Decision making and

problem solving —
Lecture 3

e Modeling risk preferences
» Stochastic dominance




O Last time:
Decisions should be based on expected value of the alternatives’ outcomes (if and)

only if the DM is risk neutral
Under 4 axioms for the DM’s preference relation between risky alternatives, there

exists a real-valued function (“utility function”) so that
The DM should choose the alternative with the highest expected utility
Itis unique up to positive affine transformations -> we can normalize the utility

function the way we want
O This time:
What is this utility function and how to model the DM’s preferences with it?
We learn how these preferences correspond to the DM’s attitude towards risk
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Assessment of utility functions

O Utility functions are assessed by asking the DM to choose between a simple
lottery and a certain outcome (i.e., a degenerate lottery)

—  X: Certain payoff t
— Y: Payoff t* (t~) with probability p (1-p) P t
U General idea:

— Vary the parameters (p,t,t*, t7) until the DM is indifferent between X and Y:
Efu()] = Eu(V)] & u(®) = pu(t*) + (1 —p)u(t™)
— Repeat until sufficiently many points for the utility function have been obtained
L Because u is unique up to positive affine transformations, u can be fixed at
two points

O Usually, uis set at 1 at the most preferred level, and at O at the least preferred

1-p t
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Assessment: The certainty equivalence

approach

d The DM assesses t

0 Example: Assess utility function for the interval [-10,50] euros

— Normalization: we can fix u(-10)=0 and u(50)=1 )

30€ 20€ 40€ 7

0.5 Eoe 0.5 30¢ 0.5 c0e §0:4_

05 N -10¢ 0.5 -10€ 0.5 30€ o2l

u(30) u(20) u(40)
= 0.5u(-10) + 0.5u(50) = 0.5u(—10) + 0.5u(30) = 0.5u(30) + 0.5u(50)

=05-0+05-1=05 =05-0+05-05=0.25 =05-05+05-1

=0.75

10 20 30 40 50
t
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Other approaches to utility assessment

O Probability equivalence:
— The DM assesses p p o 2
d Gain equivalence: 1o ¢ i
— The DM assesses t*
O Loss equivalence:
— The DM assesses t p t

1-p ?
O Often in applications, the analyst chooses a family of utility functions
and then asks the DM to compare lotteries to fix the parameter(s)
— E.g., the exponential utility function (parameter p)
t

u(t)=1-e P,p>0
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Reference lottery revisited

L Assume that an expected utility maximizer with utility
function u uses a reference lottery to assess the

probability of event A Lottery X " !

L She thus adjusts p such that she is indifferent NotAd T
between lottery X and reference lottery Y: D -
E[u(X)] = E[u(Y)] Coterry N |

& P + (1 - P(A))u(t™) = pult?) + (1 — plu(e)
& PA)(u@™) —ult™)) =p(ult?) —u®))
& PA)=p

O Ultility function u does not affect the result
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Expected utility In decision trees

O Do everything in the usual way,

7 Profit  Utility
but EU=1.07 29 __ 1500 178
— Chance node: compute the Same @3 100 1.10
expected utility . g 20D 1000 071
— Decision node: select the | U0 1000 163
alternative corresponding to e “’31’ 200 1.18
maximum expected utility e a2 _100 0.89
— Cf. the umbrella example, in which ,
Savings Account
‘some numbers’ represented - 00 1.39

preferences
—t
u(t) = 2 — 1000
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Expected utility in Monte Carlo

Jx

=2-EXP(-F12/1000)

O For each sample x4, ..., x,, of D : ; G H
random variable X, T Per—
Compute Utlllty U,(Xl) 0.502964 990.301%, 1.58097

D Mean Of Sample San"lnple n45:w? 954215?| 1u;:i|,l5il55|
utilities U,(Xl), e U,(Xn) 2 0.704234 1268.308 1.718693

. . 3 0.777865 1382.501  1.74905
prOVIdeS an estimate for a 0.534927 1043.831 1.647897
E[U,(X)] 5 0.4426 927.8094 1.604581

6 0.916252 1690.147 1.815508
7 0.649453 1191.922 1.696363
g 0.65278 1196.418 1.597725
g 0.110887 389.0874 1.322325
10 0.189275 559.714 1.428628
11 0.902882 1649.073 1.807772
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EUT for normative decision support

O EUT is a normative theory: if the DM is rational, she should select
the alternative with the highest expected utility

— Not descriptive or predictive: EUT does not describe or predict how people
actually do select among alternatives with uncertain outcomes

O The four axioms characterize properties that are required for
rational decision support
— Cf. probability axioms describe a rational model for uncertainty
— The axioms are not assumptions about the DM’s preferences
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http://presemo.aalto.fi/2134lec?2

O Which of the below alternatives would you choose?

1. Asuregainofl M€

2. A gamble in which there is a
o0 1% probability of getting nothing,
o 89% probability of getting IM€, and
0 10% probability of getting SM€

A’, Aalto University



http://presemo.aalto.fi/2134lec?2

O Imagine that a rare disease is breaking out in a community and is
expected to kill 600 people. Two different programs are available
to deal with the threat.

— If Program A is adopted, 200 people will be saved

— If Program B is adopted, there’s a 33% probability that all 600 will be
saved and a 67% probability that no one will be saved.

Which program will you choose?

1. Program A
2. Program B
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O Which of the below alternatives would you choose?

1. A gamble in which there is a
o0 89% probability of getting nothing and
0 11% probability of getting IM€

2. A gamble in which there is a
0  90% probability of getting nothing, and
0 10% probability of getting SM€
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0 Imagine that a rare disease is breaking out in some community
and is expected to kill 600 people. Two different programs are
available to deal with the threat.

— If Program C is adopted, 400 of the 600 people will die,

— If Program D is adopted, there is a 33% probability that nobody will die
and a 67% probability that 600 people will die.

Which program will you choose?

1. Program C
2. Program D

A’, Aalto University



O  Which of the below alternatives would you choose?
A. Asuregainof 1 M€
B. A gamble in which there is a

o] 1% probability of getting nothing,
o] 89% probability of getting IM€, and
o] 10% probability of getting 5SM€

O  Which of the below alternatives would you choose?
C. Agamble in which there is a

o] 89% probability of getting nothing and
o] 11% probability of getting IM€

D. A gamble in which thereis a
o] 90% probability of getting nothing, and
o] 10% probability of getting 5SM€

QO Actual choice behavior is not always consistent with EUT
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Most people choose A; hence
E[u(A)I>E[u(B)]:
u(1) > 0.10u(5)+0.89u(1)+0.01u(0) =

0.11u(1) > 0.10u(5)+0.01u(0)

Most people choose D; hence
E[u(D)I>E[u(C)]:
0.10u(5)+0.90u(0) > 0.11u(1)+0.89u(0) =

0.11u(1) < 0.10u(5)+0.01u(0)




Framing effect

O Most people choose A and D
U People tend to be "risk-averse” about gains and "risk-seeking”
about losses

A 200 (=600-400) C 400
[0)
. 33%<] 600 (=600-0) 33% o
D
67% 0 (=600-600) 67% -600
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Risk and risk preferences

U Risk: possibility of loss (or some other unpreferred outcome)
— Characterized by both the probability and magnitude of loss

U Risk preferences:
— How does the riskiness of a decision alternative affect its desirability?
— E.g., risk neutrality: choose the alternative with the highest expected (monetary) value, riskiness
Is not a factor

U Definition of risk preferences requires that outcomes T are quantitative and
preferences among them monotonic
— E.g., profits, costs, lives saved etc.
U Here, we assume that more is preferred to less, i.e., u(t) is increasing (and
differentiable) for all t
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Certainty equivalent in Expected Utility
Theory

O Definition: Certainty equivalent of a random variable X, denoted by

CE[X], is an outcome in T such that CE[X]
u(CEIX])) = E[u(X)] X
CE [X ] — ’L<L_1(E [u (X )]) Allowed
------------- because u is
monotonic

— IMPORTANT! CE[X] is the certain outcome such that the DM is indifferent
between alternatives X and CE[X]
— CE[X] depends on both the DM’s utility function u (preferences) and the distribution

of X (uncertainty)
0 My CE for roulette may be different from yours
0 My CE for roulette may be different from my CE for one-armed bandit
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Certainty equivalent - Example

O Consider a decision alternative X with fx(3) = 0.5 and fx(5) = 0.5 and
three DMs with the below utility functions

U Compute each DM’s certainty equivalent for X

u(t) u(t) u(t)

u(b)
ETu(X)]
u(3)

u(5) u(5)

E[u(X)] E[u(0)]

u(3)

> u(3)

L The shape of the utility function seems to determine whether CE[X] is
below, above, or equal to E[X]=4
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Convex and concave functions

4 Definition: u is concave, if for any t, t,:
Au(ty) + (L —Du(ty) <u(it; + (1 —A)t,) vA€[0,1]

— Aline drawn between any two points u(t,) and u(t,) is below (or
equal to) u(t)

- u'(t) <0Vt €T, if the second derivative exists

d Definition: u is convex, if for any t; t,:
Au(ty) + (L — Du(ty) = u(dt; + (1 — A)t,) vA€[0,1]

— Aline drawn between any two points u(t,) and u(t,) is above (or
equal to) u(t)

- u'(t) =0Vt €T, if the second derivative exists
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Convex utility functions

A For any utility function u, E|u(X)] = ). fx(t;) u(t;) for X with
discrete set of outcomes t;;i =1,...,n
0 Note: ), fx(t;) =1

O Let u be convex. Then
Q Au(ty)) + (1 —Du(ty) = uldt; + (1 — Dt,) VA€ [0,1] (by def., previous slide)
O And, specifically, by applying this definition several times,

fe(u(ty) + .. + fx(t)u(ty) = E[UX)] =z u (Z fx(ti)ti> = U(EIX])

O For convex u: Expected utility of X is higher than (expected) utility
of E(X)
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Jensen’s inequality

O For any random variable X, if function u is
I.  Convex, then E[u(X)] = u(E[X])
II. Concave, then E[u(X)] < u(E[X])

=
u concave u convex
= E[u(X)] < u(E[X]) = Elu(X)] = u(E[X])
Su T E@)) SuTwERXD) e uH(EG)]) = ut wEXD)
Auowea'"""é CE[X] < E|X] & CE[X] = E[X]

mcreasmg
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Risk attitudes in Expected Utility Theory

l. uis concave iff CE[X] < E[X] for all X CE[X] 5
II. uis convex iff CE[X] = E[X] for all X
lll. uis linear iff CE[X]=E[X] for all X N

O A DM with a linear utility function is called risk neutral
— Indifferent between uncertain outcome X and a certain outcome equal to E[X]

O A DM with a concave but not linear utility function is called risk averse
— Prefers a certain outcome smaller than E[X] to uncertain outcome X

0 A DM with a convex but not linear utility function is called risk seeking
— Requires a certain outcome larger than E[X] to not choose uncertain outcome X
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Risk premium in Expected Utility Theory

O Definition: Risk premium for random variable X is RP[X]=E[X]-CE[X]
— RP[X] depends on both the DM’s preferences (u) and the uncertainty in the decision
alternative (distribution of X)
— RP[X] is the premium that the DM requires on the expected value to change a

certain outcome of CE[X] to an uncertain outcome X
u(t)

. DM is risk neutral, iff RP[X]=0 for all X u(5)
E[u(X)]

. DM is risk averse, iff RP[X] = O for all X “(3)
Ill. DM is risk seeking, iff RP[X] < O for all X
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Computing CE and RP

Example: Jane’s u(t) = t? and her
payoff is Y~Uni(3,5)

1 Eu()] = [ fr(®u(t)dt = 16.33
v=u@)=t’et=utlw)=\v
CE[X] =u~1(16.33) = /16.33 = 4.04
RP[X] =4 -4.04 =-0.04

Compute E[u(X)] and E(X)
Solve u~1(")

Compute CE[X] = u Y (E[u(X)])
Compute RP[X]=E[X]-CE[X]

W e

> W N

Q Step 2: if u=1(-) cannot be solved
analytically, solve it numerically from
u(CE[X]) = Elu(X)]

— Trial and error
— Computer software
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Prospect theory

. utility
O Expected Utility Theory assumes that people only care about the 4
outcome in the absolute sense
O Yet, empirical evidence suggests that people tend to  outeome
— think of possible outcomes relative to a certain reference point (often the Losses Gains
status quo),
— have different risk attitudes towards gains and losses with regard to the
reference pOint, Reference point
— overweight extreme, but unlikely events, but underweight "average" events.
O Prospect theory seeks to accommodate these empirical findings:
Tversky, A. and D. Kahneman. ” Advances in prospect theory: Cumulative
representation of uncertainty.” Journal of Risk and uncertainty 5.4 (1992): 297-
323.
O NOTE:
—  EUT isa normative theory: tells what rational people should do
—  Prospect theory is a descriptive theory: tries to describe what people tend to
do in real life
,, Aalto University
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Sto C h aSti C d om I nance https://presemo.aalto.fi/stocdom/

O Question: Which decision alternative would you choose?

1

1. X — 0 -
2 Y 08— EX(I) 7
0.6 //

) /
//

Fy(t) < Fy(t) VtET //

0
-10 -5 0 5 10 15 20
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First-degree Stochastic Dominance

-] 7
Definition: X dominates Y in the sense of First- 08" /
degree Stochastic Dominance (denoted X >ggpY), if 06
/ X ZFsD Y
0.4
Fy(t) < Fy(t) VEET /
0.2
//
with strict inequality for some t. B s 0 S 0 12
1 i
Theorem: X >ggpY if and only if I // -
g B either
E[u(X)] =2 E[u(Y)] Yu € U°, alternative
0 ; : ; ; ; 06 dominates
where U" is the set of all strictly increasing functions / he ofher in
0.4 the sense of
.. . . : : FSD
Implication: If an alternative is strictly dominated in the sense 02 /
of FSD, then any DM who prefers more to less should not _
choose it. R 0 5 10 15 20
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FSD: Mining example

Parcel A Parcel B 5
1"’
0 A mining company has an opportunity HighBid  Fai
. Bid
to bid on two separate parcels of land HighBid  Fails q/ Medium 4 Bi
- )
0 Decisions to be made: JM : L\ Parct
. 3 edium 0 Low
O Overall commitment of some $500 L‘ Bid
m||||0n Low Wins Parcel A /
Bid Parcel B i
—  How much to bid? Alone High Bid =
—  Bid alone or with partner? LA Bid J -
—  How to develop the site if the bid turns out HADe, Bais g1 Madion 3% Wi
9 Bid withl Parc
successfull.- . Partner ) Medim 4 Low
O Large decision tree model built to L‘ Bid
Low Wins Parcel A ]

obtain cumulative distribution functions
of different strategies (= decision

alternatives)
Stay with Own Property

§9 Aalto University Source: Hax and Wing (1977): "The use of decision analysis in a capital investment
A School of Science probelm” In Bell, Keeney, and Raiffa (eds.): Conflicting Objectives in Decisions, Wiley. 28.1.2019
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FSD: Example (cont’'d)

CDFs of Strategies
I

1.0 I
® Strategy 1: Bid High Alone
D Assume that the 091 m S::a:egz 2: Bid High with Partner
company prefersa g { s lihotoy i b
larger net present 07 it Parter
value (NPV) to a & 067
smaller one 3§ 0
£ 04
[l . 0'3 y
0 Which strategies 02 - //f
would you 0.1 1
recommend? 0 x
- 100 -50 0 50 100 150 200
NPV ($Million)
9 Aalto University Source: Hax and Wing (1977): "The use of decision analysis in a capital investment
A School of Science probelm” In Bell, Keeney, and Raiffa (eds.): Conflicting Objectives in Decisions, Wiley. 28.1.2019
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Second-degree Stochastic Dominance

d Theorem:
EluX)] = E[u(Y)] VueU *“* JZ [Fx(t) — Fy(t)]dt <0 Vz €T,
where U Y = {u € U°|u is concave}. -
O Definition: X dominates Y in the sense of Second-degree Stochastic Dominance
(denoted X >=ggp Y), if
Jz [Fy(t) — Fy(O)]dt <0 Vz€ET.

with strict inequality for some z.

O Implication: If an alternative is strictly dominated in the sense of SSD, then any risk-
averse or risk neutral DM who prefers more to less should not choose it.
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SSD: graphical interpretation
z j‘;; | \\ A4 e 6
J [Fy(t) = Fy(D)]dt <O VZET [ . /
— 0.04 / \ /
0.03 // \‘ .4
O Integral 002 / \ " ,\/ () > Fy(t)
— : TEy ()= Ex(t
) t:z tacl)’epaoaettr/een FX (t) e Fy (t) 0.0;10 0/ 10 20\ 0 o / 10 20 30

= the area between the Fy(t)-Fy (t) .
and the horizontal axis up to pointz @

‘ —— Integral of FX(t)—FY(t) up to z

0.1 \ 0 \

Q If itis non-positive for all z, then / B \ 05 \
X = Y )

SSP o1 \ A ' \ /

O Here: X >ggp Y, because area A is N/
bigger than area B, and Aisleftof B 03, : 5 = % 250 o I 2 3
z
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SSD: Mining example revisited

CDFs of Strategies
|

1.0
[ Assume that the and 8 Stmtcgyl 1: Bid High Alone
. . . -7 71 B Strate 2: Bid High with Partner
mining company is M
either risk-averse or st with Perues
risk-neutral 5 061
E 0.5
_ _ £ 0.4 -
O Which strategies .
would you 02 - 1/}’
recommend? 0.1 1
Y_';_x/x

- 100 -50 0 50 100 150 200

NPV ($Million)
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Properties of FSD and SSD

O Both FSD and SSD are transitive:
— WX >pgp Yand Y =ggp Z, then X >ggp £
o Why? Take anyt. Then, Fx(t) < F,(t) < F,(t).
— I X>ggp Yand Y >ggp Z, then X =ggp Z
o Why?Takeanyu € UY. Then, E[u(X)] — E[u(Z)] = E[u(Y)] — E[u(Z)] = 0.
d FSD implies SSD:

— X >pgp Y, then X =ggp Y.
0 Why? Takeany u € U°”. Then, u € U°, and since X >ggp Y, we have E[u(X)] =
ETu(Y)].
o Or consider the definitions of FSD and SSD: If Fy(t) < F,(t) vVt € T , then

Jz [Fx(t) — Fy(t)]dt < Jz Odt <0 VzeT
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O Utility function is elicited through specification of equally preferred

lotteries
O Then: expected utilities equal

L The shape of the utility function determines the DM’s risk attitude
— Linear utility function = risk neutral
— Concave utility function = risk averse
— Convex utility function = risk seeking

O Even if the utility function is not completely specified, decision
recommendations may be implied by stochastic dominance
— If the DM prefers more to less, she should not choose an FSD dominated alternative
— Ifthe DM is also risk averse, she should not choose an SSD dominated alternative
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