

CS-E4530 Computational Complexity Theory

Lecture 5: NP and Nondeterminism

Aalto University School of Science Department of Computer Science

Spring 2019

Agenda

- Polynomial-time verifiers
- Examples of polynomial-time verifiers
- The language class NP
- Nondeterministic Turing Machines
- NP-completeness

Travelling Salesman Problem

Travelling Salesman Problem (Decision Version)

- Instance: Graph G = (V, E) with positive edge weights, integer $W \ge 0$, a vertex $v \in V$.
- Question: Is there a tour starting from vertex v that visits all other vertices exactly once and then returns to v with weight at most W?

Travelling Salesman Problem

- We don't know how to solve TSP in polynomial time
- We can verify the correctness of a solution:
 - Solution: a tour $T = (v_1, v_2, \dots, v_n)$
 - ▶ *Verification:* check that *T* is a valid tour, *T* visits all vertices once, and has weight at most *W*
 - Verification takes polynomial time

k-colouring

Definition

Let k be a fixed positive integer, and let G=(V,E) be an undirected graph. A k-colouring of G is a function

$$c: V \rightarrow \{1, 2, \ldots, k\}$$

such that for adjacent vertices v and u, we have $c(v) \neq c(u)$.

k-colouring problem (*k*-COL)

- Instance: Graph G = (V, E).
- **Question:** Is there a *k*-colouring of *G*?

k-colouring

- We don't know how to solve k-colouring in polynomial time
- We can verify the correctness of a solution:
 - Solution: a k-colouring $c: V: \{1, 2, ..., k\}$
 - ▶ *Verification:* check that for all edges $\{u,v\} \in E$, we have $c(u) \neq c(v)$
 - Verification takes polynomial time

Polynomial-time Verifiers

Definition (Polynomial-time Verifier)

Let $L \subseteq \{0,1\}^*$. A *polynomial-time verifier* for L is a polynomial-time Turing machine M such that for some polynomial function $p \colon \mathbb{N} \to \mathbb{N}$ the following holds:

- if $x \in L$, there is a string $u \in \{0,1\}^*$ with $|u| \le p(|x|)$ so that $M\big((x,u)\big)=1$, and
- if $x \notin L$, we have M((x,u)) = 0 for all $u \in \{0,1\}^*$.

If M((x,u)) = 1, we call u the *certificate* or *witness* for x.

Maximum Independent Set

Maximum independent set (MaxIS)

- Instance: Graph G = (V, E) and an integer $k \ge 1$.
- Question: Is there a set of vertices I such that $|I| \ge k$ and for all $u, v \in I$, we have that $\{u, v\} \notin E$?

Maximum Independent Set

- *Certificate:* A vertex set $I \subseteq V$ of size k ($O(k \log n)$ bits)
- Verifier:
 - Check that I has correct size
 - ▶ Check that for each edge $\{u,v\} \in V$, either $u \notin I$ or $v \notin I$

Subset Sum

Subset sum

- **Instance:** A list of integers a_1, a_2, \dots, a_n and an integer T.
- Question: Is there a subset of the input list that sums up to T?

- Certificate: A subset S of the input list
- Verifier:
 - Check that S is a valid subset of input
 - Compute the sum of S and check that it is T

Composite Numbers

Composite number

- Instance: An integer N.
- Question: Are there numbers p and q with $p,q \notin \{1,N\}$ such that pq = N? (That is, N is not a prime number.)

- Certificate: Numbers p and q ($O(\log |N|)$ bits)
- *Verifier:* Check that pq = N

Connectivity

Connectivity

• **Instance:** Graph G = (V, E), two vertices s and t.

• **Question:** Is there a path from *s* to *t* in *G*?

- *Certificate:* A path $P = (v_1, v_2, \dots, v_k)$ in graph G
- Verifier: Check that P is a valid path from s to t

Connectivity

Connectivity

• **Instance:** Graph G = (V, E), two vertices s and t.

• **Question:** Is there a path from *s* to *t* in *G*?

- *Certificate:* A path $P = (v_1, v_2, \dots, v_k)$ in graph G
- Verifier: Check that P is a valid path from s to t

NP

Definition (NP)

The class NP is the class of all languages $L \subseteq \{0,1\}^*$ that have a polynomial-time verifier.

NP and Other Classes

- Consider the following time complexity classes:
 - ▶ *Polynomial time:* $P = \bigcup_{d=1}^{\infty} DTIME(n^d)$
 - Exponential time: $\mathsf{EXP} = \bigcup_{d=1}^{\infty} \mathsf{DTIME}(2^{n^d})$

Theorem

 $\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{EXP}$

- Proof (P ⊆ NP):
 - Use length-0 string ε as certificate
- Proof (NP ⊆ EXP):
 - ▶ Try all possible certificates of length p(|x|)
 - $ightharpoonup O(2^{p(n)})$ possibilities + checking

P vs NP

- Do all polynomial-time verifiable problems also have polynomial-time algorithms?
 - Formally: does it hold that P = NP?
 - ► This is the famous *P vs. NP question*
 - This seems to be a really difficult problem
- In practice, we tend to assume $P \neq NP$
 - We will use this assumption to prove that certain problems are difficult
 - Gives conditional lower bounds

Nondeterministic Turing Machines

- We give an alternative definition of NP in terms of polynomial-time nondeterministic Turing machines
 - ▶ NP stands for *nondeterministic polynomial time*
- NDTM is an abstract model of computation
 - Does not correspond to any physical method of computation
 - Purely a conceptual tool
 - Can be viewed as an abstraction of computation that tries all possible solutions

Nondeterministic Turing Machines

- A nondeterministic Turing machine M is a Turing machine with following special features:
 - M has a special accept state q_{accept}
 - *M* has two *transition functions* δ_1 and δ_2
 - M does not have an output tape
- An *execution* of nondeterministic Turing machine *M*:
 - Start from the starting state as usual
 - Apply either δ_1 or δ_2 at each step
 - Halt when reaching q_{accept} or q_{h}
- For each input, a NDTM has multiple possible executions

Nondeterministic Turing Machines

Definition

A NDTM M decides language L in time T(n) if:

- For any $x \in L$, there is at least one execution on input x that reaches state q_{accept}
- ullet For any x
 otin L, all executions halt without entering $q_{
 m accept}$
- All executions on input $x \in \{0,1\}^*$ run for at most T(|x|) steps

Nondeterministic Time Complexity

Definition (Class NTIME)

Let $T\colon \mathbb{N} \to \mathbb{N}$ be a function. The class NTIME(T(n)) is the set of languages L for which there exists a nondeterministic Turing machine M and a constant c>0 such that M decides L and runs in time $c\cdot T(n)$.

NP: Alternative Definition

Theorem

$$NP = \bigcup_{d=1}^{\infty} NTIME(n^d).$$

- Proof ($\bigcup_{d=1}^{\infty} \mathsf{NTIME}(n^d) \subseteq \mathsf{NP}$):
 - ▶ Let $L \in \bigcup_{d=1}^{\infty} \mathsf{NTIME}(n^d)$
 - We have: p(n)-time NDTM M for L, where p is polynomial
 - ▶ We want: Polynomial-time verifier M' for L
 - For any $x \in L$, M has an accepting execution
 - *Certificate:* a string $u \in \{0,1\}^{p(|x|)}$
 - Verifier: Simulate M, use u to choose which transition function to use $(0 \to \delta_1, 1 \to \delta_2)$, check that the execution ends in q_{accept}

NP: Alternative Definition

Theorem

$$NP = \bigcup_{d=1}^{\infty} NTIME(n^d).$$

- Proof (NP $\subseteq \bigcup_{d=1}^{\infty} \mathsf{NTIME}(n^d)$):
 - ▶ Let $L \in NP$
 - We have: p(n)-time verifier M using certificates of length at most q(n) for L, where p, q are polynomial
 - ▶ We want: Polynomial-time NDTM M' for L
 - Use nondeterminism to generate a certificate u of length at most q(|x|) for input x
 - Concretely: δ₁ writes 0, δ₂ writes 1
 - Deterministically simulate verifier M with (x, u), move to q_{accept} if M accepts

NP-hardness and NP-completeness

Definition

We say that a language L is NP-hard if for any language $L' \in NP$, there is a polynomial-time reduction from L' to L.

Definition

We say that L is NP-complete if L is NP-hard and $L \in NP$.

NP-hardness and NP-completeness

Theorem

- If L is NP-hard and $L \in P$, then P = NP.
- If *L* is NP-complete, then $L \in P$ if and only if P = NP.
- Proof (first statement):
 - ▶ Recall: $L' \leq_p L$ and $L \in P$ implies $L' \in P$
 - ▶ If L is NP-hard and $L \in P$, then for any language $L' \in$ NP we have $L' \leq_p L$ and thus $L' \in$ P
 - ► Thus it follows from the assumption that NP ⊆ P

NP-complete Languages

NP-complete problems are the hardest problems in NP

- If we believe $P \neq NP$, then NP-complete languages are not in P
- Important technique for proving conditional lower bounds, as many interesting problems are in NP
- ➤ On the other hand, if one NP-complete problem has a polynomial-time algorithm, then P = NP

Typical application:

- ▶ We have a computational problem L we are interested in
- Prove that L is NP-complete and conclude there is probably no polynomial-time algorithm

An NP-complete Language

Definition (TMSAT)

- Instance: A tuple $(\alpha, x, 1^n, 1^t)$, where $\alpha, x \in \{0, 1\}^*$
- **Question:** Is there a string $u \in \{0,1\}^*$ with $|u| \le n$ such that the Turing machine M_{α} outputs 1 on input (x,u) within t steps? (*)
- TMSAT = $\{(\alpha, x, 1^n, 1^t)$: Condition (*) holds for $(\alpha, x, 1^n, 1^t)\}$

An NP-complete Language

Theorem

TMSAT is NP-complete.

Proof:

- (i) TMSAT \in NP, i.e. TMSAT has a polynomial-time verifier.
 - Note that

$$\left| \lfloor (\alpha, x, 1^n, 1^t) \rfloor \right| \ge |1^n| = n$$

$$\left| \lfloor (\alpha, x, 1^n, 1^t) \rfloor \right| \ge |1^t| = t$$

- ► That is, n and t are polynomial in $| (\alpha, x, 1^n, 1^t) |$
- ▶ *Certificate:* a string $u \in \{0,1\}^*$ with $|u| \le n$
- Verification algorithm: simulate Turing machine M_{α} on input (x, u) for t steps, check if it halts and outputs 1

An NP-complete Language

Theorem

TMSAT is NP-complete.

- Proof (cont'd):
 - (ii) TMSAT is NP-hard:
 - ▶ Let $L \in NP$
 - ▶ By definition, there is a verifier M for L that runs in time q(n) with certificates of size at most p(n), where p,q are polynomial
 - ► Reduction: map $x \mapsto (\lfloor M \rfloor, x, 1^{p(|x|)}, 1^{q(|x|)})$
 - Correctness follows immediately from definitions

NP-complete Languages

- TMSAT is not very interesting example
 - Definition tied directly to the definition of NP
 - Does not really tell us anything new about NP
- Next objective: find other NP-complete languages
 - Many natural problems are NP-complete
 - In fact, we have already seen many examples

NP-completeness via Reductions

Theorem

Let $L_1, L_2 \in \{0,1\}^*$ be languages. If L_1 is NP-hard and $L_1 \leq_p L_2$, then L_2 is NP-hard.

• **Proof:** Follows from the transitivity of \leq_p .

Corollary

Let $L_1, L_2 \in \{0, 1\}^*$ be languages. If L_1 is NP-complete, $L_1 \leq_p L_2$, and $L_2 \in \text{NP}$, then L_2 is NP-complete.

NP-completeness via Reductions

Next lectures:

- Prove that a problem called CNF-SAT is NP-complete
- Prove other NP-completeness results by building a tree of reductions step-by-step, starting from CNF-SAT

For example:

- We will prove that 3-colouring is NP-complete via an intermediate problem called 3-SAT
- The reduction presented at previous lecture then implies that 4-colouring is NP-complete

Lecture 5: Summary

- Polynomial-time verifiers
- The class NP
- Nondeterministic Turing machines
- NP-completeness
- Existence of an NP-complete language