTION OF MOTION

In solid mechanics, displacement with respect to the initial geometry (# =0) is used in

description of motion. Particles are identified by the material coordinates (x°, y°,z°).

X Nx(xoayoazoat)
Generic <y =4N,(x°%)°%2°%7)
kZ) kNZ(xoayoazoat))

.
V

ux(xoayoazoat)

V

Solid 1Y =00, (x%,°,2%1)

kZ kZ y, kuz(xo’yojzo,t))

Displacement vanishes at the initial geometry =0 so that x=x°, y=y°, and z =2z°.
Therefore, particles of the body can also be i1dentified by (x, y,z) of the initial geometry so

that the motion is described by u, (x,y,z,?), u, (x,y,z,t),and u_(x,y,z,t).
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PRINCIPLE OF VIRTUAL WORK

Principle of virtual work SW'™ + W =0 V§ii is concerned with the deformed domain
Q2. To avoid the complications due to a non-constant domain, the description of motion (a

is used to express all quantities in the Cartesian (x, y, z) —system of the initial geometry:

T

e

N\

e

N\

T

e

N

. S XX OF hws Sxy 5Exy tdA
st = 0o~ Syy ¢ {8Ey, (+298,. 1 16E,; )dV°
LT ZZ ) \5EZZ J \SZX y \5EZ-X J ‘|
|
( N T ' N
t Su.| | f. ,
ext o
oW = J e (<5uy> <fy>)|J|dV +. .. Si—0 S=---
\51/!2 J \fZ y

The Green-Lagrange strain measure E is non-linear. Also, the PK2 stress S differs from

the Cauchy (true) stress & .
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GREEN-LAGRANGE STRAIN MEASURE
The Green-Lagrange strain has the components (in the basis of the initial geometry)

e (a1 [@ugs e+ @uy s a0+ @u, 100

XX XX

) Eyy =18, >+5< (Ou, /8y)2 + (8uy /8);)2 +(Ou, /8);)2

B

V

CES NS (Quy / 02)* +(Qu,, | 8z)* +(Bu, / 0z)°

E,, Ve (O, / Ox)(Buy | 3y) +(Bu,, | Ox)(Bu,, | y)+(Bu,, | &x)(Ou / y)
VEye (= Vs () O 1 9) (O 102)+ @u,, | y) Oy 1 02) + (P | Gy)Pu | B2) .
E, ] 72 (Ou, / 0z)(Ou, / Ox) + (Ouy / 0z)(Ou y / Ox)+ (Ou, / 0z)(Ou, / Ox)

V

Green-Lagrange E gives zero strain in a rigid body motion, whereas linear strain & does

not. Linear strain & can be taken as an approximation to E valid when strains and

rotations of material elements are small!
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ELASTIC MATERIAL

Under the assumption of large displacement and small strains the Green-Lagrange strain

measure does not differ much from the linear setting with small displacements and small

strains. Constitutive equations

e 3\ _ — A s A ( A

E XX | 1 -v v I|S XX 2Exy | Sxy
<Eyy>:E -v 1 —v|§S§,, and <2Eyz>:E<Syz>:
\EZZ y _—V -V 1 - \SZZ J szZXJ L ZX )

with material parameters C (which replaces E), v, and G=C/(2+2v) are same as those
of the linear case, are assumed to simplify the setting. Also, the uni-axial and two-axial

(plane) stress and strain relationships follows just by using strains instead of engineering

strains and C instead of E.
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3.2 STABILITY OF STRUCTURE

In stability analysis, the goal 1s to find the critical value p.. of parameter p (force, load,
displacement etc.) which makes the solution non-unique so that several equilibrium

positions may coexist.

Ial| tal

WAI
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BEAM BUCKLING

In the simplified stability analysis, only the most significant non-linear terms are retained.
By taking into account the xz —plane bending moment due to the axial force, equilibrium

of a beam element

M _ 5N 0 xe0.1f.
dx dx

d—Q+fZ =0 xe€]0,L],

dx

d*w
where M =-EI —
dx

The more precise equilibrium equation takes into account coupling of the bar and bending
modes of beam (bending is affected by the bar mode but not the other way around).
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The table by George William Herbert - Own work, after Table C.1.8.1 in Steel

Construction Manual, 8th edition, 2nd revised printing, American Institute of Steel

Construction, 1987, CC BY-SA 2.5, 1s based on the equilibrium equation

4 2
E]d—ZVerd—;V 0 xel0,L],
dx dx

for the xz—plane bending with a compressive N =—p. The different values in the
table are due to different boundary and symmetry conditions imposed on the generic

solution

w=a+bx+esin(, |-2-x) + d cos(, [-L-x).
El El
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PLATE BUCKLING

In the simplified stability analysis, only the effect of the thin-slab mode on bending is
accounted for (much in the same manner as with the beam model). Assuming that the
material coordinate system is placed at the mid-plane, material is homogeneous, transverse
distributed external loading vanishes, and that the in-plane stress resultants are constants,
the outcome is the bending equation

0*w otw 8w 0% w 0% w 0% w

D(—4+2 5+ 4)—Nxx——(ny+Nyx)——Nyy—2:O (x,y)eQ,
Ox ox“oy”~ Oy

ox> OxQy oy

in which D= E¢ / (12—12v2). In the model, bending mode is affected by the thin slab
mode but not the other way around. Therefore, the thin slab equations can be solved

independently for the in-plane stress resultants.
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REFINED VIRTUAL WORK DENSITIES

In the simplified stability analysis, displacement is assumed to be small so that the
difference between the initial and deformed geometry can be omitted. The refined virtual

work density expressions contain the additional coupling terms

T
Beam: Swi® = — dov/dx N dv/dx where N:EA@,
dow/ dx dw/ dx dx
- C ulax )
T XX
N.. N
Plate: Swiy =— cow/ox o My | JOW/ Ox AN, p=t[E] - ov / Oy -
0ow/0y] | N, N, ||Ow/0y Yy o
N, (Ou/0dy+0v/ox

The coupling affects only the bending mode as the variations are concerned with the

bending modes.
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3.3 STABILITY ANALYSIS

O Model the structure as a collection of beam, plate, etc. elements. Derive the element
contributions SW°¢ and express the nodal displacement and rotation components of the

material coordinate system in terms of those in the structural coordinate system.

O Sum the element contributions to end up with the virtual work expression of the

structure oW = Zee P OW €. Re-arrange to get OW = —5aT[R(a) —-F].

O Use the principle of virtual work oW =0 Voa, fundamental lemma of variation
calculus for da e R” to deduce the equilibrium equations R(a)—F =0. Solve for the
bar/thin slab modes from the linear part and substitute into the non-linear part to get
(K+ pK,)a=0. Finally, find the values of p making the solution non-unique. The

smallest of the values for p 1s p,,.
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BAR MODE

Assuming that v=0, w=0, ¢ =0 and a linear approximation to the axial displacement

u(x) in terms of the nodal displacements u,, u,,, virtual work expressions of the internal

and external forces take the forms
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BENDING MODE (xz-plane)

Assuming that u=0, v=0, ¢=0 and a cubic approximation to the transverse

displacement w(x) in terms of point displacements u;, 1, and rotations 6,,1,0,,:

(Su,;) 12 —6h -12 —6h](u,) (Su, )’ (6)
| 60,1 | EI,|-6h 4h* 6h 2h*||0 60 —h
swmt = _J V1 > 4 ] /1 LSt = e S fzh< S
O~ Bl -12 6k 12 6h ||u, Ou,y 12 | 6
160, | —6h 2h*  6h  4h* |92 160, L7
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BENDING-BAR COUPLING (xz-plane)

Assuming that v=0, ¢=0, a cubic approximation to w(x) in terms of nodal

displacements/rotations u,y, u,, 6,1, and 6,5, and a linear approximation to u(x) in

terms of the nodal displacements u,, u,,

Suy ) 36 -3h =36 —3h][u.
60, | N |-3h 4h* 3h —h*||0)
Su,,| 30n|-36 3k 36  3h ||u.,
100, 3h —h* 3h  4h* ||
Week 4-18
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EXAMPLE 3.1. Consider a simply supported beam loaded by a compressive axial force
p acting on the right end. Assuming that displacement is confined to the xz —plane, use a
single beam element to determine the buckling force p,.. Cross-section properties A4, [

and Young’s modulus E are constants.

- >|

/,z

2 ET
Answer p.. =12— (exact to the model p, =7 =)
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The non-zero nodal displacements/rotations are 6y, Oy,, and uy,. Virtual work
expression for the beam SW!'=5W™ +5W*? and the point force SW? are (here
N = EA(sz _uxl)/h = EAqu /L)

X2 L X2 59y2 L2 4 QYZ 69}’2 30 -1 4 9Y2 ’

SW? = —pou y1.

Virtual work expression is sum of the element contributions

(Suy,| [EA 0 0 0 0 0] [uyy| [p
1 EAMXZ
5W:—< 59Y1 e [z 0 AE] 2FEI +T 0 4 —1 )< QYI >+% 0 >].
S0y, ] | 0 2EI 4EI 0 -1 4] |6yp,) |0]

Principle of virtual work and the fundamental lemma of variation calculus imply that
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(EA 0 0 | (0 0 0] (uy,] [(p

1 EAMXZ

(Z 0 4EI 2EI |+ 0 ~1)4 By t4+40:=0
| 0 2EI 4EI | 0 -1 4] |6y, |0]

The remaining task is to solve the (non-linear) equations for the values of the loading
parameter p making the solution non-unique and the corresponding modes. The first
equation gives (solving the axial force(s) N of the beams as functions of the loading
parameters 1s always the first step)

pL

1
—FAuvH+p=0 < uyH=- :
I3 X2Tp X2 A

When the solution 1s substituted there, the remaining equations simplify to the

homogeneous form
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(24 2_p_L4 —I)QYI_
L2 4| 30|-1 4| |6y,
A non-trivial solution (zero rotations satisfy the equations always) is possible only if

the matrix in parenthesis is singular

det(g{4 2}—13’—5{_41 ﬂ)=<4 e R e L

L e {12,60).
El

The smallest of the values is the critical one

Der —IZE. €

L2
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e Stability analysis by the Mathematica code gives

| type properties geometry
1 ‘ BEAM ({E, G}, {A, I,I},{0,0,0}}  Line[{1, 2}]
2 FORCE [-p, 0, 0} Point[{2}]
| {XJYJZ} {UXJUYJUZ} {@XJ@YJ@Z}
1 ‘ (0,0,0}  (0,0,0) (@, 6Y[1], @)
2 {L, 0, 0} {uX[2], 0, @} {0, 6Y[2], @}
p[ljeizjl {uX[2] >0, 8Y[1] > -1, 8Y[2] > 1}
pl2] » =% (uX[2] -0, 8Y[1] »1,8Y[2] »>1}
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EXAMPLE 3.2. Consider the truss shown in which elements 1 and 3 are modelled as bars
and element 2 as a beam. Determine the critical value of force F' for buckling of the beam
element. Cross-sectional area of element 1 and 3 are \/§A. Cross sectional area of element
2 is A and the second moment of area /. Young’s modulus of the material is £. Assume

that Hy3 — —Hyz.

El
Answer F, =36— Z

L2
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e The non-zero nodal displacements/rotations are Oy,, Oy3=-0y,, uz,, and uys.

Virtual work expressions of the elements are (here the axial force is given by

N =EA(uyy —uy3)/ L=EA(uzz —uzy)/ L)

e \T [ = N
ou 1 0 O|lu
1 _5UZ3 ! E\/gA 1 -1 —Uz3 Z3 EA Z3
oW =— :<5uZ2> — 10 0 O<l/l22>,
0 J8L | -1 1 0 L
k59Y2, 0 0 0 \9}72)
e \T B ] ( A
51/123 1 EA —EA O l/lz3
SW? = -4 OUyy ¢ (z —-FEA  EA 0 U7 s
90y2) | 0 0 4EI+N[*/3]||Or2)
(Suys)0 [0 0 0] (uys)
. 0 T E\/gA 1 _1 0 73 EA /3
5W = — 5 W i i =<5MZ2> TO 1 O<l/l22>,
—ou — —Uu
22 220 56y, 0 0 0[6y,]
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5W4 = 5uz2F =<

f5uZ3\ (O\
5uz2> CF 3.
k59Y2) \O)

Virtual work expression is the sum of element contributions

OW =—<

Principle of virtual work and the fundamental lemma of variation calculus imply that

2FEA
Ly
L
0

—EA
2EA

0

T

(Suys)' | 2B4 —EA
|08y | 0 0

0
0 %

4ET+ NL* /3|1

0
0

4ET+ NL* /3|1

l/lz3 0
l/lz2 s —<
9Y2, 10

J
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The remaining task is to solve the (non-linear) equations for the values of the loading
parameter F' making the solution non-unique (the corresponding modes might be of
some interest also). The first two equations give (solving the axial force(s) N of the

beams as functions of the loading parameters is always the first step)
EAl 2 -1 0 1
LA Uzs | 0 o Uz | _ FL |
L|-1 2 ||luy F uyy | 3EA |2
When the solution is substituted there, the axial force expression and the remaining

third equation give

EA F 1 FI?
N="Z(urr—ty)=—— = (4E[-=""6y, =0 .
7 (uz3—uzy) 3 ( 273 )0y >

A non-trivial solution 8y, # 0 is possible only if
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FI?

4E —T:O = FCI'

36k
L

€

Stability analysis by the Mathematica code gives

type properties geometry
1 BAR [{E}, {22 A}, (0}} Line[ {1, 3} ]
2 BEAM {{E, G}, {A, I, T}, {0,0,0}) Line[{2, 3}]
3 BAR [{E}, {22 A}, {0}} Line[ {4, 2} ]
4 FORCE (0, 0, F} Point[{2}]
{XJYJZ} {UXJUYJUZ} {@XJ@YJ@Z}
1 {0, 0, 0} {0, 0, 0} {0, 0, 0}
2 {L, 0,0} {0, 0, uZ[2]} {0, 6Y[2], @}
3 {L, 0, L} {0, 0, uZ[3]} {0, -6Y[2], @}
4 {0, 0, L} {0, 0, 0} {0,090, 0]}
F[ljagﬁjl {uZ[2] >0, uZ[3] >0, 6Y[2] > 1}
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3.4 ELEMENT CONTRIBUTIONS

Virtual work expressions for the beam and plate elements combine virtual work densities
of the model and approximation depending on the element shape and type. To derive the

expression:

O Start with the virtual work densities 5wmt, 5wSta, and 5w8( b of the formulae

collection.

O Represent the unknown functions by interpolation of the nodal displacement and
rotations (see formulae collection). Substitute the approximations into the density

expressions.

O Integrate the virtual work density over the domain occupied by the element to get oW .
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ELEMENT APPROXIMATION

In MEC-E8001 element approximation is a polynomial interpolant of the nodal
displacement and rotations in terms of shape functions. In stability analysis, shape

functions depend on x, y, and z.

Approximation u=Nla MWM;S Vf the snmefarm.’
Shape functions N={Ni(x,y,z) Nr(x,y,z) ... N, (x, y,z)}T
Parameters a={a; a, ... a, }T

Nodal parameters ae€{u,,u,,u,,0,,0,,0,; may be just displacement or rotation

components or a mixture of them (as with the beam model).
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BEAM MODEL

Coupling term: Swi = — dov N v_ dng dw , where N = EA@

dc dx dx dx dx

The additional coupling term is part of the virtual work density of internal forces
Swo = (SWE + 5w ) + SwE' and assumes that S, =S, =1,,=0. The coupling of the

bar and bending modes is the most significant non-linear term.
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The coupling terms of the bending and bar modes follow from the generic non-linear
expression and the kinematic assumption of the beam model in xz—plane bending

u, =u—zdw/dx—ydv/dx, u,=v(x), and u, = w(x). First, the Green-Lagrange axial

Y
strainn and stress-strain relationship simplify to (only the most significant terms)

du d*w  d>v 1 dv » 1 dwo
E =—- — +—(—)"+—(—)° and S, =CE__,
N z dx2 Y dx2 ) dx) 2( dx) XX XX

Assuming that S, =S, =1, =0, integration over the cross-section gives the virtual
work densities of the bar mode, bending modes, and the additional coupling term

(again, only the most significant terms for stability analysis)

dov v _dOow W here N = EAZL,
dc dx dx dx dx

5wsta=—jA5E S dd=—

XX XX
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Derivation of the coupling term, based on the virtual work of the external axial force,
is also possible. The axial displacement of the free end of a cantilever due to the
bending only can be obtained by considering an inextensible material element of length

Ax. The length change in the direction of the force is given by (Taylor series

cos(x)=1-x%/2+...)

AL =Ax—Axcos9y —

dL 1 » 1 dwo

& ol-cosh, ~—02 =—(-Z=

dx 8%y 2 7 2( dx)
L 1 dw

u(L)=-[" S = o
L dowdw

5u(L)=—jO . z

Week 4-33



e Virtual work of the external force due to the bending effect is therefore given by

L dswdw

dx dx

SW? = NSu(L)= N j

e In the simultaneous bending in both directions, the length change of an inextensible

material element Ax in the axial direction 1s given by

1 10 1 2 2
AL = Ax — Axcos,,cos0, ~ Ax—Ax(l—Eei)(l—EQZ ) zA)Cz(ey +0;) =

l(dwdw dvdv) = Su(l)= j (d5wdw+d5vdv)dx
2 dx dx dxdx dx dx dx dx

Hence, the coupling term is the sum of coupling terms of the planar problems!
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BENDING-BAR COUPLING (xz-plane)

Assuming that v=0, ¢=0, a cubic approximation to w(x) in terms of nodal

displacements/rotations u,y, u,, 6,1, and 6,5, and a linear approximation to u(x) in

terms of the nodal displacements u,q, u,»,

Su, )’ 36 -3h =36 —3h][u.
60, | N |-3h 4h* 3h —h*||0)
Su,,| 30n|-36 3k 36  3h ||u.,
100, | 3h —h* 3h  4h* ||
Week 4-35

5Wsta _

.
V
N

>, where N = EA Hxd ;lu’d .




e Virtual work density of the bending-bar mode coupling term in the xz —plane is given
by

a’5wd_w where N = EA@

dx dx dx

5wf§a =-N

and the cross-sectional area 4 and Young’s modulus £ may depend on x. Element

approximations (simplest possible) are du /dx = (u,, —u )/ h and

(=) (h+23)) [y ( \T (e
U1 —6(h—x)x U,
—h(h-x)* 0 —h(h=3x)(h- 0
w:%< (h=x)"x > < y1> :@:%< ( x)( x)> $ y1>.
B | (3h—2x)x> sy dx 6(h—x)x sy
(h —.X').sz ) \9y2) h(2h —3x)x ) \eyz)

e Integration over the domain occupied by the element gives
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h d5w dw

S = j Swilddx = —N j
dx dx
e N T B r 3
S 36 —3h —36 —3h|(u,

50 —3h 4h* 3h -h*||0 _
vl N . vl - whereN:EAuﬂhu’d. <«

Su, [ 30h|-36 3h 36 3h ||u.,
1007 | —3h —h* 3k 4h* ||Yy2]

e The non-linear additional term couples the bending and the bar modes of the beam. In

the one-sided coupling, bending mode is affected by the bar mode but not vice versa.
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BENDING-BAR COUPLING (xy-plane)

Assuming that u =0, w=0, ¢ =0, and a cubic approximation to v(x) in terms of nodal

0

z

displacements/rotations u 1, and 6,5, and linear approximation to u#(x) in terms

yl» uy29

of nodal displacements u ¢, u,,

ux1, Fx1

su- Y T36 3n =36 3h |(y.,

2 7.2 _
00 | N | 3h 4 3h k[0 |t g
Suyy [ 30h|-36 ~3h 36 —3h||u h

56, 3h —h? —3h 4% ||6.
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PLATE MODEL

Virtual work density combines the thin-slab and plate bending modes. Assuming that the
material coordinate system is placed at the geometric mid-plane, bending mode is affected

by the thin slab mode but not vice versa. The additional coupling term for stability

analysis
N g
T XX XX
oow/ o N, N
Coupling: Swi? =— wrox o My JOw/Ox ,where ¢ N, o =t[E| ¢, ¢
oow/ Oy Nyx Nyy ow/ Oy Yy o | W
Ny (Vxy

depends on the in-plane stress resultants N, N,,,, and N, = N, of the thin-slab mode.

The additional coupling term is part of the virtual work density of internal forces

OWn =0 wgt + WS +Swe. As stability term affects only the bending mode, dependence

of the stress resultants on the loading parameter can be obtained from a thin-slab problem.
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The coupling term of the plate bending and thin-slab loading modes follows from the
generic non-linear virtual work density of the internal forces and the kinematic

assumptions of the Kirchhoff plate model u, =u—zow/ox, u,=v-zow/0dy, and

Y
u, = w(x,y). If only the terms used already in the beam case are accounted for, Green-

Lagrange strain and the corresponding second Piola-Kirchhoff stress components

( (

(E ) [ awax | [ @wad ] | @2
1 By rR ov/ Oy b — 24 82w/8y2 >+ < (6w/8y)2/2 3
2E,, (Ou /Oy +0v/ox| 20w/ &xdy (ow/ ox)(ow/ Oy)

s 3\ ( A

SXX Exx
<Syy >:[E]G< Eyy S
\Sxy) szxy)
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e Assuming that the material coordinate system is placed at the geometric mid-plane,
integration of the virtual work density gives the virtual work density of the thin-slab
mode, virtual work density of plate bending mode, and the coupling term (considering

only the most significant terms)

5wsta _ _{85W/ 5X}T |:Nxx ny}{aW/ax}
oow/ Oy Ny Ny, ow/ Oy
where the in-plane stress resultants are given by

( A

N, [ Ou/ox )
<Nyy>:t[E]G< ov/ Oy 3
N, (Ou/0y+0v/ox
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EXAMPLE 3.3. Determine the critical value of the in-plane loading p.. making the plate
of the figure to buckle. Use the plate model and the continuous polynomial approximation
w(x,y)=ag(xy/ I? Y1—-x/L)1—-y/L). Assume that the edge conditions are such that
solution to the in-plane stress resultants is given by N, =-p and N, =N, =0

(solution to the thin-slab problem).

3 3

Et Et

P =4m" ———~395——— ).
1212 (1-v?) 1212 (1-v?)

3
E
Do =44 d (exact

Answer
1217 (1-v?)
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Assuming that the material coordinate system is chosen so that the linear plate bending
and thin slab modes decouple, the plate model virtual work densities of the bending

mode and the coupling term are given by (N, =—p and N, =N, =0)

( \T 4 3\
o> 5w/ ox’ 1y o 1| &*w/ox? :
swit=—! o%sw/ay* | Dlv 1 0 ! 0%w/dy? |+ where p=L_£ :
121-y?
20°5wiexay| L0 0 (A=v)/2]125%y/ oxoy
o s __[00w/x "[No Ny |fow/ox) asw ow
W, = — — .
oow/oy| [Ny N, |low/ay]  ax Do

When the approximation is substituted there, virtual work expressions of the plate
bending mode and that of the coupling between the thin-slab and bending modes
simplify to

Week 4-43



nt L L nt _ 22
ow _.[0 .[0 owg dxdy =—oay 25 12 ag,

sta _ L L sta _ i
ow _-[O IO owg dxdy =da 9Opa0.

e Virtual work expression is the sum of the two parts

22D | .
45 12 90710

SW =W 4+ WS = _Saq(

e Principle of virtual work 6/ =0V da and the fundamental lemma of variation calculus

give

2D 1 2D 1
— an=0 Voay, = — ap =0.
52 907 0 (452 907

SW =—Say(
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For a nontrivial solution g, # 0, the loading parameter needs to take the value

Der :442 . €

L2
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STABILITY ANALYSIS OF TRUSS SIMPLIFIED

If the beams are connected by joints not capable for transmitting moments, one may use
the fact that the bar model predicts the axial forces correctly. Then, the first step is a linear
displacement analysis for finding the displacements of the nodes and thereby the axial
forces N(p) as functions of the loading parameter. After that, the buckling loads of each
beam under compression follows from the buckling criterion (N is negative in

compression)

Np)=2
LZ

for a simply supported beam. The first beam to buckle (or the smallest p given by the

conditions above) defines the critical load p,,.

Week 4-46



EXAMPLE 3.4. A beam truss 1s loaded by a vertical point force having magnitude F and
acting in the positive or negative direction of the Z-axis. Determine the critical load
magnitude £, for buckling of beam 1 or 2 of the truss. Cross-sectional area of element 1
is 4 and that for element 2 /84, Young’s modulus E is constant, and the second moment

of area is / for both beams. The beams are connected by frictionless joints.

2
Answer F —ﬂ—ﬂ when F <0.

T B2
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e The relationships between the nodal displacement components in the material and

structural systems are u,; =0 and u,, =uy,. Element contribution o w! to the virtual

work expression of the structure is

T
0 | | 0 0
swl=_ (E—A - )= —E—AMX25”X2-
514)(2 L —1 1 qu O L

e For element 2, u 3=0 and wu,y =(uy, +uy,)/ V2. Element contribution takes the

form

5W2——L 0 T(E\/gA 1 _IL 0 _O) -
\/5 5MX2+5MZZ \/EL -1 1 2 (Uxyr tUz> 0
EA

SW? = —7(5’4)(2 +0uzy Nuyy +zs).
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Virtual work expression of the point force follows from the definition of work. The

direction may be up or down and hence F' may also be negative (which means up)

SW? =8u,,F .

Virtual work expression of a structure is obtained as the sum of the element

contributions

EA EA
5W:—T5MX2MX2—T(5MX2 +5M22)(MX2 +u22)+5u22F =

T
o 2 1 0
sw=—Jotx2l £E4 rxal 1
5%22 L1 1 U7zo F
Using the principle of virtual work oW =0 Voda and the fundamental lemma of

variation calculus
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E_A 2 1 Uxo B 0 0 o Uxo B E -1
L1 1||uy, F uyn| EA|2 ]
For buckling of beam 1, the axial force should be compression (negative) and therefore

the external force should be acting downwards.

EA EA 2 EI
NZT(MXQ Mxl)—TMXZ =—F = FCI.=7T ? when F >0.
For buckling of beam 2, the axial force should be compression (negative) and therefore

the external force should be acting upwards. When F <0

E~/84 EA 2 EI
N = U U \/_— Uyn +U ——\/_F = F . €
I (tyy —ty3) = (yy+uzy) %)
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