

CS-E4070 – Special Course in Machine Learning and Data Science:

Privacy in speech and audio interfaces

Introduction

Tom Bäckström

Department of Signal Processing and Acoustics Aalto University, School of Electrical Engineering tom.backstrom@aalto.fi

22.01.2019 - 02.04.2019

Welcome

Program today

- Hello! ~ 10 min
- \blacksquare Introduction to "privacy in speech and audio interfaces" \sim 60 min
- Practical organization \sim 20 min

Introduction to Privacy in speech and audio interfaces

CS-E4070 Privacy in speech and audio interfaces Tom Bäckström

Dominant trend in Speech Speech Interfaces and IoT

Personal digital assistants and speech interfaces everywhere!

- Homepods and home-automation
- Smartphones, -TVs, -watches
- Home appliances

Smart speaker (homepod) sales \sim 11.7M in 2018/Q2 (Source: Strategy Analytics Smart Speaker service).

Benefits of Speech Interfaces with IoT

Speech is our most natural form of communication.

- Speech is natural also in human-to-computer communication.
- Access any nearby device.
 - No need to find device. (Where's my phone?)
- Shift focus from device to task.
 - Suppose I want to watch a movie.
 - Searching my phone or remote is a distraction.
- Single hands-free interface to everything.

Challenges with current paradigm Scenario I: Cafeteria

- Alice and Bob meet at a cafeteria.
 - Alice uses Apple.
 - Bob uses Google.
 - Cafeteria offers Amazon/Alexa.
- Which interface should they use?
 - \Rightarrow Awkward user experience.
- Products are not interoperable.
 - \Rightarrow Inefficient use of resources.
 - Cannot use all hardware.
 - Cannot use all services.

Photo by Valeria Boltneva from Pexels

 \Rightarrow Not a good UI.

Outlook in current paradigm Scenario I: Cafeteria

- Available products are great in isolation.
- However, multi-device scenarios are currently unsatisfactory.
- \Rightarrow We need collaboration and interoperability.
 - = An open API between devices to manage speech commands.

Challenges with current paradigm Scenario II: Bedroom

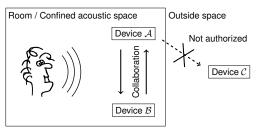
- "Computer, lights off."
- *No* outsider may *ever* access my bedroom.

Creative Commons, Photo from Pexels

UI-design problem

- Controlling, reporting and automatically adapting to privacy.
- Systems-design problem
 - Optimize privacy (not "preserve")
- Enineering problem
 - Determine desired level of privacy.
 - Enforce privacy.

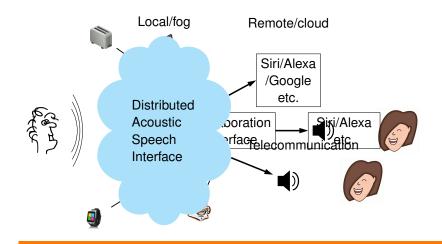
CS-E4070 Privacy in speech and audio interfaces Tom Bäckström


Challenges with current paradigm

Contradicting objectives?

- More collaboration for better UI.
- More privacy for better UI.

Solution: Local collaboration



Local devices can hear the sound anyway.

- Local collaboration does not break privacy.
 - = Wireless acoustic sensor network (WASN).
- Privacy is an issue only with remote participants.
 - Remote in space or time.
- Simple tasks can be handled locally.

Ante Gormputer, lights offics-E4070 Privacy in speech and audio interfaces Tom Bäckström
Only complex tasks and specific requests require access to
remote participants/devices

Solution: Acoustic collaboration interface

CS-E4070 Privacy in speech and audio interfaces Tom Bäckström

Solution: Acoustic collaboration interface

Requirements:

- Communication of acoustic data = dia
- Authorization based on neighborhood
- Transparent and interoperable
 - Allows third-party auditing of privacy.
- distributed speech coding
 acoustic fingerprinting
 need standard?

- Lots of devices = must be low-complexity.
- Multi-microphone source separation/enhancement at decoder.

Conclusion

We need an open API between speech interfaces.

- For device-to-device interfaces in person-to-person and person-to-service communication.
- High-quality PDAs as cloud service
 - Siri, how's the weather in Japan?"
 - "Alexa, play me the movie Batman returns?"
- Allows small companies to produce new innovative device.
 - E.g. Sonos can focus on their core-business, high-quality audio, but give access to Alexa/Google/Siri.

Research projects

CS-E4070 Privacy in speech and audio interfaces Tom Bäckström 14/33 22.01.2019 – 02.04.2019 Introduction

Sound Privacy Research Project

- What is privacy? How much privacy does the user want?
- Hypothesis:
 - Perception of privacy depends on the acoustic environment.
 - We can analyze the acoustic environment to determine desired level of privacy.
- Approach:
 - Record dialogues in different environments (acoustic recording).
 - On-site questionnaire for participants: "Could you share a secret in this environment?".
 - Suplement recordings with artificial speech+noise+RIR signals.
 - On-line questionnaire where subjects hear recorded dialogues and answer the same questions.

Acoustic Fingerprinting Research Project

- Are these devices in the same room? Is collaboration allowed?
- Hypothesis:
 - Devices in the same room have similar microphone signals.
 - Devices which hear the same signal are allowed to collaborate.

Approach:

- Generate fingerprint from acoustic signal (with error correction).
- Use fingerprint as cryptographic key for inter-device communication.

Dynamic Access Management

for Distributed Speech Interfaces Research Project

- Mobile devices come and go (ad-hoc collaboration). Access management needs to take that into account.
- Hypothesis:
 - Distributed processing requires distributed access management.
 For example, resource optimization requires knowledge of nodes.
- Approach:
 - Distributed database of access rights.
 - Dynamically granting and revoking access.
 - Must be immutable and distributed.
 - Pick&choose suitable components from distributed ledger (i.e. block-chain) technologies.

Unified distributed acoustic interface for person-to-person and person-to-service

Research Project

- In communication with a remote person and with a cloud server we are transmitting the same speech signal.
- Hypothesis:
 - It would be efficient to use the same codec for both purposes.
 - Collaboration between devices (distributed coding) improves efficiency.
- Approach:
 - Design coding with conventional codecs as baseline
 ⇒ preserve single channel quality.
 - Incorporate elements of distributed coding methods.
 - Low-complexity encoders, intelligent decoder.

Details

Resource Optimization for Speech Interfaces Research Project

- IoT devices often have limited resources.
- Balance between local CPU-use and transmission bandwidth for optimal energy efficiency?
- Hypothesis:
 - Overall resources can be optimized by adjusting trade-off between bandwidth and CPU-load.
- Approach:
 - Integrate load optimization into distributed transmission/coding system.
 - Each devices chooses its own operations based on a local energy optimization function.

Aalto University

Questions?

CS-E4070 Privacy in speech and audio interfaces Tom Bäckström 20/33 22.01.2019 – 02.04.2019 Introduction

Opportunities

More for everyone!

- User gets better UI private, intuitive and high quality audio
 - Unified voice services; UI and telecom
- Personal digital assistants as a cloud service from any device:
 - Siri, how's the weather in Japan?"
 - "Alexa, play me the movie Batman returns?"
- Ecosystem for small and large companies.
- Speech coding is again important!
 - Need efficient communication between IoT devices.

... but machine learning ...

Machine learning relies on "big data".

- "We need data to train our models"
- = Ends justify the means?

- Counter-example:
 - Fact: Releasing all medical data would enable great innovations and save lives.
 - But we still prefer to keep medical data private.
- This is not someone elses' problem.
 - You are responsible.

Afterthoughts

Privacy is a dimension of the quality of the user-interface.

- An intuitive UI is a good UI.
- Privacy is not binary (yes/no), but a grayscale; Would I tell my mom/neighbour/colleague?
- Speech is about dialogue.
 - Ownership of dialogue is shared among those present.
 - The EULA of one user cannot cover other users.
- A large cloud is a large target for criminals and foreign spies.
 - Distributed and heterogeneous is more resilient
 - = consequences of a breach are limited.
- As a measure of privacy, replace "cloud" by a person:
 - Greg follows your every move and stores all your queries.
 - \Rightarrow Greg is a <XXXXXXXXXX>?

Practical Organization

CS-E4070 Privacy in speech and audio interfaces Tom Bäckström 24/33 22.01.2019 – 02.04.2019 Introduction

Practical organization

Main teacher:	
Tom Bäckström	<pre>mailto:tom.backstrom@aalto.fi</pre>
Teaching assistants:	
Sneha Das	mailto:sneha.das@aalto.fi
Pablo Pérez Zarazaga	<pre>mailto:pablo.perezzarazaga@aalto.fi</pre>

Schedule

22.1.2019	14-16	Practical organization. Introduction to privacy in speech and audio interfaces.
29.1.2019	10-12 and 14-16	Visiting lectures by prof Susanna Lindroos- Hovinheimo (U Helsinki), prof Stephan Sigg (Aalto) and Docent Michael Laakasuo (U Helsinki).
5.2.2019	14-16	Selecting topics for seminar projects, reports and presentations. Set up work schedules.
10.2.2019	noon	DL for experimental project proposals (5 ECTS version; send to teacher by email)
19.3.2019	14-16	Seminar presentations
26.3.2019	14–16	Seminar presentations + final discussion. DL for the first versions of the reports (for feedback).
24.4.2019	noon	Final DL for reports.

Work-load and requirements

For 5 ECTS	
Participation	\sim 6×2h = 12h
Presentation	\sim 0.5 1 weeks = 20 40 h
Report	\sim 0.5 1 weeks = 20 40 h
Project	\sim 1 2 weeks = 40 80 h
Total	= 133 h
For 3 ECTS	
For 3 ECTS Participation	\sim 6×2h = 12h
	$\sim 6 \times 2 h$ = 12 h ~ 0.5 1 weeks = 20 40 h
Participation	• • • • • • • • • • • • • • • • • • • •

Presentation

- Teaching objective: Practice 1. presentation, 2. summarization of material, and 3. in-depth learning of narrow topic.
- Length: XX min + 5 min discussion
- Objective of presentation: Give an introduction and overview in the topic chosen = not just copying content of the related article.
- Target audience: Generally knowledgeable engineers and engineering students
- Use the Aalto presentation template
 - Latex https://version.aalto.fi/gitlab/latex/aaltobeamer
 - PowerPoint

https://materialbank.aalto.fi

Report option 1

- Task: Technical report in the scientific format
- Teaching objective: Practice 1. technical writing,
 2. summarization of material, and 3. in-depth learning of narrow topic.
- Length: Max 4 pages text + 1 page references
- Objective of report: Give an introduction and overview in the topic chosen = not just copying content of the related article.
- Target audience: Generally knowledgeable engineers and engineering students
- Template:

https://www.ieee.org/conferences/publishing/templates.html

Report option 2 (NEW)

- Task: Blog-post or magazine article for the general public
- Teaching objective: Practice 1. popular-science writing,
 2. summarization of material, and 3. in-depth learning of narrow topic.
- Length: 5 ... 10 min read
- Objective of report: Give an introduction and overview in the topic chosen to the general public
- Target audience: Generally knowledgeable *non-engineers*

Model to go by https://uxdesign.cc/whisper-your-secrets-59753e04634b?source= friends_link&sk=e7320b83837ddd1bf62e602d914573ab

Project

Can be one of the following

- Implementation and experiments within the topic area
- Literature review
- Popular-science text (report must then be in the scientific format)

Students choose the approach (teacher approves).

Choice of topics

- Either
 - choose topic/article from the homepage (mycourses) or
 - suggest your own topic which combines privacy with speech/audio.
- On the 5.2. lecture, topics are chosen/assigned to students.
- To avoid overlapping preferences, if you do not have your own topic, please select at least 2 topics from the web-page which you would be comfortable with.
- If there are a lot of students, then we will add more papers to the list before 29.2.
- Each student will do a work-plan + schedule on 29.2 to match his topic (instructions provided later).

That's all for today!

CS-E4070 Privacy in speech and audio interfaces Tom Bäckström 33/33 22.01.2019 – 02.04.2019 Introduction