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RC Integrator
Current equations

solve for VOUT

Laplace transformation
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Component 
Type

Range of 
Values

Relative
Accuracy

Temperature
Coefficient

Voltage
Coefficient

Absolute
Accuracy

Poly/poly
capacitor

0.3 - 0.4
fF/μ2

0.06% 25 ppm/°C −50 ppm/V 20%

MOS 
capacitor

0.35 - 0.5
fF/μ2

0.06% 25 ppm/°C −20 ppm/V 10%

Diffused
resistor

10 - 100
ohms/sq.

2% 
(5 μm width)

1500 ppm/°C 220 ppm/V 35%

Poly
resistor

30 - 200
ohms/sq.

2% 
(5 μm width)

1500 ppm/°C 100 ppm/V 30%

Ion impl. 
resistor

0.5 - 2k
ohms/sq.

1% 
(5 μm width)

400 ppm/°C 800 ppm/V 5%

P-well
resistor

1 - 1k
ohms/sq.

2% 8000 ppm/°C 10k ppm/V 40%

Pinch
resistor

5 - 20k
ohms/sq.

10% 10k ppm/°C 20k ppm/V 50%



Switched capacitor principle

Charge equations
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Switched capacitor filters
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Charge equations:

Charge transferred per clock cycle

Non-overlapping clocks
For RC integrator:

Replace Rin with Rsw for SC integrator:



SC Integrator
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The frequency response of 4th order SC low-pass filter

(1. measured, 2. simulated (SWAP), 3. LC prototype(calc.))
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The pass-band frequency response

(1. measured, 2. LC prototype(calc.))



The block diagram of the sampled data system and the relative frequency responses of anti-aliasing (AAF), 
SC and smoothing filters (SCF)



Sample and Hold

fSH(t)
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The poles of the continuous-time and sampled circuit, 
and the frequency response of the sampled data circuit

The frequency response of S/H-function



Sampling a tone at (1+1/16)fs
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Effect of sample and hold on signal spectrum
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(a) a continuous-time signal f(t) (b) a sample and hold signal obtained from f(t)



Principle of stability

i.e. jω -axis will be mapped on the unit circle
- left-hand s-plane will be mapped inside the unit circle
- right-hand s-plane will be mapped outside the unit circle

z = esT is periodic!

Stability in s-plane: 
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 if stable, 

transformation from s-plane to z-plane:

mapping of s-plane pole into z-plane



Stable pole locations in s- and z-planes

s-plane

s

jw

Possible
location of
the poles

of H(s) for a
stable
system.

z-plane jy

x

unit circle

unit disk

z=1 point

z=-1 point

Possible
location of
the poles

of H(z) for a
stable
system.



Z-transformation methods

Mapping from the s-plane to z-plane

H(s) is rational

H(z) is rational
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Integrator – the basic building block in filters
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Laplace:

Difference equation:
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Explore different numerical integration methods (Euler, trapezoidal, LDI)
- do they lead to rational transfer function
- do they lead to stable transfer function



Forward Euler
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Existing function value is used to calculate the
integral for the next time step:

After applying z-transformation:

solve the transfer function

Thus Forward Euler transformation is

Check for the stability:
mapping of jω-axis into z-plane

”this is rational”



Backward Euler
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New function value is used to calculate
the integral for the next time step:

Applying z-transformation:

Thus Backward Euler transformation is:

”this is rational”

Check for stability:
mapping of jω-axis into z-plane

half-circle inside the unit circle
Þ stabile (distortion due to compressed pole locations)



Effect of frequency distortion on low-pass filter frequency response
|H(jwa)|

wa

|H(ejwT)|

wa

|H(ejwT)|

wa

(a) continuous-time filter response with flat
(equal-ripple) passband and stopband

(b) sampled-data response with peaking
passband and deteriorated stopband, 
obtained by forward-Euler mapping

(c) response of filter obtained by
the backward-Euler mapping



Bilinear (trapezoidal)
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Both existing and new function value are used
to calculate the integral for the next time step:

Apply z-transformation:

This gives bilinear transformation as:

Check for stability: mapping of jω-axis into z-plane: jy
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jω-axis is mapped on the unit circle

-left-plane s-pole is mapped inside the unit circle
Þ stabile!
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Frequency distortion occurs due to the rational approximation:

Insert                     into bilinear transformation

Poles and zeros are moved Þ frequency distortion
Distortion can be compensated with prewarping



LDI (midpoint)
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Existing function value is used to calculate
the integral over past and new time step:

Apply z-transformation

LDI transformation:

Check for stability:
mapping of the jω-axis into z-plane

Frequency distortion:

prewarping:

jω-axis is mapped on the unit circle!
Two poles: one inside the unit circle and the other is outside the unit circle!
The inside one is selected for the implementation, because it quarantees stability.



LDI transformation
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