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Lecture schedule

Tue 15 Jan: 1. Polynomials and integers
Tue 22 Jan: 2. The fast Fourier transform and fast multiplication
Tue 29 Jan: 3. �otient and remainder
Tue 5 Feb: 4. Batch evaluation and interpolation
Tue 12 Feb: 5. Extended Euclidean algorithm and interpolation from erroneous data

Tue 19 Feb: Exam week — no lecture

Tue 27 Feb: 6. Identity testing and probabilistically checkable proofs

Tue 5 Mar: Break — no lecture

Tue 12 Mar: 7. Finite fields
Tue 19 Mar: 8. Factoring polynomials over finite fields
Tue 26 Mar: 9. Factoring integers



Recap of last week

I A boot camp of basic concepts and definitions in algebra

I Polynomials in one variable (univariate polynomials)

I Basic tasks and first algorithms for univariate polynomials
I addition

I multiplication

I division (quotient and remainder)

I evaluation

I interpolation

I greatest common divisor

I Evaluation–interpolation -duality of polynomials

I Analysis of the extended Euclidean algorithm via invariants



Goal: Near-linear-time toolbox for univariate polynomials

I Multiplication (this week)

I Division (quotient and remainder)

I Batch evaluation

I Interpolation

I Extended Euclidean algorithm (gcd)

I Interpolation from partly erroneous
data



Further motivation for this week (1/2)

I The fast Fourier transform (FFT) is one of the most widely deployed and useful
algorithms in all of computing

I �ick demo:
FFT and fast polynomial multiplication (fast convolution) over C in signal processing

I In the exercises we will
(a) derive an FFT over a ring R endowed with a primitive root of unity ω of order a power of

2, and

(b) prove a version of the convolution theorem



Further motivation for this week (2/2)

I The classical integer multiplication
algorithm has quadratic complexity

I But how to handle, say, gigabyte-size
operands?

I We study the key ideas for FFT-based
fast integer multiplication (exercise)

I See also:

I https://gmplib.org

I M. Fürer, Faster integer multiplication,
SIAM J. Comput. 39 (2009) 979–1005 [9].

I D. Harvey, J. van der Hoeven, G. Lecerf,
Even faster integer multiplication,
J. Complexity 36 (2016) 1–30 [13].

https://gmplib.org


Key content for Lecture 2

I Evaluation–interpolation duality of polynomials

I Multiplication is a pointwise product in the dual

I Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

I The positional number system for integers

I Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)

I Fast cyclic convolution (assuming a suitable root of unity exists)

I Fast negative-wrapping cyclic convolution



Fast multiplication

(von zur Gathen and Gerhard [11],
Sections 8.2 and 8.3)



Coe�icient and evaluation representations

I Let F be a field and let ξ0, ξ1, . . . , ξd ∈ F be distinct

I Let a = α0 + α1x + . . . + αd−1xd−1 + αdxd ∈ F [x] be a polynomial of degree at most d

I We can represent a as a list (α0,α1, . . . ,αd ) ∈ F d+1 of d + 1 coe�icients

I Alternatively, we can represent a as a list of d + 1 values
(a(ξ0), a(ξ1), . . . , a(ξd )) ∈ F d+1

I Indeed, we have


ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d





α0
α1
...
αd



=



a(ξ0)
a(ξ1)
...

a(ξd )


and the le�-hand side Vandermonde matrix is invertible over F
(recall exercise from last week)



Evaluation and interpolation
I To evaluate a polynomial (α0,α1, . . . ,αd ) ∈ F d+1 at distinct points ξ0, ξ1, . . . , ξd ∈ F ,

we multiply from the le� with the Vandermonde matrix:


ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d





α0
α1
...
αd



=



a(ξ0)
a(ξ1)
...

a(ξd )



I To interpolate the coe�icients of a polynomial with values
(a(ξ0), a(ξ1), . . . , a(ξd )) ∈ F d+1 at distinct ξ0, ξ1, . . . , ξd ∈ F , we multiply from the le�
with the inverse of the Vandermonde matrix:



ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d



−1 

a(ξ0)
a(ξ1)
...

a(ξd )



=



α0
α1
...
αd





Example (evaluation)

I Let us evaluate a = 1 + 2x + 3x2 + 4x3 + 5x4 ∈ Z13 at ξ0 = 0, ξ1 = 1, ξ2 = 2, ξ3 = 3,
ξ4 = 4 in Z13

I We have 

1 0 0 0 0
1 1 1 1 1
1 2 4 8 3
1 3 9 1 3
1 4 3 12 9





1
2
3
4
5



=



1
2
12
1
7


and hence a(0) = 1, a(1) = 2, a(3) = 12, a(4) = 1, a(5) = 7



Example (interpolation)

I Let us interpolate the coe�icients of the unique polynomial a ∈ Z13 of degree at most
4 with values a(ξ0) = 1, a(ξ1) = 2, a(ξ2) = 12, a(ξ3) = 1, a(ξ4) = 7 at ξ0 = 0, ξ1 = 1,
ξ2 = 2, ξ3 = 3, ξ4 = 4 in Z13

I We have



1 0 0 0 0
1 1 1 1 1
1 2 4 8 3
1 3 9 1 3
1 4 3 12 9



−1 

1
2
12
1
7



=



1 0 0 0 0
12 4 10 10 3
2 0 8 2 1
5 8 11 12 3
6 2 10 2 6





1
2
12
1
7



=



1
2
3
4
5


and hence α0 = 1, α1 = 2, α2 = 3, α3 = 4, α4 = 5

I The inverse of the Vandermonde matrix can be computed e.g. by Gaussian elimination
or by using Lagrange polynomials (recall exercise from last week)



Evaluation–interpolation duality

I Evaluation–interpolation constitutes and example of two dual representations
(coe�icient and value representations of a polynomial)

I Both representations uniquely identify the object (the polynomial) under
consideration

I Recall from the Introduction our learning objective:

Making use of duality. O�en a problem has a corresponding dual problem that is
obtainable from the original (the primal) problem by means of an easy transformation.
The primal and dual control each other, enabling and algorithm designer to use the
interplay between the two representations



Evaluation–interpolation duality

I O�en a problem has a corresponding dual problem that is obtainable from the original
(the primal) problem by means of an easy transformation

I Polynomial multiplication (primal):
Given coe�icients of a and b as input, output coe�icients of ab

I Polynomial multiplication (dual):
Given evaluations of a and b as input, output evaluations of ab

I Transformation:
Evaluation (primal→ dual), interpolation (dual→ primal)

I The primal and dual control each other, enabling and algorithm designer to use the
interplay between the two representations ...



Multiplication is easy in the dual

I Polynomial multiplication (dual):
Given evaluations of a and b as input, output evaluations of ab

I Suppose deg a ≤ n and deg b ≤ m

I Then deg ab ≤ n + m and n +m + 1 evaluations of ab su�ice to uniquely determine ab

I So suppose ξ0, ξ1, . . . , ξn+m ∈ F are distinct and we have the evaluations
a(ξ0), a(ξ1), . . . , a(ξn+m) ∈ F and b(ξ0), b(ξ1), . . . , b(ξn+m) ∈ F

I Then, ab(ξ0) = a(ξ0)b(ξ0),

ab(ξ1) = a(ξ1)b(ξ1),

...

ab(ξn+m) = a(ξn+m)b(ξn+m) ∈ F

I Thus, O(n +m) multiplications su�ice to determine ab, assuming we are in the dual



Multiplication in primal representation

I Polynomial multiplication (primal):
Given coe�icients of a and b as input, output coe�icients of ab

I For deg a ≤ d and deg b ≤ d , the classical algorithm uses O(d2) operations

I The primal and dual control each other, enabling and algorithm designer to use the
interplay between the two representations ...

I Idea:
1. Transform the inputs a and b into dual representation
2. Multiply in the dual
3. Transform the product ab back to primal representation

I Needed:
Fast transformation between primal and dual representations



Fast evaluation and interpolation?
I To evaluate a polynomial (α0,α1, . . . ,αd ) ∈ F d+1 at distinct points ξ0, ξ1, . . . , ξd ∈ F ,

we multiply from the le� with the Vandermonde matrix:


ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d





α0
α1
...
αd



=



a(ξ0)
a(ξ1)
...

a(ξd )



I To interpolate the coe�icients of a polynomial with values
(a(ξ0), a(ξ1), . . . , a(ξd )) ∈ F d+1 at distinct ξ0, ξ1, . . . , ξd ∈ F , we multiply from the le�
with the inverse of the Vandermonde matrix:



ξ 0
0 ξ 1

0 · · · ξ d
0

ξ 0
1 ξ 1

1 · · · ξ d
1

...
...

...

ξ 0
d ξ 1

d · · · ξ d
d



−1 

a(ξ0)
a(ξ1)
...

a(ξd )



=



α0
α1
...
αd





Fast evaluation and interpolation?

I It is too expensive to construct the Vandermonde matrix (or its inverse) in explicit form

I Indeed, the matrix has (d + 1)2 elements in F , so working with the matrix in explicit
form yields no be�er algorithms than classical multiplication in the primal
representation

I For multiplication, both the input and the output use only O(d ) elements of F

I We have the freedom to choose any distinct ξ0, ξ1, . . . , ξd ∈ F

I Perhaps a good choice enables evaluation and interpolation in Õ(d ) operations
without constructing the Vandermonde matrix explicitly ...



Fast evaluation and interpolation?

I Idea:
Choose

ξ0 = ω
0, ξ1 = ω

1, ξ2 = ω
2, . . . , ξd = ω

d

for a carefully chosen element ω ∈ F (whose existence depends on F )

I Intuition:
With such a choice, the Vandermonde matrix should have a great deal of useful
algebraic structure that maybe enables the use of, say, divide-and-conquer for
matrix–vector multiplication, without even explicitly constructing the matrix ...



Key content (revisited)

I Evaluation–interpolation duality of polynomials

I Multiplication is a pointwise product in the dual

I Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

I The positional number system for integers

I Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)

I Fast cyclic convolution (assuming a suitable root of unity exists)

I Fast negative-wrapping cyclic convolution



Roots of unity

I Let R be a ring (recall that we tacitly assume that R is commutative with 0 , 1)

I For n ∈ Z≥1 and ω ∈ R, we say that ω is a root of unity of order n in R if ωn = 1

I Or what is the same, ω is a root of the polynomial zn − 1 ∈ R[z]



The discrete Fourier transform (DFT)

I Let ω be a root of unity of order n in R and let

f = φ0 + φ1x + φ2x2 + . . . + φn−1xn−1 ∈ R[x]

I The n-point discrete Fourier transform of f at ω is the vector of evaluations

DFTω (f ) = f̂ = (f (ω0), f (ω1), . . . , f (ωn−1)) ∈ Rn .

I Equivalently, we may view DFTω : f 7→ f̂ as the R-linear map that takes the vector of
coe�icients f = (φ0,φ1, . . . ,φn−1) ∈ Rn to the vector f̂ = (φ̂0, φ̂1, . . . , φ̂n−1) ∈ Rn

defined for all i = 0, 1, . . . , n − 1 by

φ̂i =

n−1∑
j=0

φjω
ij



Towards a first FFT: Spli�ing into even and odd parts

I Suppose that n ∈ Z≥2 is even and let f =
∑n−1

i=0 φix i ∈ R[x]

I Introduce the two polynomials

feven =

n/2−1∑
i=0

φ2ix i ∈ R[x] , fodd =

n/2−1∑
i=0

φ2i+1x i ∈ R[x]

I We observe that

f (x ) = feven (x2) + x · fodd (x2)

I Here f has degree at most n − 1,
whereas feven and fodd have degree at most n/2 − 1



Towards a first FFT: Evaluating at a root of unity of order n

I Let n ∈ Z≥2 be even and f =
∑n−1

i=0 φix i , feven =
∑n/2−1

i=0 φ2ix i , fodd =
∑n/2−1

i=0 φ2i+1x i

I We recall that

f (x ) = feven (x2) + x · fodd (x2) (4)

I Let ω ∈ R be a root of unity of order n; that is, ωn = 1

I We want to compute f (ω0), f (ω1), . . . , f (ωn−1); that is, DFTω (f )

I From (4) and ωn = 1 we have that it su�ices to first compute

feven (ω
0), feven (ω

2), . . . , feven (ω
2n−2) ∼ feven (ω

0), feven (ω
2), . . . , feven (ω

n−2)

fodd (ω
0), fodd (ω

2), . . . , fodd (ω
2n−2) ∼ fodd (ω

0), fodd (ω
2), . . . , fodd (ω

n−2)︸                                      ︷︷                                      ︸
That is, DFTω2 (feven) and DFTω2 (fodd)

and then do O(n) arithmetic operations in R



A first FFT: Recursion and analysis

I We just saw that to compute the n-point DFTω (f ), it su�ices to
1. split f into the even part feven and the odd part fodd
2. compute the n/2-point DFTω2 (feven),
3. compute the n/2-point DFTω2 (fodd), and
4. do O(n) further arithmetic operations in R to recover DFTω (f )

I That is, the total number of arithmetic operations is T (n) ≤ 2 · T (n/2) + O(n)

I This is T (n) = O(n log2 n) when n = 2k for k ∈ Z≥1 and we apply recursion



Primitive root of unity

I A root of unity ω ∈ R of order n is primitive if for any prime divisor t of n it holds
that ωn/t − 1 is not a zero divisor in R

I Examples:
• ωn = exp(2π i/n) is a primitive root of unity of order n in C

• 2 is a primitive root of unity of order 12 in Z13

• For
k 29 71 75 95 108 123
ω 21 287 149 55 64 493

we have that p = k · 257 + 1 is a prime and ω ∈ Zp is the least primitive root of unity of
order 257 in Zp



Properties of primitive roots of unity

Lemma 1
Let ω be a primitive root of unity of order n in R.
Then, for all integers s not divisible by n it holds that

(i) ωs − 1 is not a zero divisor in R, and

(ii)
∑n−1

i=0 ω
is = 0

Lemma 2
Let ω be a primitive root of unity of order n in R.
Then, ωa is a primitive root of unity of order |n/a| in R for all divisors a of n



Proof of Lemma 1 I

I For any ρ ∈ R and any k ∈ Z≥0, we have

(ρ − 1)
k−1∑
j=0

ρj = ρk − 1 (5)

I Select any s ∈ Z that is not divisible by n. Since ωn = 1, we may assume
s = 1, 2, . . . , n − 1

I Let 1 ≤ g ≤ s be the gcd of s and n with us + vn = g for u ∈ Z≥0 and v ∈ Z≤0

I Since s < n, we can choose a prime divisor t of n so that g divides n/t

I Take ρ = ωg and k = n/(gt ) in (5) to obtain that ωg − 1 divides ωn/t − 1. That is,
(ωg − 1)γ = ωn/t − 1 for some γ ∈ R



Proof of Lemma 1 II

I Thus ωg − 1 cannot be a zero divisor since if it were, we could conclude that
0 = 0 · γ = (ωg − 1)βγ = (ωn/t − 1)β for a nonzero β ∈ R and hence ωn/t − 1 would be
a zero divisor, a contradiction

I Take ρ = ωs and k = u in (5) to obtain that ωs − 1 divides ωus − 1 = ωus+vn − 1 = ωg − 1

I Thus, ωs − 1 cannot be a zero divisor since if it were, we could conclude that ωg − 1 is a
zero divisor, a contradiction

I Take ρ = ωs and k = n in (5) to obtain (ωs − 1)
∑n−1

i=0 ω
is = ωns − 1 = 1 − 1 = 0

I Since ωs − 1 is not a zero divisor, we conclude that
∑n−1

i=0 ω
is = 0 �



Proof of Lemma 2

I Let a be a divisor of n

I For |a| = n we observe that ωn = ω−n = 1 and hence ωa = 1 is trivially a primitive root
of unity of order 1

I Suppose that |a| < n and let t be any prime divisor of |n/a| > 1

I Then, s = a|n/a|/t is not divisible by n and hence Lemma 1 implies that
ωs − 1 = (ωa) |n/a |/t − 1 is not a zero divisor

I Since t was arbitrary, ωa is a primitive root of unity of order |n/a| in R �



The inverse discrete Fourier transform (inverse DFT)

Lemma 3
Suppose that n is a unit in R and let ω ∈ R be a primitive root of order n. Then,
DFT−1

ω =
1
n · DFTω−1

Proof.

It su�ices to show that for all k = 0, 1, . . . , n − 1 we have

φk =
1
n

n−1∑
i=0

φ̂iω
−ik

Take s = j − k in Lemma 1 to conclude that

1
n

n−1∑
i=0

φ̂iω
−ik =

1
n

n−1∑
i=0

n−1∑
j=0

φjω
ijω−ik =

n−1∑
j=0

φj ·
1
n

n−1∑
i=0

ω i(j−k) = φk

�



Beyond the first (radix-2) FFT

I The rest of the lecture goes beyond the first recursive derivation of a (radix-2) FFT
where we assumed that

1. the ring R has a (primitive) root of unity ω of order n = 2k , and
2. we are content with a recursive implementation

I The rest of the lecture contains more advanced material that shows how to
1. unfold a (mixed-radix) recursion into a sequence of linear transformations suitable e.g.

for parallel implementation; and
2. work with rings that do not have a suitable root of unity

I But we will start with something well known and highly useful ...



The positional number system (base B)

I Let B ∈ Z≥2

I Suppose that α ∈ Z with 0 ≤ α ≤ Bd − 1 for some d ∈ Z≥0

I Then, there is a unique finite sequence

(αd−1,αd−2, . . . ,α1,α0) ∈ Z
d
≥0 (6)

with 0 ≤ αi ≤ B − 1 for all i = 0, 1, . . . , d − 1 such that

α =
d−1∑
i=0

αiBi = αd−1Bd−1 + αd−2Bd−2 + . . . + α2B2 + α1B + α0 (7)

I We say that the sequence (6) is the (d-digit) representation of the integer α in the
positional number system with base B (or radix B)

I The elements αi are the digits of α

I We say that αd−1 is the most significant digit and α0 is the least significant digit



Example (base 10)

I Let us represent 123 ∈ Z in base B = 10

I We have

123 = 1 · 102 + 2 · 10 + 3 · 1

I Hence, the sequence (1, 2, 3) represents 123 in base 10

I �estion/work point:
Given a representation in base B as input, how do you compute a representation in base
C? Hint: quotient and remainder.

I (We will return to the work point in subsequent weeks.)



The positional number system (varying base)

I Let Bd−1,Bd−2, . . . ,B1,B0 ∈ Z≥2

I Suppose that α ∈ Z with 0 ≤ α ≤ Bd−1Bd−2 · · ·B1B0 − 1

I Then, there is a unique finite sequence

(αd−1,αd−2, . . . ,α1,α0) ∈ Z
d
≥0 (8)

with 0 ≤ αi ≤ Bi − 1 for all i = 0, 1, . . . , d − 1 such that

α =
d−1∑
i=0

αiBi−1Bi−2 · · ·B0

= αd−1Bd−2Bd−3 · · ·B0 + . . . + α2B1B0 + α1B0 + α0

(9)

I We say that the sequence (8) is the representation of the integer α in the positional
number system with (varying) base (Bd−2,Bd−1, . . . ,B1,B0)



Example (varying base)

I Let us represent 123 ∈ Z in base (9, 8, 7). We have

123 = 2 · 8 · 7 + 1 · 7 + 4 · 1

I Thus, the representation of 123 in base (9, 8, 7) is (2, 1, 4)

I �estion/work point:
Given a representation in base (Bd−1,Bd−2, . . . ,B1,B0) as input, how do you compute a
representation in base (Ce−1,Ce−2, . . . ,C1,C0)? Hint: quotient and remainder.



Number systems

I Today:
Positional number system for integers

I Next week:
Radix-point representation and approximation of rational numbers
(positional number system with integer and fractional parts separated by a radix point)

I Knuth [17, Chap. 4] gives an extensive treatment of number systems and algorithms
for arithmetic

I Besides their use in arithmetic, varying-base representations of integers are
encountered, for example, in linearization of array data in a memory hierarchy and in
the design of vector-parallel algorithms (e.g. algorithms for GPUs), where an array of
threads works with such linearizations



Factoring a composite-order DFT (1/3)
I Let ω be a primitive root of unity of composite order n = st in R for integers s, t ≥ 2

I We can view an index k ∈ {0, 1, . . . , st − 1} as a varying-base integer k = kst + kt with
ks ∈ {0, 1, . . . , s − 1} and kt ∈ {0, 1, . . . , t − 1}

I That is, ks and kt are the digits of k in base (s, t ) so that ks is the most significant digit
and kt is the least significant digit

I Recall that for all i = 0, 1, . . . , st − 1 we have

φ̂i =

st−1∑
j=0

φjω
ij

I Let us expand the output index i in base (s, t ) and the input index j in base (t, s)

I We have

φ̂ist+it =

s−1∑
js=0

t−1∑
jt=0

φjt s+jsω
(ist+it ) (jt s+js )



Factoring a composite-order DFT (2/3)
I Expand and use the fact that ωst = 1 to obtain

φ̂ist+it =

s−1∑
js=0

t−1∑
jt=0

φjt s+jsω
(ist+it ) (jt s+js )

=

s−1∑
js=0

t−1∑
jt=0

φjt s+jsω
is jt st+is jst+it jt s+it js

=

s−1∑
js=0

t−1∑
jt=0

φjt s+jsω
is jstω it jt sω it js

=

s−1∑
js=0

(
ωt

) is js
ω it js

t−1∑
jt=0

φjt s+js

(
ωs

) it jt

︸               ︷︷               ︸
(i)︸                     ︷︷                     ︸

(ii)︸                                    ︷︷                                    ︸
(iii)

.



Factoring a composite-order DFT (3/3)

I Let us study (i), (ii), and (iii) as the indices is, it , js, jt range over their domains:

φ̂ist+it =

s−1∑
js=0

(
ωt

) is js
ω it js

t−1∑
jt=0

φjt s+js

(
ωs

) it jt

︸               ︷︷               ︸
(i)︸                     ︷︷                     ︸

(ii)︸                                    ︷︷                                    ︸
(iii)

I Part (i) takes the t × s input f and outputs the t × s array obtained by taking the t-point
discrete Fourier transform at ωs for each of the s columns of f

I Part (ii) multiplies the resulting t × s array entrywise (Hadamard product) with the t × s
Vandermonde matrix with entries ω it js

I Part (iii) takes as input the t × s array output by (ii) and outputs the t × s array obtained by
taking the s-point discrete Fourier transform at ωt for each of the t rows of the array

I Finally, transpose the t × s array to obtain the s × t output f̂



Fast Fourier transform (FFT)

I Idea:
Apply the previous factorization recursively for smooth n

I For example, suppose that n = 2k for k ∈ Z≥1

I Take s = 2k−1 and t = 2

I Compute Parts (i) and (ii) explicitly, and apply the factorization recursively in Part (iii)

I Thus, the DFT at a primitive root of unity ω of order 2k in R can be computed in
T (2k ) ≤ 2T (2k−1) + O(2k ) operations in R (exercise)

I In particular, T (n) = O(n log n)



Factors in an FFT (1/4)

I Let us now look at a possible implementation of Parts (i), (ii), and (iii) in more detail

I Let ω be a primitive root of order n ∈ Z≥1 in R and let n = pqr for p, q, r ∈ Z≥1

I We will study two types of transformations that take as input an array a ∈ Rn and
produce as output an array b ∈ Rn

I We assume that the entries a[i] ∈ R of an array are indexed with i = 0, 1, . . . , n − 1

I Let w ∈ Rn be an array with w[i] = ω i for all i = 0, 1, . . . , n − 1
(in an implementation this array can be precomputed with O(n) operations in R)



Factors in an FFT (2/4)

I The first transformation Φ(p,q,r ) : Rn → Rn sets

b[iqr + jr + k] =
q−1∑
`=0

w[(j`pr ) rem n]a[iqr + `r + k] (10)

for all i ∈ {0, 1, . . . , p − 1}, j ∈ {0, 1, . . . , q − 1}, k ∈ {0, 1, . . . , r − 1}

I Observe that the transformation relies on integers in base (p, q, r ) for indexing the
input a and the output b

I Also observe that the transformation implements pr disjoint copies of a q-point DFT,
using in total O(pq2r ) = O(nq) operations in R

I This transformation can be used to implement Parts (i) and (iii)



Factors in an FFT (3/4)

I The second transformation Θ(p,q,r ) : Rn → Rn sets

b[iqr + jr + k] = w[jkp]a[iqr + jr + k] (11)

for all i ∈ {0, 1, . . . , p − 1}, j ∈ {0, 1, . . . , q − 1}, k ∈ {0, 1, . . . , r − 1}

I Again we observe that we work in base (p, q, r )

I This transformation runs in O(pqr ) = O(n) operations in R

I This transformation can be used to implement Part (ii)



Factors in an FFT (4/4)

I A naïve implementation of Parts (iii), (ii), and (i) would now implement an n-point DFT
for n = st and input f ∈ Rn as a sequence of three transformations, read from right to
le�, Φ(1, t,s)Θ(1,s, t )Φ(1,s, t ) (f )

I This must be followed by transposition of the resulting array from t × s to s × t to
obtain the output f̂ (Why?)

I However, this does not yet reduce the number of operations to O(n log n) (Why?)

I In an implementation with n = 2k , one can fix q = 2 and proceed with a sequence of
2k − 1 transformations, with p = 2j and r = 2k−1−j for j = 0, 1, . . . k − 1 (completing the
details are an exercise), followed by final permutation of the resulting array



Remarks

I The previous example gave one possibility to implement an FFT

I In general the term “fast Fourier transform” refers to a family of algorithms that rely
on factoring an n × n Vandermonde matrix Ω = (ω ij : i, j = 0, 1, . . . , n − 1) for a
composite n into a sequence of simpler (sparse) matrices such that matrix–vector
multiplication with each matrix in the sequence is cheap to execute

I For example, you may want to view the transformations (10) and (11) as obtaining the
vector b by multiplying a matrix with the vector a

I Van Loan [27] gives an extensive treatment of computational frameworks for the FFT



Key content (revisited)

I Evaluation–interpolation duality of polynomials

I Multiplication is a pointwise product in the dual

I Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

I The positional number system for integers

I Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)

I Fast cyclic convolution (assuming a suitable root of unity exists)

I Fast negative-wrapping cyclic convolution



Ideal, principal ideal

I Let R be a ring

I A nonempty subset I of R is an ideal if
1. for all a, b ∈ I we have a + b ∈ I, and
2. for all a ∈ I and r ∈ R we have ar ∈ I

I Examples:
• For any a ∈ R we have that 〈a〉 = aR = {ar : r ∈ R} is an ideal;

we say that 〈a〉 is the principal ideal generated by a ∈ R

• For any n ∈ Z, we observe that nZ = {. . . ,−2n,−n, 0, n, 2n, . . .} is a (principal) ideal of Z



Congruence modulo an ideal, residue class

I Let I be an ideal of R

I We say that r, s ∈ R are congruent modulo I and write r ≡ s (mod I) if r − s ∈ I

I For r ∈ R we say that the set r + I = {r + a : a ∈ I} is a residue class modulo I

I For all r, s ∈ R we have

r + I = s + I ⇔ r − s ∈ I ⇔ r ≡ s (mod I)



Residue class ring (factor ring)

I Let I be an ideal of R

I The set R/I = {r + I : r ∈ R} of all residue classes modulo I is a ring (the factor ring or
residue class ring of R modulo I) if we define the ring operations for all r, s ∈ R by

(r + I) + (s + I) = (r + s) + I

and

(r + I) (s + I) = (rs) + I

I Observe in particular that the aforementioned operations are well-defined in the sense
that they do not depend on the choices of representatives r, s for residue classes
modulo I (exercise)

I Example:
For R = Z and I = nZ with n ∈ Z≥1, we have R/I = Z/nZ � Zn



Example: Cyclic convolution

I Let R be a ring and let n ∈ Z≥1

I Consider the factor ring R[x]/〈xn − 1〉

I We may view the elements of R[x]/〈xn − 1〉 as polynomials of degree at most n − 1 in
R[x]

I Addition and multiplication in R[x]/〈xn − 1〉 are as in R[x], with the exception that
a�er multiplication we simplify the result with the substitution xn = 1



Example: Cyclic convolution

I Suppose that n = 8 and that R = Z17

I Let us multiply the following two polynomials in R[x]/〈xn − 1〉

f = 1 + 8x + 13x2 + 16x3 + 15x4 + 6x5 + 7x6 + 10x7

g = 4 + 3x + 16x2 + 7x3 + 6x4 + 11x5 + 9x6 + 15x7

I In R[x], the product is

fg = 4+ x + 7x2 + 4x4 + 16x5 + 12x6 + 10x7 + 7x8 + x9 + 9x10 + 8x11 + 8x12 + 8x13 + 14x14

I In R[x]/〈xn − 1〉, we can first compute fg in R[x] as above, reduce the result with the
substitution xn = 1, and then simplify to obtain the result in R[x]/〈xn − 1〉 (or, what is
the same, first multiply in R[x] and take the remainder in the division with xn − 1):

fg = 4 + x + 7x2 + 4x4 + 16x5 + 12x6 + 10x7 + 7 + x + 9x2 + 8x3 + 8x4 + 8x5 + 14x6

= 11 + 2x + 16x2 + 8x3 + 12x4 + 7x5 + 9x6 + 10x7



Cyclic convolution via the DFT

I Let R be a ring, let n ∈ Z≥1, and let ω ∈ R be a primitive root of unity of order n

I For two vectors a = (α0,α1, . . . ,αn−1) ∈ Rn and b = (β0, β1, . . . , βn−1) ∈ Rn, let us write
a · b for the pointwise product a · b = (α0β0,α1β1, . . . ,αn−1βn−1) ∈ Rn

Theorem 4 (Convolution Theorem)
For all f , g ∈ R[x]/〈xn − 1〉 we have DFTω (fg) = DFTω (f ) · DFTω (g)

Proof.

Exercise. �

I Furthermore, if n is a unit in R, we have fg = 1
n DFTω−1 (DFTω (f ) · DFTω (g))

I This enables fast algorithms for computing fg assuming (i) R admits a suitable
primitive root of unity, (ii) n is a unit in R, and (iii) n is divisible enough to enable an
FFT by divide and conquer



Example: Cyclic convolution via the DFT (1/2)

I Suppose that n = 8 and that R = Z17

I We observe that ω = 2 is a primitive root of unity of order n = 8 in R = Z17; indeed,

ω0 = 1, ω1 = 2, ω2 = 4, ω3 = 8, ω4 = 16, ω5 = 15, ω6 = 13, ω7 = 9, ω8 = 1

I We also observe that 2−1 = 9 ∈ R = Z17 and hence 8−1 = 2−3 = 15 ∈ R = Z17

I Using the DFT, let us multiply the following two polynomials in R[x]/〈xn − 1〉

f = 1 + 8x + 13x2 + 16x3 + 15x4 + 6x5 + 7x6 + 10x7

g = 4 + 3x + 16x2 + 7x3 + 6x4 + 11x5 + 9x6 + 15x7

I First we compute the n-point DFTs of f and g at ω to obtain

DFTω (f ) = (8, 11, 16, 7, 13, 9, 10, 2)

DFTω (g) = (3, 14, 4, 9, 16, 4, 0, 16)



Example: Cyclic convolution via the DFT (2/2)

I Next we take the pointwise product of the DFTs

DFTω (f ) = (8, 11, 16, 7, 13, 9, 10, 2) ∈ Rn

DFTω (g) = (3, 14, 4, 9, 16, 4, 0, 16) ∈ Rn

to obtain

DFTω (f ) · DFTω (g) = (7, 1, 13, 12, 4, 2, 0, 15) ∈ Rn

I Finally take the inverse n-point DFT to obtain the result

1
n

DFTω−1 (DFTω (f ) · DFTω (g)) = (11, 2, 16, 8, 12, 7, 9, 10) ∈ Rn

or what is the same as a polynomial

fg = 11 + 2x + 16x2 + 8x3 + 12x4 + 7x5 + 9x6 + 10x7



Remarks (1/2)

I Cyclic convolution via the DFT (when implemented with FFTs) can be used to multiply
polynomials in R[x] fast

I Indeed, simply choose a large enough n so that the degree of the product of the two
polynomials is less than n

I In this situation we can multiply two polynomials using O(n log n) operations in R;
contrast this with the classical O(n2) operations

I Caveat:
This approach needs (i) that R is endowed with a primitive root of unity ω of order n
and (ii) that n is a unit in R

I So what to do when R does not meet (i) and (ii) ?



Remarks (2/2)

I Next we will look at a multiplication algorithm, Schönhage–Strassen multiplication [24],
that needs very light assumptions about the coe�icient ring

I Our present exposition roughly follows the exposition of a polynomial version of the
Schönhage–Strassen algorithm in von zur Gathen and Gerhard [11, Section 8.3]

I For convenience in what follows, let us write S instead of R for the coe�icient ring, and
y instead of x for the polynomial indeterminate

I Rather than relying on cyclic convolution, the algorithm will rely on the following
notion of negative-wrapping cyclic convolution ...



Example: Negative-wrapping cyclic convolution

I Let S be a ring and let n ∈ Z≥1

I Consider the factor ring S[y]/〈yn + 1〉

I We may view the elements of S[y]/〈yn + 1〉 as polynomials of degree at most n − 1 in
S[y]

I Addition and multiplication in S[y]/〈yn + 1〉 are as in S[y], with the exception that
a�er multiplication we simplify the result with the substitution yn = −1



Example: Negative-wrapping cyclic convolution

I Suppose that n = 8 and that S = Z5

I Let us multiply the following two polynomials in S[y]/〈yn + 1〉

f = 1 + 2y + 2y2 + 4y3 + 3y4 + 4y5 + 2y6 + 3y7

g = 3 + 2y + 4y2 + y4 + 4y5 + y6 + 2y7

I In S[y], the product is

fg = 3 + 3y + 4y2 + 4y3 + y4 + 2y6 + 4y8 + y9 + 4y10 + y11 + 2y12 + 2y13 + y14

I In S[y]/〈yn + 1〉, we can first compute fg in S[y] as above, reduce the result with the
substitution yn = −1, and then simplify to obtain the result in S[y]/〈yn + 1〉 (or, what
is the same, first multiply in S[y] and take the remainder in the division with yn + 1):

fg = 3 + 3y + 4y2 + 4y3 + y4 + 2y6 − 4 − y − 4y2 − y3 − 2y4 − 2y5 − y6

= 4 + 2y + 3y3 + 4y4 + 3y5 + y6



Schönhage–Strassen multiplication (1/7)

I Let S be a ring

I Suppose that 2 is a unit in S (this is the only assumption we make about S)

I Let n = 2k for some k ∈ Z≥3

I Let f , g ∈ S[y]/〈yn + 1〉 be given as input

I We want to compute the product fg ∈ S[y]/〈yn + 1〉

I With foresight, let m = 2 bk/2c and t = 2 dk/2e ; in particular, we have n = mt and
m ≤ t ≤ 2m

I The key idea is to reduce one multiplication in S[y]/〈ymt + 1〉 into t multiplications in
S[y]/〈y2m + 1〉 and then apply recursion



Running example (1/8)

I It will be convenient to illustrate the algorithm design with a running example

I Let us work with S = Z5; in particular we observe that 2 is a unit with inverse
2−1 = 3 ∈ Z5

I Suppose that n = 8 and that our given input in S[y]/〈yn + 1〉 is

f = 1 + 2y + 2y2 + 4y3 + 3y4 + 4y5 + 2y6 + 3y7

g = 3 + 2y + 4y2 + y4 + 4y5 + y6 + 2y7

I We need to produce the output

fg = 4 + 2y + 3y3 + 4y4 + 3y5 + y6

I Since n = 8, we have m = 2 and t = 4



Schönhage–Strassen multiplication (2/7)

I Let us introduce a new indeterminate x and transform f and g so that every monomial
yk is replaced with xqyr where q and r are the unique nonnegative integers with
k = qm + r and 0 ≤ r < m

I Let us write F and G for the resulting two-variable polynomials in S[x, y]

I Let Q,H ∈ S[x, y] be the unique polynomials such that

FG = (x t + 1)Q + H (12)

and H has x-degree at most t − 1

I We observe that Q,H above exist by polynomial division (e.g. recall Lecture 1) since
the leading coe�icient of x t + 1 is a unit in S[y] with (S[y])[x] � S[x, y]

I (It should be noted that the actual algorithm never constructs Q in explicit form, here
we merely use polynomial division to conclude that Q exists.)



Running example (2/8)

I Continuing the running example, we have S = Z5, n = 8, m = 2, t = 4 and the inputs

f = 1 + 2y + 2y2 + 4y3 + 3y4 + 4y5 + 2y6 + 3y7

g = 3 + 2y + 4y2 + y4 + 4y5 + y6 + 2y7

I Substituting ym = x to f and g, the polynomials F and G in S[x, y] are

F = 1 + 2y + (2 + 4y )x + (3 + 4y )x2 + (2 + 3y )x3

G = 3 + 2y + 4x + (1 + 4y )x2 + (1 + 2y )x3

I For illustration, let us also display the polynomials FG, Q, and H, but also observe that
FG and Q are not computed by the algorithm, and the polynomial H will be obtained
only later

FG = 3 + 3y + 4y2 + (4y + 3y2)x + (3 + y2)x2 + (1 + y2)x3 + (3 + y + 4y2)x4 + yx5 + (2 + 2y + y2)x6

Q = 3 + y + 4y2 + yx + (2 + 2y + y2)x2

H = 2y + (3y + 3y2)x + (1 + 3y )x2 + (1 + y2)x3



Schönhage–Strassen multiplication (3/7)

I Substitute x = ym to both sides of (12) to conclude that

F (ym, y )G(ym, y ) = (ymt + 1)Q (ym, y ) + H (ym, y )

implying

F (ym, y )G(ym, y ) ≡ H (ym, y ) (mod ymt + 1)

I Since f = F (ym, y ) and g = G(ym, y ), we conclude that it su�ices to compute H (ym, y )
to determine the product fg in S[y]/〈ymt+1〉

I Indeed, H (ym, y ) is a polynomial in y with degree less than 2mt , which is easily
reduced with the substitution ymt = −1 to yield the result fg

I We observe that (12) implies FG ≡ H (mod x t + 1), so our goal in what follows will be
to multiply given F and G modulo x t + 1



Running example (3/8)

I Continuing the running example, we have S = Z5, n = 8, m = 2, t = 4 and

F = 1 + 2y + (2 + 4y )x + (3 + 4y )x2 + (2 + 3y )x3

G = 3 + 2y + 4x + (1 + 4y )x2 + (1 + 2y )x3

I Let us also recall that

H = 2y + (3y + 3y2)x + (1 + 3y )x2 + (1 + y2)x3

I Thus, substituting ym = x into H, we obtain

H (ym, y ) = 2y + 3y3 + 4y4 + 3y5 + y6 + y8

I Substituting ymt = −1 into H (ym, y ), we obtain the desired output

fg = 4 + 2y + 3y3 + 4y4 + 3y5 + y6



Schönhage–Strassen multiplication (4/7)

I By construction, F and G both have y-degree less than m, so FG has y-degree less
than 2m

I We may thus work with (S[y]/〈y2m + 1〉)[x] in place of S[x, y] when computing FG
from given F and G

I Accordingly, let R = S[y]/〈y2m + 1〉

I Restating our goal from the previous slide, given F ,G ∈ R[x] as input, we seek to
compute a H ∈ R[x] of x-degree at most t − 1 such that there is a Q ∈ R[x] with
FG = (x t + 1)Q + H



Schönhage–Strassen multiplication (5/7)

I Next we want to reduce our goal from multiplying modulo x t + 1 to multiplying
modulo x t − 1, since the la�er can be implemented with cyclic convolution

I Toward this end, it will be useful to have a primitive root of unity of order 2t in R;
here is where our foresight in the choice of the parameters m and t will pay o�

I First, observe that y is a primitive root of unity of order 4m in R = S[y]/〈y2m + 1〉:
indeed, since y2m ≡ −1 (mod y2m + 1) holds and 2 is a unit in S by assumption, we
observe that y2m − 1 ≡ −2 (mod y2m + 1) is a unit in R and hence cannot be a zero
divisor in R

I Since m and t are positive integer powers of 2 with t ≤ 2m, we have that

η = y2m/t

is a primitive root of order 2t in R by Lemma 2



Running example (4/8)

I Continuing the running example, we have S = Z5, n = 8, m = 2, t = 4

I Accordingly, in R = S[y]/〈y2m + 1〉 we have that η = y2m/t = y is a primitive root of
order 2t

I Indeed, in R we have

η0 = 1, η1 = y, η2 = y2, η3 = y3, η4 = −1, η5 = −y, η6 = −y2, η7 = −y3, η8 = 1



Schönhage–Strassen multiplication (6/7)

I Given F ,G ∈ R[x] as input, we seek to compute a H ∈ R[x] of x-degree at most t − 1
such that there is a Q ∈ R[x] with

FG = (x t + 1)Q + H (13)

I Observing that ηt = −1 in R and substituting ηx in place of x in (13), we have, in R[x],

F (ηx )G(ηx ) = ((ηx )t + 1)Q (ηx ) + H (ηx )

= (−x t + 1)Q (ηx ) + H (ηx )

= (x t − 1)Q̃ (ηx ) + H (ηx )

I That is, we have F (ηx )G(ηx ) = H (ηx ) in R[x]/〈x t − 1〉

I In particular, we can use cyclic convolution and the FFT at the primitive root of unity
ω = η2 of order t in R to multiply F (ηx ) and G(ηx ) in R[x]/〈x t − 1〉 to obtain H (ηx )

I Substituting η−1x in place of x in H (ηx ) yields our desired result H in R[x]



Running example (5/8)

I Continuing the running example, we have S = Z5, n = 8, m = 2, t = 4 and

F = 1 + 2y + (2 + 4y )x + (3 + 4y )x2 + (2 + 3y )x3

G = 3 + 2y + 4x + (1 + 4y )x2 + (1 + 2y )x3

H = 2y + (3y + 3y2)x + (1 + 3y )x2 + (1 + y2)x3

I Recalling that η = y in R = S[y]/〈y2m + 1〉 for our chosen parameters, in R[x] we have

F (ηx ) = 1 + 2y + (2y + 4y2)x + (3y2 + 4y3)x2 + (2 + 2y3)x3

G(ηx ) = 3 + 2y + 4yx + (y2 + 4y3)x2 + (3 + y3)x3

H (ηx ) = 2y + (3y2 + 3y3)x + (y2 + 3y3)x2 + (4y + y3)x3

I In particular, observe how substituting ηx in place of x in F ,G,H cyclically shi�s the
coe�icients (polynomials in y) with negative wrapping because y2m = −1 in R



Schönhage–Strassen multiplication (7/7)

I Let us now summarize the algorithm in one slide

1. To multiply f , g ∈ S[y]/〈ymt + 1〉, construct F ,G ∈ R[x] with R = S[y]/〈y2m + 1〉 from f
and g by introducing a new indeterminate x and substituting ym = x

2. Let η = y2m/t ∈ R and substitute ηx in place of x to obtain F (ηx ),G(ηx ) ∈ R[x]

3. Compute the product F (ηx )G(ηx ) = H (ηx ) ∈ R[x]/〈x t − 1〉 via cyclic convolution

H (ηx ) =
1
t

DFTω−1

(
DFTω (F (ηx )) · DFTω (G(ηx ))

)
using t-point fast Fourier transforms at the primitive root ω = η2 of order t in R

[[This leads to t recursive multiplications in R = S[y]/〈y2m + 1〉 when taking the
pointwise product · above.]]

4. Substitute η−1x in place of x in H (ηx ) to obtain H

5. Substitute x = ym and ymt = −1 in H to obtain the output fg ∈ S[y]/〈ymt + 1〉



Running example (6/8)

I Let us illustrate the execution of the algorithm in our running example

I We have S = Z5, n = 8, m = 2, t = 4 and the input

f = 1 + 2y + 2y2 + 4y3 + 3y4 + 4y5 + 2y6 + 3y7

g = 3 + 2y + 4y2 + y4 + 4y5 + y6 + 2y7

1. Substituting ym = x , we construct the polynomials

F = 1 + 2y + (2 + 4y )x + (3 + 4y )x2 + (2 + 3y )x3

G = 3 + 2y + 4x + (1 + 4y )x2 + (1 + 2y )x3

2. Substituting ηx in place of x , we obtain

F (ηx ) = 1 + 2y + (2y + 4y2)x + (3y2 + 4y3)x2 + (2 + 2y3)x3

G(ηx ) = 3 + 2y + 4yx + (y2 + 4y3)x2 + (3 + y3)x3



Running example (7/8)

I We have S = Z5, n = 8, m = 2, t = 4

3. Taking the t-point fast Fourier transforms at ω = η2, we obtain

DFTω (F (ηx )) = (3 + 4y + 2y2 + y3, 2 + 4y + 3y3, 4 + 4y2 + 2y3, 4y2 + 4y3)

DFTω (G(ηx )) = (1 + y + y2, 3 + 3y + y2, 3y + y2 + 3y3, 3 + y + 2y2 + 2y3)

This leads to t recursive multiplications in R = S/〈y2m + 1〉 as follows

(3 + 4y + 2y2 + y3) (1 + y + y2) = y + 4y2 + 2y3

(2 + 4y + 3y3) (3 + 3y + y2) = 2 + 4y2 + 3y3

(4 + 4y2 + 2y3) (3y + y2 + 3y3) = 3y + 3y2 + 4y3

(4y2 + 4y3) (3 + y + 2y2 + 2y3) = 3 + 4y + 4y2 + y3

That is, we obtain the pointwise product

DFTω (F (ηx ))·DFTω (G(ηx )) = (y+4y2+2y3, 2+4y2+3y3, 3y+3y2+4y3, 3+4y+4y2+y3)



Running example (8/8)

I We have S = Z5, n = 8, m = 2, t = 4

3. (continued)
Taking the t-point inverse FFT, we obtain

1
t

DFTω−1 (DFTω (F (ηx )) · DFTω (G(ηx ))) = (2y, 3y2 + 3y3, y2 + 3y3, 4y + y3)

or what is the same as a polynomial in two variables

H (ηx ) = 2y + (3y2 + 3y3)x + (y2 + 3y3)x2 + (4y + y3)x3

4. Substituting η−1x in place of x in H (ηx ), we obtain

H = 2y + (3y + 3y2)x + (1 + 3y )x2 + (1 + y2)x3

5. Finally, we substitute x = ym and ymt − 1 in H to obtain the output

fg = 4 + 2y + 3y3 + 4y4 + 3y5 + y6



Implementation remarks (1/3)

I In an implementation, we can represent a polynomial f ∈ S[y]/〈ymt + 1〉 as an array
consisting of mt elements of S

I Accordingly, we can represent a polynomial F ∈ (S[y]/〈y2m + 1〉)[x]/〈x t − 1〉 as an
array of length 2mt that has been (tacitly) partitioned into t segments, with each
segment consisting of 2m elements of S

I That is, each segment represents a coe�icient in R = S[y]/〈y2m + 1〉 and the t
segments together represent a polynomial in R[x]/〈x t − 1〉



Implementation remarks (2/3)

I Multiplication with powers of y in R = S[y]/〈y2m + 1〉 is easy: we just cyclically shi�
the list of coe�icients of a polynomial in y by as many places as is indicated by the
power of y , taking care to adjust the sign of the coe�icient in case of wrap-arounds

I Accordingly, multiplication and substitution with powers of η are similarly
negative-wrapping cyclic shi�s

I In particular, fast Fourier transforms at ω = η2 over R = S[y]/〈y2m + 1〉 similarly
amount to additions and negative-wrapping cyclic shi�s



Implementation remarks (3/3)

I To build F from f , we (i) view f as a collection of t segments of length m each, and (ii)
pad each segment with m zeros of S so that each segment has length 2m

I Multiplication and substitution with a power of η rotates each segment cyclically
(with negative wrapping since y2m = −1)

I Recursive multiplications in R operate on pairs of segments

I To build fg from H, we compress back from length 2mt to length mt so that each of the
mt elements of fg becomes a (signed) sum of 2 elements of H as determined by the
substitutions x = ym and y tm = −1



Analysis (1/3)

I For n = 2k with k ∈ Z≥0, we claim that Schönhage-Strassen multiplication runs in
O(n log n log log n) operations in S for two inputs f , g ∈ S[y]/〈yn + 1〉 given in
coe�icient representation

I Recalling that t = 2 dk/2e and m = 2 bk/2c with n = mt ≥ 8, it su�ices to analyse the
recurrence

T (n) ≤ tT (2m) + Cn log2 n (14)

with T (1), T (2), T (4) ≤ D where C and D are constants independent of n

I Indeed, for an input of size n ≥ 8, the algorithm makes t recursive calls on inputs of
size 2m < n and does at most Cn log2 n work (operations in S) to prepare the recursive
calls and to prepare the result based on the return values of the calls



Analysis (2/3)

I Let us reparameterize (14) in terms of k to obtain, for all k ≥ 3,

T (k) ≤ 2 dk/2eT (bk/2c + 1) + C · 2kk (15)

I For all nonnegative integers k we have

bk/2c + dk/2e = k, b(k + 1)/2c = dk/2e, and d(k + 1)/2e = bk/2c + 1 (16)

I From (16) we have that (15) is equivalent to, for all k ≥ 2,

T (k + 1) ≤ 2 bk/2c+1T (dk/2e + 1) + C · 2k+1 (k + 1) (17)

I For convenience, let us substitute T (k + 1) = 2k (k − 1)L(k) to (17) and divide by
2k (k − 1) on both sides to obtain the equivalent form, for all k ≥ 2,

L(k) ≤
2(dk/2e − 1)

k − 1
L(dk/2e) +

2C (k + 1)
k − 1

(18)



Analysis (3/3)

I From (18) we obtain that for all k ≥ 2 we have

L(k) ≤ L(dk/2e) + 6C (19)
I Now let us observe that at most log2 3k iterations of the map k 7→ dk/2e su�ice to

reach the value 1 starting from any positive integer k

I Indeed, the map k 7→ dk/2e is dominated by the map k 7→ bk/2c + 1, which can be
viewed as right-shi�ing k (viewed as an integer in base 2 representation) by one bit
position and then incrementing the result

I When iterating k 7→ bk/2c + 1, the increments in total contribute at most the least
power of 2 at least k (which is at most 2k), so at most log2 3k right-shi�s and
increments su�ice to reach the value 1

I In particular, iterating (19), we obtain, for all k ≥ 2,

L(k) ≤ L(dk/2e) + 6C ≤ L(ddk/2e/2e) + 12C ≤ · · · ≤ L(1) + 6C log2 3k = O(log k)

and for k ≥ 3 thus T (k) = 2k−1 (k − 2)L(k − 1) = O(2kk log k)



Application

I The classical integer multiplication
algorithm has quadratic complexity

I But how to handle, say, gigabyte-size
operands?

I We study the key ideas for FFT-based
fast integer multiplication (exercise)

I See also:

I https://gmplib.org

I M. Fürer, Faster integer multiplication,
SIAM J. Comput. 39 (2009) 979–1005 [9].

I D. Harvey, J. van der Hoeven, G. Lecerf,
Even faster integer multiplication,
J. Complexity 36 (2016) 1–30 [13].

https://gmplib.org


Further remarks

I Using Schönhage–Strassen multiplication, we can multiply two polynomials of degree
at most n in O(n log n log log n) operations in the coe�icient ring S, provided that 2 is a
unit in S

I With some extra work, the assumption that 2 is a unit in S can be li�ed to obtain a
multiplication algorithm that works over any coe�icient ring S in O(n log n log log n)
operations; cf. von zur Gathen and Gerhard [11, Section 8.3, Exercises 8.29 and 8.30]
and Schönhage [23]

I Cf. also the “three-primes” FFT algorithm for integer multiplication on 64-bit
hardware [11, Section 8.3]



Learning objectives (1/2)

I Terminology and objectives of modern algorithmics, including elements of algebraic,
approximation, online, and randomised algorithms

I Ways of coping with uncertainty in computation, including error-correction and
proofs of correctness

I The art of solving a large problem by reduction to one or more smaller instances of the
same or a related problem

I (Linear) independence, dependence, and their abstractions as enablers of e�icient
algorithms



Learning objectives (2/2)

I Making use of duality
I O�en a problem has a corresponding dual problem that is obtainable from the original

(the primal) problem by means of an easy transformation

I The primal and dual control each other, enabling an algorithm designer to use the
interplay between the two representations

I Relaxation and tradeo�s between objectives and resources as design tools
I Instead of computing the exact optimum solution at considerable cost, o�en a less costly

but principled approximation su�ices

I Instead of the complete dual, o�en only a randomly chosen partial dual or other
relaxation su�ices to arrive at a solution with high probability



Recap of key content for Lecture 2

I Evaluation–interpolation duality of polynomials

I Multiplication is a pointwise product in the dual

I Transforming between the primal and a (carefully chosen) dual
—roots of unity and the discrete Fourier transform (DFT)

I The positional number system for integers

I Factoring a composite-order DFT to obtain a fast Fourier transform (FFT)

I Fast cyclic convolution (assuming a suitable root of unity exists)

I Fast negative-wrapping cyclic convolution


