ELEC-E3530

Integrated Analog Systems L

Contents

1. Introduction to sampled systems
2. Switched capacitor integrators
3. Switched capacitor biquads
4. Switched capacitor ladder filters
5. Non-idealities in switched capacitor circuits and layout issues
6. Switched current techniques
7. Continuous-time filters, RC opamp filters, gmC-filters
8. Introduction to D/A-converters
9. D/A-converters based on resistors
10. D/A-converters based on capacitors
11. D/A-converters based on current sources
12. Introduction to A/D-converters
13. Serial A/D-converters
14. Pipeline A/D-converters
15. Folding and interpolating A/D-converters
16. Flash A/D-converters
17. Sigma-delta A/D-converters

RC Integrator

Current equations

$$
\begin{aligned}
& i_{1}=\frac{V_{\text {in }}}{R_{1}} \\
& i_{2}=-C_{2} \frac{d V_{\text {out }}}{d t} \\
& i_{1}=i_{2}
\end{aligned}
$$

solve for $V_{\text {OUT }}$

$$
\Rightarrow V_{\text {OUT }}=-\frac{1}{R_{1} C_{2}} \int V_{\text {in }}(t) d t
$$

Laplace transformation

$$
\begin{aligned}
& V_{\text {out }}(s)=\frac{-V_{\text {in }}(s)}{s R_{1} C_{2}} \\
& H(s)=\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{1}{s R_{1} C_{2}}
\end{aligned}
$$

Component Type	Range of Values	Relative Accuracy	Temperature Coefficient	Voltage Coefficient	Absolute Accuracy
Poly/poly capacitor	$0.3-0.4$ fF / μ^{2}	0.06%	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$-50 \mathrm{ppm} / \mathrm{V}$	20%
MOS capacitor	$0.35-0.5$ fF / μ^{2}	0.06%	$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$-20 \mathrm{ppm} / \mathrm{V}$	10%
Diffused resistor	$10-100$ ohms $/ \mathrm{sq}$.	2% $(5 \mu \mathrm{~m}$ width)	$1500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$220 \mathrm{ppm} / \mathrm{V}$	35%
Poly resistor	$30-200$ ohms $/ \mathrm{sq}$.	2% $(5 \mu \mathrm{~m}$ width)	$1500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$100 \mathrm{ppm} / \mathrm{V}$	30%
lon impl. resistor	$0.5-2 \mathrm{k}$ ohms $/ \mathrm{sq}$.	1% $(5 \mu \mathrm{~m}$ width)	$400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$800 \mathrm{ppm} / \mathrm{V}$	5%
P-well resistor	$1-1 \mathrm{k}$ ohms $/ \mathrm{sq}$.	2%	$8000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$10 \mathrm{k} \mathrm{ppm} / \mathrm{V}$	40%
Pinch resistor	$5-20 \mathrm{k}$ ohms $/ \mathrm{sq}$.	10%	$10 \mathrm{kpm} /{ }^{\circ} \mathrm{C}$	$20 \mathrm{k} \mathrm{ppm} / \mathrm{V}$	50%

Switched capacitor principle

Charge equations
phase $\Phi_{1}: Q_{C 1}=V_{1} C$
phase $\Phi_{2}: Q_{C 2}=V_{2} C$
charge transfer from node (1) to node (2)
$\Rightarrow \Delta Q=Q_{C 1}-Q_{C 2}=\left(V_{1}-V_{2}\right) C$
One charge packet per clock period
\Rightarrow discrete qurrent equation
$\Rightarrow \underline{i}=\frac{\Delta Q}{T}=\frac{C\left(V_{1}-V_{2}\right)}{T}=\frac{C}{T}\left(V_{1}-V_{2}\right)$
according to Ohm's law $\mathrm{V}=\mathrm{RI}$
equivalent discrete resistor

$$
\Rightarrow R_{S C} \Delta \frac{T}{C}=\frac{1}{f_{c l k} C}
$$

Non-overlapping clock signals

Switched capacitor filters

Charge equations:

$$
\begin{array}{lll}
\text { phase } \Phi: & Q_{1} \rightarrow C_{1} \cdot V_{i n} & \\
\text { phase } \bar{\Phi}: & Q_{1} \rightarrow 0 & \Delta Q_{2}=Q_{1}=C_{1} \cdot V_{i n}
\end{array}
$$

Charge transferred per clock cycle

$$
I=\frac{\Delta Q_{2}}{\Delta t}=\frac{C_{1} V_{\text {in }}}{T_{0}}
$$

equivalent resistor

$$
\Rightarrow R_{S W}=\frac{V_{i n}}{I}=\frac{T_{0}}{C_{1}}=\frac{1}{C_{1} f_{C L K}}
$$

For RC integrator:

$$
H(s)=\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{1}{s R_{\text {in }} C_{2}}
$$

Replace $R_{\text {in }}$ with $R_{s w}$ for SC integrator:

$$
\begin{aligned}
& H(s)=\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{1}{s R_{s w} C_{2}}=-\frac{1}{S \frac{C_{2}}{C_{1} f_{C L K}}} \\
& \Rightarrow \tau_{\text {SC }}=\frac{C_{2}}{C_{1} f_{C L K}}
\end{aligned}
$$

Non-overlapping clocks

SC Integrator

SC resistor:

$$
R_{S C}=\frac{1}{f C_{i n}}
$$

$$
\tau=R C_{2}=\frac{C_{2}}{f_{c l k} C_{i n}}
$$

The frequency response of 4th order SC low-pass filter
(1. measured, 2. simulated (SWAP), 3. LC prototype(calc.))

The pass-band frequency response
(1. measured, 2. LC prototype(calc.))

The block diagram of the sampled data system and the relative frequency responses of anti-aliasing (AAF), SC and smoothing filters (SCF)

Sample and Hold

Sample and hold

$$
f_{S H}(t)=\sum_{n=0}^{\infty} f(n T)[u(t-n T)-u(t-n T-T)]
$$

Laplace transformation

$$
F_{S H}(s)=\frac{1-e^{-s T}}{s} \sum_{n=0}^{\infty} f(n T) e^{-s s T}
$$

$$
z^{-1}=e^{-s T}
$$

Sample and hold function:

$$
\Rightarrow H_{S H}(s)=\frac{1-e^{-s T}}{s}
$$

$$
\begin{aligned}
& \text { Insert } \mathrm{s}=\mathrm{j} \omega \\
& H_{S H}(j \omega)=\frac{1-e^{-j \omega T}}{j \omega}=T e^{-j \omega T / 2} \frac{\sin (\omega T / 2)}{\omega T / 2} \\
& F_{S H}=e^{-j \omega T / 2} \frac{\sin (\omega T / 2)}{\omega T / 2} \sum_{k=-\infty}^{\infty} F\left(j \omega-j k \frac{2 \pi}{T}\right) \\
& s=j \omega \Rightarrow F_{\text {SH }}(j \omega) \cong \sum_{n=0}^{\infty} f(n T) e^{-j n \omega T} \quad \text { spectrum is periodical! } \\
& \Rightarrow \text { aliasing! } \Rightarrow \frac{\pi}{T}>\omega_{A} \quad \text { (Nyqvist criterium) } \\
& \omega=\frac{\pi}{T}=\text { Nyqvist frequency }
\end{aligned}
$$

The poles of the continuous-time and sampled circuit, and the frequency response of the sampled data circuit

The frequency response of S / H-function

Sampling a tone at $(1+1 / 16) \mathrm{fs}$

Effect of sample and hold on signal spectrum

The amplitude response $\left|\mathrm{H}_{\mathrm{SH}}(\mathrm{j} \omega)\right|=2 \sin (\omega \mathrm{~T} / 2) / \omega$

(a) a continuous-time signal $f(t)$

Principle of stability

Stability in s-plane:

pole: $\quad s_{i}=a_{i}+j b_{i}$
impulse response: $\quad e^{a_{t} t} \cos b_{i} t, e^{a, t} \sin b_{i} t$ \Rightarrow stable, if $a_{i}<0$ i.e. the poles are in the left - hand half - plane
$a_{i}=0 \Rightarrow$ poles are located at $\mathrm{j} \omega$-axis

Stability in z-plane:

transformation from s-plane to z-plane:
$z=e^{s T}$
mapping of s-plane pole into z-plane
$\Rightarrow z_{i}=e^{a_{1} T+j b_{i} T}=e^{a_{i} T} e^{j b_{i} T}$
$\left|z_{i}\right|=e^{a_{i} T}$
\Rightarrow stable, if $\left|z_{i}\right|<1$
i.e. the poles are inside the unit circle
$\left|z_{i}\right|=1 \Leftrightarrow a_{i}=0$
i.e. $j \omega$-axis will be mapped on the unit circle

- left-hand s-plane will be mapped inside the unit circle
- right-hand s-plane will be mapped outside the unit circle
$z=e^{s T}$ is periodic!

Stable pole locations in s- and z-planes

Z-transformation methods

Mapping from the s-plane to z-plane
$\mathrm{H}(\mathrm{s})$ is rational
$\mathrm{H}(\mathrm{z})$ is rational
$\Rightarrow s=f(z)$ has to be rational
$H(z)=H_{a}(s) s=f(z)$

Requirements for $f(z)$:

1. $f(z)$ has to be rational
2. $|z|=1 \Rightarrow f(z)$ is pure imaginary
i.e. $f\left(e^{j \omega T}\right)=j \omega_{a}$
3. $|z|<1 \Rightarrow \operatorname{Re}\{f(z)\}<0$

Integrator - the basic building block in filters

$$
\begin{gathered}
\frac{d x_{c}(t)}{d t}=g_{i}(t) \\
\text { Laplace: } \\
s_{a} x_{i}\left(s_{a}\right)=G_{i}\left(s_{a}\right) \Rightarrow x_{i}\left(s_{a}\right)=\frac{1}{s} G_{i}\left(s_{a}\right)
\end{gathered}
$$

Difference equation:

$$
\begin{gathered}
\int_{n T-T}^{n T} \frac{d x_{i}(t)}{d t} d t= \\
x_{i}(n T)-x_{i}(n T-T)=\int_{n T-T}^{n T} g_{i}(t) d t
\end{gathered}
$$

Explore different numerical integration methods (Euler, trapezoidal, LDI)

- do they lead to rational transfer function
- do they lead to stable transfer function

Forward Euler

Existing function value is used to calculate the integral for the next time step:

$$
x_{i}(n T)-x_{i}(n T-T)=\int_{n T-T}^{n T} g_{i}(t) d t \cong T g_{i}(n T-T)
$$

$x_{i}(n T)-x_{i}(n T-T)=T g_{i}(n T-T)$
After applying z-transformation:

$$
x_{i}(z)-z^{-1} x_{i}(z)=T z^{-1} G_{i}(z)
$$

solve the transfer function

$$
\frac{z-1}{T} x_{i}(z)=G_{i}(z) \Rightarrow x_{i}(z)=\frac{T}{z-1} G_{i}(z)
$$

Thus Forward Euler transformation is
$s_{a}=f(z)=\frac{z-1}{T}$ "this is rational"
Check for the stability:
mapping of $j \omega$-axis into z-plane
$z=s_{a} T+1=1+j \omega_{a} T \Rightarrow$ unstabile!
Straight - line outside unit circle
$|z| \approx 1$, when $\left|\omega_{a} T\right| \ll 1 \Leftrightarrow f_{a} \ll f_{\text {clk }}$

Backward Euler

New function value is used to calculate the integral for the next time step:
$x_{i}(n T)-x_{i}(n T-T)=\int_{n T-T}^{n T} g_{i}(t) d t \cong T g_{i}(n T)$
$x_{i}(n T)-x_{i}(n T-T) \cong T g_{i}(n T)$
Applying z-transformation:
$\frac{1-z^{-1}}{T} x_{i}(z)=G_{i}(z)$
Thus Backward Euler transformation is:
$\Rightarrow s_{a}=f(z)=\frac{1-z^{-1}}{T} \quad$ "this is rational"

Check for stability:
mapping of j ω-axis into z-plane
$z=\frac{1+j \omega_{a} T}{1+\omega_{a}{ }^{2} T^{2}}$
$\Rightarrow|z|=\frac{1}{2}$
half-circle inside the unit circle
\Rightarrow stabile (distortion due to compressed pole locations)

Effect of frequency distortion on low-pass filter frequency response

Bilinear (trapezoidal)

Both existing and new function value are used to calculate the integral for the next time step:

$$
\begin{aligned}
& x_{i}(n T)-x_{i}(n T-T)=\int_{n T-T}^{n T} g_{i}(t) d t=\frac{T}{2}\left[g_{i}(n T-T)+g_{i}(n T)\right] \\
& x_{i}(n T)-x_{i}(n T-T) \cong \frac{T}{2}\left[g_{i}(n T-T)+g_{i}(n T)\right]
\end{aligned}
$$

Apply z-transformation:

$$
\frac{2}{T} \frac{z-1}{z+1} x_{1}(z)=G_{i}(z)
$$

This gives bilinear transformation as:

$$
s_{a}=\frac{2}{T} \frac{z-1}{z+1} \quad \text { 'this is rational' }
$$

Check for stability: mapping of $\mathrm{j} \omega$-axis into z-plane:

$$
z=\frac{1+\frac{s T}{2}}{1-\frac{s T}{2}} \Rightarrow|z|=1 \quad\left(s=j \omega_{a}\right)
$$

$j \omega$-axis is mapped on the unit circle

$$
s_{a}=\sigma_{a}+j \omega_{a}, \sigma_{a}<0 \Rightarrow|z|<1
$$

-left-plane s-pole is mapped inside the unit circle
\Rightarrow stabile!

Frequency distortion occurs due to the rational approximation:

Insert $\quad z=e^{j \omega T} \quad$ into bilinear transformation

$$
\Rightarrow j \omega_{a}=\frac{2}{T} \frac{e^{j \omega T}-1}{e^{j \omega T}+1} \Rightarrow \omega_{a}=\frac{2}{T} \tan \frac{\omega T}{2}
$$

Poles and zeros are moved \Rightarrow frequency distortion Distortion can be compensated with prewarping

$$
\omega=\frac{2}{T} \tan ^{-1} \frac{\omega_{a} T}{2} \quad \omega \ll \frac{2}{T}=f_{c l k} \Rightarrow \omega_{a} \approx \omega
$$

LDI (midpoint)

Existing function value is used to calculate the integral over past and new time step:

$$
\begin{aligned}
& \int_{n T-T}^{n T+T} g_{i}(t) d t \cong 2 T g_{i}(n T) \\
& x_{i}(n T+T)-x_{i}(n T-T)=2 T g_{i}(n T)
\end{aligned}
$$

Apply z-transformation

$$
\begin{aligned}
& z x_{i}(z)-z^{-1} x_{i}(z)=2 T G_{i}(z) \\
& \frac{z^{2}-1}{2 T z} x_{i}(z)=G_{i}(z)
\end{aligned}
$$

LDI transformation:

$$
s_{a}=f(z)=\frac{z^{2}-1}{2 T z}
$$

Check for stability:
mapping of the $j \omega$-axis into z-plane

$$
\begin{aligned}
& \Rightarrow z_{1,2}=s_{a} T \pm \sqrt{\left(s_{a} T\right)^{2}+1} \\
& s=j \omega_{a} \Rightarrow|z|=1
\end{aligned}
$$

Frequency distortion:

$$
z=e^{j \omega T} \Rightarrow \omega_{a}=\frac{1}{T} \sin \omega T
$$

$$
\omega T \ll 1 \Rightarrow f \ll f_{C L K}
$$

prewarping:

$$
\Rightarrow \omega_{a}=\frac{1}{T} \sin \omega T \approx \frac{1}{T} \sin \omega T=\omega
$$

$j \omega$-axis is mapped on the unit circle!
Two poles: one inside the unit circle and the other is outside the unit circle!
The inside one is selected for the implementation, because it quarantees stability.

LDI transformation

$$
\begin{array}{ll}
s \rightarrow \frac{1}{T}\left(z^{\frac{1}{2}}-z^{-\frac{1}{2}}\right) & \text { Prewarping: } \\
H(z)= \pm \frac{1}{R x_{i}} \frac{z^{-\frac{1}{2}}}{1-z^{-1}} & \omega^{\prime}=\frac{2}{T} \sin \frac{\omega T}{2} \\
z=e^{j \omega T} & \\
H\left(e^{j \omega T}\right)= \pm \frac{1}{j \omega R x_{i}} \frac{\frac{\omega T}{2}}{\sin \frac{\omega T}{2}} & \\
\Rightarrow m(\omega)=\frac{\frac{\omega T}{2}}{\sin \frac{\omega T}{2}}-1 & \\
p(\omega)=0 &
\end{array}
$$

