
CS-E4530 Computational Complexity Theory

Lecture 5: NP and Nondeterminism

Aalto University
School of Science
Department of Computer Science

Spring 2019

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

2/32

Agenda

Polynomial-time verifiers

Examples of polynomial-time verifiers

The language class NP

Nondeterministic Turing Machines

NP-completeness

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

3/32

Travelling Salesman Problem

Travelling Salesman Problem (Decision Version)

Instance: Graph G = (V,E) with positive edge weights, integer
W ≥ 0, a vertex v ∈ V .

Question: Is there a tour starting from vertex v that visits all
other vertices exactly once and then returns to v with weight at
most W?

5
3

4

4

4

6
3

2

1 1

1

3

2 4

35

2

7
5

42

9

53

4

5
7

1
3

2

3

2

6

v

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

4/32

Travelling Salesman Problem
We don’t know how to solve TSP in polynomial time
We can verify the correctness of a solution:

I Solution: a tour T = (v1,v2, . . . ,vn)
I Verification: check that T is a valid tour, T visits all vertices once,

and has weight at most W
I Verification takes polynomial time

5
3

4

4

4

6
3

2

1 1

1

3

2 4

35

2

7
5

42

9

53

4

5
7

1
3

2

3

2

6

v

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

5/32

k-colouring

Definition
Let k be a fixed positive integer, and let G = (V,E) be an undirected
graph. A k-colouring of G is a function

c : V→{1,2, . . . ,k}

such that for adjacent vertices v and u, we have c(v) 6= c(u).

k-colouring problem (k-COL)

Instance: Graph G = (V,E).

Question: Is there a k-colouring of G?

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

6/32

k-colouring

We don’t know how to solve k-colouring in polynomial time
We can verify the correctness of a solution:

I Solution: a k-colouring c : V : {1,2, . . . ,k}
I Verification: check that for all edges {u,v} ∈ E, we have

c(u) 6= c(v)
I Verification takes polynomial time

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

7/32

Polynomial-time Verifiers

Definition (Polynomial-time Verifier)

Let L⊆ {0,1}∗. A polynomial-time verifier for L is a polynomial-time
Turing machine M such that for some polynomial function p : N→ N
the following holds:

if x ∈ L, there is a string u ∈ {0,1}∗ with |u| ≤ p(|x|) so that
M
(
(x,u)

)
= 1, and

if x /∈ L, we have M
(
(x,u)

)
= 0 for all u ∈ {0,1}∗.

If M
(
(x,u)

)
= 1, we call u the certificate or witness for x.

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

8/32

Maximum Independent Set

Maximum independent set (MaxIS)

Instance: Graph G = (V,E) and an integer k ≥ 1.

Question: Is there a set of vertices I such that |I| ≥ k and for all
u,v ∈ I, we have that {u,v} /∈ E?

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

9/32

Maximum Independent Set

Certificate: A vertex set I ⊆ V of size k (O(k logn) bits)
Verifier:

I Check that I has correct size
I Check that for each edge {u,v} ∈ V , either u /∈ I or v /∈ I

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

10/32

Subset Sum

Subset sum
Instance: A list of integers a1,a2, . . . ,an and an integer T .

Question: Is there a subset of the input list that sums up to T?

Certificate: A subset S of the input list
Verifier:

I Check that S is a valid subset of input
I Compute the sum of S and check that it is T

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

11/32

Composite Numbers

Composite number
Instance: An integer N.

Question: Are there numbers p and q with p,q /∈ {1,N} such
that pq = N? (That is, N is not a prime number.)

Certificate: Numbers p and q (O(log |N|) bits)

Verifier: Check that pq = N

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

12/32

Connectivity

Connectivity

Instance: Graph G = (V,E), two vertices s and t.

Question: Is there a path from s to t in G?

Certificate: A path P = (v1,v2, . . . ,vk) in graph G

Verifier: Check that P is a valid path from s to t

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

13/32

Connectivity

Connectivity

Instance: Graph G = (V,E), two vertices s and t.

Question: Is there a path from s to t in G?

Certificate: A path P = (v1,v2, . . . ,vk) in graph G

Verifier: Check that P is a valid path from s to t

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

14/32

NP

Definition (NP)

The class NP is the class of all languages L⊆ {0,1}∗ that have a
polynomial-time verifier.

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

15/32

NP and Other Classes

Consider the following time complexity classes:
I Polynomial time: P =

⋃
∞
d=1 DTIME(nd)

I Exponential time: EXP =
⋃

∞
d=1 DTIME(2nd

)

Theorem
P⊆ NP⊆ EXP

Proof (P⊆ NP):
I Use length-0 string ε as certificate

Proof (NP⊆ EXP):
I Try all possible certificates of length p(|x|)
I O(2p(n)) possibilities + checking

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

16/32

P vs NP

Do all polynomial-time verifiable problems also have
polynomial-time algorithms?

I Formally: does it hold that P = NP?
I This is the famous P vs. NP question
I This seems to be a really difficult problem

In practice, we tend to assume P 6= NP
I We will use this assumption to prove that certain problems are

difficult
I Gives conditional lower bounds

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

17/32

Nondeterministic Turing Machines

We give an alternative definition of NP in terms of
polynomial-time nondeterministic Turing machines

I NP stands for nondeterministic polynomial time

NDTM is an abstract model of computation
I Does not correspond to any physical method of computation
I Purely a conceptual tool
I Can be viewed as an abstraction of computation that tries all

possible solutions

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

18/32

Nondeterministic Turing Machines

A nondeterministic Turing machine M is a Turing machine
with following special features:

I M has a special accept state qaccept
I M has two transition functions δ1 and δ2
I M does not have an output tape

An execution of nondeterministic Turing machine M:
I Start from the starting state as usual
I Apply either δ1 or δ2 at each step
I Halt when reaching qaccept or qh

For each input, a NDTM has multiple possible executions

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

19/32

Nondeterministic Turing Machines

Definition
A NDTM M decides language L in time T(n) if:

For any x ∈ L, there is at least one execution on input x that
reaches state qaccept

For any x /∈ L, all executions halt without entering qaccept

All executions on input x ∈ {0,1}∗ run for at most T(|x|) steps

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

20/32

Nondeterministic Time Complexity

Definition (Class NTIME)

Let T : N→ N be a function. The class NTIME(T(n)) is the set of
languages L for which there exists a nondeterministic Turing machine
M and a constant c > 0 such that M decides L and runs in time
c ·T(n).

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

21/32

NP: Alternative Definition

Theorem

NP =
⋃

∞
d=1 NTIME(nd).

Proof (
⋃

∞
d=1 NTIME(nd)⊆ NP):

I Let L ∈
⋃

∞
d=1 NTIME(nd)

I We have: p(n)-time NDTM M for L, where p is polynomial
I We want: Polynomial-time verifier M′ for L

I For any x ∈ L, M has an accepting execution
I Certificate: a string u ∈ {0,1}p(|x|)

I Verifier: Simulate M, use u to choose which transition function to
use (0→ δ1, 1→ δ2), check that the execution ends in qaccept

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

22/32

NP: Alternative Definition

Theorem

NP =
⋃

∞
d=1 NTIME(nd).

Proof (NP⊆
⋃

∞
d=1 NTIME(nd)):

I Let L ∈ NP
I We have: p(n)-time verifier M using certificates of length at most

q(n) for L, where p, q are polynomial
I We want: Polynomial-time NDTM M′ for L

I Use nondeterminism to generate a certificate u of length at most
q(|x|) for input x

I Concretely: δ1 writes 0, δ2 writes 1
I Deterministically simulate verifier M with (x,u), move to qaccept if

M accepts

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

23/32

NP-hardness and NP-completeness

Definition
We say that a language L is NP-hard if for any language L′ ∈ NP,
there is a polynomial-time reduction from L′ to L.

Definition
We say that L is NP-complete if L is NP-hard and L ∈ NP.

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

24/32

NP-hardness and NP-completeness

Theorem
If L is NP-hard and L ∈ P, then P = NP.

If L is NP-complete, then L ∈ P if and only if P = NP.

Proof (first statement):
I Recall: L′ ≤p L and L ∈ P implies L′ ∈ P
I If L is NP-hard and L ∈ P, then for any language L′ ∈ NP we have

L′ ≤p L and thus L′ ∈ P
I Thus it follows from the assumption that NP⊆ P

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

25/32

NP-complete Languages

NP-complete problems are the hardest problems in NP
I If we believe P 6= NP, then NP-complete languages are not in P
I Important technique for proving conditional lower bounds, as

many interesting problems are in NP
I On the other hand, if one NP-complete problem has a

polynomial-time algorithm, then P = NP

Typical application:
I We have a computational problem L we are interested in
I Prove that L is NP-complete and conclude there is probably no

polynomial-time algorithm

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

26/32

An NP-complete Language

Definition (TMSAT)

Instance: A tuple (α,x,1n,1t), where α,x ∈ {0,1}∗

Question: Is there a string u ∈ {0,1}∗ with |u| ≤ n such that the
Turing machine Mα outputs 1 on input (x,u) within t steps? (∗)

TMSAT =
{
(α,x,1n,1t) : Condition (∗) holds for (α,x,1n,1t)

}

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

27/32

An NP-complete Language

Theorem
TMSAT is NP-complete.

Proof:

(i) TMSAT ∈ NP, i.e. TMSAT has a polynomial-time verifier.
I Note that ∣∣x(α,x,1n,1t)y

∣∣≥ |1n|= n∣∣x(α,x,1n,1t)y
∣∣≥ ∣∣1t∣∣= t

I That is, n and t are polynomial in |x(α,x,1n,1t)y|
I Certificate: a string u ∈ {0,1}∗ with |u| ≤ n
I Verification algorithm: simulate Turing machine Mα on input (x,u)

for t steps, check if it halts and outputs 1

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

28/32

An NP-complete Language

Theorem
TMSAT is NP-complete.

Proof (cont’d):

(ii) TMSAT is NP-hard:
I Let L ∈ NP
I By definition, there is a verifier M for L that runs in time q(n) with

certificates of size at most p(n), where p,q are polynomial
I Reduction: map x 7→ (xMy,x,1p(|x|),1q(|x|))
I Correctness follows immediately from definitions

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

29/32

NP-complete Languages

TMSAT is not very interesting example
I Definition tied directly to the definition of NP
I Does not really tell us anything new about NP

Next objective: find other NP-complete languages
I Many natural problems are NP-complete
I In fact, we have already seen many examples

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

30/32

NP-completeness via Reductions

Theorem
Let L1,L2 ∈ {0,1}∗ be languages. If L1 is NP-hard and L1 ≤p L2, then
L2 is NP-hard.

Proof: Follows from the transitivity of ≤p.

Corollary

Let L1,L2 ∈ {0,1}∗ be languages. If L1 is NP-complete, L1 ≤p L2, and
L2 ∈ NP, then L2 is NP-complete.

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

31/32

NP-completeness via Reductions

Next lectures:
I Prove that a problem called CNF-SAT is NP-complete
I Prove other NP-completeness results by building a tree of

reductions step-by-step, starting from CNF-SAT

For example:
I We will prove that 3-colouring is NP-complete via an intermediate

problem called 3-SAT
I The reduction presented at previous lecture then implies that

4-colouring is NP-complete

CS-E4530 Computational Complexity Theory / Lecture 5
Department of Computer Science

32/32

Lecture 5: Summary

Polynomial-time verifiers

The class NP

Nondeterministic Turing machines

NP-completeness

Existence of an NP-complete language

