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Current equations
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Component Range of Relative Temperature Voltage Absolute
Type Values Accuracy Coefficient Coefficient Accuracy
Poly/poly 0.3-04 0.06% 25 ppm/°C -50 ppm/V 20%
capacitor fF/p2
MOS 0.35-0.5 0.06% 25 ppm/°C -20 ppm/V 10%
capacitor fF/u2
Diffused 10-100 2% 1500 ppm/°C 220 ppm/V 35%
resistor ohms/sq. (5 ym width)
Poly 30 - 200 2% 1500 ppm/°C 100 ppm/V 30%
resistor ohms/sq. (5 ym width)
lon impl. 0.5-2k 1% 400 ppm/°C 800 ppm/V 5%
resistor ohms/sq. (5 ym width)
P-well 1-1k 2% 8000 ppm/°C 10k ppm/V 40%
resistor ohms/sq.
Pinch 5 - 20k 10% 10k ppm/°C 20k ppm/V 50%
resistor ohms/sq.




Charge equations
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phase ®,:0., =V,C

charge transfer from node @to node @

Switched capacitor principle
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Charge equations:
phase ®: QO —>C, -V,

phase ®: 0 —0 AQ, =0, =

Charge transferred per clock cycle
AQ, GV,
N L
equivalent resistor
v. T, 1

in __

I Cl Cl f CLK

= Ry, =

For RC integrator:
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Replace R;, with R, for SC integrator:
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Switched capacitor filters
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SC Integrator
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The frequency response of 4th order SC low-pass filter

(1. measured, 2. simulated (SWAP), 3. LC prototype(calc.))

The pass-band frequency response

(1. measured, 2. LC prototype(calc.))



gain .
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SCF response spectrum of the SCF
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The block diagram of the sampled data system and the relative frequency responses of anti-aliasing (AAF),
SC and smoothing filters (SCF)
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Sample and hold
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Laplace transformation
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M TF * (jw)

The poles of the continuous-time and sampled circuit,
and the frequency response of the sampled data circuit

The frequency response of S/H-function
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Effect of sample and hold on signal spectrum

The amplitude response |Hgy(jo)| = 2sin(wT/2)/o
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(a) a continuous-time signal f(t) (b) a sample and hold signal obtained from f(t)
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Principle of stability

Stability in s-plane:

pole: s, =a,+ jb,

impulse response:  e“ cosht,e" sinbt
= stable, if ¢, <0i.e. the poles are in the

left -hand half -plane
a. =0 = poles are located at jw -axis

Stability in z-plane:

transformation from s-plane to z-plane:
z=¢e""
mapping of s-plane pole into z-plane

— Zi — ea1T+jbl-T — eaiTejbiT
‘Z.‘ — eaiT

4
= stable, if |z,| <1

i.e. the poles are inside the unit circle
‘Zl.‘ =1<a, =0

l.e. jw -axis will be mapped on the unit circle
- left-hand s-plane will be mapped inside the unit circle
- right-hand s-plane will be mapped outside the unit circle

z = e’ is periodic!



Possible
location of
the poles

Stable pole locations in s- and z-planes

s-plane

of H(s) for a
stable
system.

z-plane

ossible
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z=1 point
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> X
of H(z) for a
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z=-1 point
unit disk

\ unit circle



Z-transformation methods

Mapping from the s-plane to z-plane Requirements for f(z):

H(s) is rational

1. f(z) has to be rational
2.|2|=1= f(z)is pure imaginary
= s = f(z)has to be rational Le. fle")=jo,

H(z)=H,(s) s=f(2) 3.]zZf<1=Re{f(z)}<0

H(z) is rational



Integrator — the basic building block in filters

dx;t(t) =& (t)

Laplace:
05 (8,)= G (s,)= x(s,)= -G (s,)
S
Difference equation:

J‘"T dx; (t)dl‘ _
nT-T At

xi(nT)_xi(nT_T): nTT_Tgi(t)dt

Explore different numerical integration methods (Euler, trapezoidal, LDI)
- do they lead to rational transfer function
- do they lead to stable transfer function



Forward Euler

Existing function value is used to calculate the
integral for the next time step: 'T/j;,:; o (nT-T)

xi(nT)_xi(nT_T): n:_Tgl.(t)dt;Tgi(nT—T)

x.(nT)=x,(nT -T)=Tg,(nT -T) Lo,
After applying z-transformation:
x‘(z)— Z_lxl. (Z) = TZ_IGZ. (z) s X

1

s,-plane

solve the transfer function .,
i0)=6()=x()=—6()
T z—1

Thus Forward Euler transformation is

Z z-plane

s, = flz)= 1 "this is rational unit i}

T circle 3><
Check for the stability: ™~ 2, %
mapping of jw-axis into z-plane X

1 Z,
z=sT+1=1+ jo, T = unstabile! S
Straight - line outside unit circle 10, axis

2|1, when|o,T|<<1< f, << f,\




New function value is used to calculate
the integral for the next time step:

xl.(nT)—xl.(nT—T):Ln:_Tgl.(t)dtz Tgi(nT)

xi(nT)—xi(nT—T); Tgi(nT)

Applying z-transformation:
-1

—Zx(:)=G/)

Thus Backward Euler transformation is:

1_ -1
=35, =f(z)= TZ “this is rational”

Check for stability:
mapping of jw-axis into z-plane

. 1+ jo,T
_1+coa2T2
1
= |z ==
2

half-circle inside the unit circle

Backward Euler

= stabile (distortion due to compressed pole locations)
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Effect of frequency distortion on low-pass filter frequency response

4 [H(o,)

(a) continuous-time filter response with flat
(equal-ripple) passband and stopband

4 [H(erm)|

(b) sampled-data response with peaking
passband and deteriorated stopband,
obtained by forward-Euler mapping

4 [H(eT)]

(c) response of filter obtained by
the backward-Euler mapping




Bilinear (trapezoidal)

Both existing and new function value are used
to calculate the integral for the next time step:

5 (7)== T)= [ a0t =— 2,7 =)+ g,

5 (7)== T)= [T = T) g (7]

Apply z-transformation:

22 (0)=6)

T z+1
This gives bilinear transformation as:
S = 2 Z- 1 ) H H H )
T this is rational

Check for stability: mapping of jw-axis into z-plane:

1+£
2

-5t
2

jw-axis is mapped on the unit circle

z= :)‘Z‘Zl (s=jo,)

Sa=0a+jwa,aa<O:>‘z‘<1

-left-plane s-pole is mapped inside the unit circle
= stabile!

4
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Frequency distortion occurs due to the rational approximation:

T . .y .
Insert z=¢e'" into bilinear transformation

: 2 e/ -1 2 T
= JjO, = ———— = 0, = - tan——
T e +1 T 2

Poles and zeros are moved = frequency distortion
Distortion can be compensated with prewarping

2. LoT 2
o=—tan —— O<<—= -0, ®
T clk a



Existing function value is used to calculate
the integral over past and new time step:

[ =272 07)

x.(nT +T)-x.(nT - T)=2Tg,(nT)

Apply z-transformation
ZX, (Z)— Z_lxl. (Z) =271G, (Z)

zt -1
T2 xi(Z)_ Gi(Z)

LDI transformation:
2
z°—1
S = Z|=

Check for stability:
mapping of the jw-axis into z-plane

=z,=s5T%* (s,7) +1
s=jo, :>‘Z‘=1

jw-axis is mapped on the unit circle!

LDI (midpoint)

4 g(t)

S/ 1/ /]
/ / Y
’ SSNS S S s
/ / 4 4
/
/

g(nT)

Frequency distortion:

z=e¢" >, :?sma)T

ol <<1= f << fox

prewarping:

1 . :
= w0, =—sinwl zlsma)T =w
T T

Two poles: one inside the unit circle and the other is outside the unit circle!
The inside one is selected for the implementation, because it quarantees stability.

NnT-T nT nT+T
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LDI transformation
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