Decision making and problem solving ecture 3

- Modeling risk preferences
- Stochastic dominance

Motivation

\square Last time:

- Decisions should be based on expected value of the alternatives' outcomes (if and) only if the DM is risk neutral
- Under 4 axioms for the DM's preference relation between risky alternatives, there exists a real-valued function ("utility function") so that
- The DM should choose the alternative with the highest expected utility
- It is unique up to positive affine transformations -> we can normalize the utility function the way we want
\square This time:
- What is this utility function and how to model the DM's preferences with it?
- We learn how these preferences correspond to the DM's attitude towards risk

Assessment of utility functions

- Utility functions are assessed by asking the DM to choose between a simple lottery and a certain outcome (i.e., a degenerate lottery)
- X: Certain payoff t
- Y: Payoff $t^{+}\left(t^{-}\right)$with probability $\mathrm{p}(1-\mathrm{p})$
- General idea:

- Vary the parameters ($\mathrm{p}, \mathrm{t}, \mathrm{t}^{+}, t^{-}$) until the $\mathbf{D M}$ is indifferent between X and Y :

$$
E[u(X)]=E[u(Y)] \Leftrightarrow u(t)=p u\left(t^{+}\right)+(1-p) u\left(t^{-}\right)
$$

- Repeat until sufficiently many points for the utility function have been obtained
- Because u is unique up to positive affine transformations, u can be fixed at two points
- Usually, u is set at 1 at the most preferred level, and at 0 at the least preferred

Assessment: The certainty equivalence approach
 - The DM assesses t

Example: Assess utility function for the interval [-10,50] euros

- Normalization: we can fix $u(-10)=0$ and $u(50)=1$

$$
\begin{aligned}
& u(30) \\
& =0.5 u(-10)+0.5 u(50) \\
& =0.5 \cdot 0+0.5 \cdot 1=0.5
\end{aligned}
$$

$$
u(20)
$$

$$
u(40)
$$

$$
=0.5 u(-10)+0.5 u(30)
$$

$$
=0.5 u(30)+0.5 u(50)
$$

$$
=0.5 \cdot 0+0.5 \cdot 0.5=0.25
$$

$$
=0.5 \cdot 0.5+0.5 \cdot 1
$$

$$
=0.75
$$

Other approaches to utility assessment

[Probability equivalence:

- The DM assessesp

Gain equivalence:

- The DM assessest ${ }^{+}$
\square Loss equivalence:
- The DM assessest

\square Often in applications, the analyst chooses a family of utility functions and then asks the DM to compare lotteries to fix the parameter(s)
- E.g., the exponential utility function (parameter ρ)

$$
u(t)=1-e^{-\frac{t}{\rho}}, \rho>0
$$

Reference lottery revisited

- Assume that an expected utility maximizer with utility function u uses a reference lottery to assess the probability of event A
- She thus adjusts p such that she is indifferent between lottery X and reference lottery Y :

$$
E[u(X)]=E[u(Y)]
$$

$$
\Leftrightarrow P(A) u\left(t^{+}\right)+(1-P(A)) u\left(t^{-}\right)=p u\left(t^{+}\right)+(1-p) u\left(t^{-}\right)
$$

$$
\Leftrightarrow P(A)\left(u\left(t^{+}\right)-u\left(t^{-}\right)\right)=p\left(u\left(t^{+}\right)-u\left(t^{-}\right)\right)
$$

$$
\Leftrightarrow P(A)=p
$$

U Utility function u does not affect the result

Expected utility in decision trees

- Do everything in the usual way, but
- Chance node: compute the expected utility
- Decision node: select the alternative corresponding to maximum expected utility
- Cf. the umbrella example, in which 'some numbers' represented preferences

$\mathrm{EU}=1.07 \quad \mathrm{Up}(0.5)$	Profit 1500	Utility
		1.78
	100	1.10
	-1000	-0.71
$\text { Up }(0.5)$	1000	1.63
Low-Risk Same (0.3)	200	1.18
$\underbrace{\text { Stock }}_{\mathrm{EU}=1.35} \operatorname{Down}(0.2)$	-100	0.89
Savings Account	500	1.39
$\mathrm{EU}=1.39$		
$u(t)=2-e^{\frac{-t}{1000}}$		

Expected utility in Monte Carlo

- For each sample x_{1}, \ldots, x_{n} of random variable X, compute utility $u\left(x_{i}\right)$
- Mean of sample utilities $u\left(x_{1}\right), \ldots, u\left(x_{n}\right)$ provides an estimate for $E[u(X)]$

$\times \sqrt{ }$	$=2-\operatorname{EXP}(-\mathrm{F} 12 / 1000)$				
C	D	E	F	G	H
				Imean	
		Col.mean	Col.mear	Col.mean	
		0.502964	990.3014	1.580972	
	Sample	u	x	Utility	
	1	0.464077	954.9167	1.615156	
	2	0.704234	1268.308	1.718693	
	3	0.777865	1382.501	1.74905	
	4	0.534927	1043.831	1.647897	
	5	0.4426	927.8094	1.604581	
	6	0.916252	1690.147	1.815508	
	7	0.649453	1191.922	1.696363	
	8	0.65278	1196.418	1.697725	
	9	0.110887	389.0874	1.322325	
	10	0.189275	559.714	1.428628	
	11	0.902882	1649.073	1.807772	

EUT for normative decision support

E EUT is a normative theory: if the DM is rational, she should select the alternative with the highest expected utility

- Not descriptive or predictive: EUT does not describe or predict how people actually do select among alternatives with uncertain outcomes

The four axioms characterize properties that are required for rational decision support

- Cf. probability axioms describe a rational model for uncertainty
- The axioms are not assumptions about the DM's preferences

Question 1

Which of the below alternatives would you choose?

1. A sure gain of $1 \mathrm{M} €$
2. A gamble in which there is a

- 1% probability of getting nothing,
- 89% probability of getting $1 \mathrm{M} €$, and
- 10% probability of getting $5 \mathrm{M} €$
- Imagine that a rare disease is breaking out in a community and is expected to kill 600 people. Two different programs are available to deal with the threat.
- If Program A is adopted, 200 people will be saved
- If Program B is adopted, there's a 33\% probability that all 600 will be saved and a 67% probability that no one will be saved.
Which program will you choose?

1. Program A
2. Program B

Question 3

Which of the below alternatives would you choose?

1. A gamble in which there is a

- 89% probability of getting nothing and
- 11% probability of getting $1 \mathrm{M} €$

2. A gamble in which there is a

- 90% probability of getting nothing, and
- 10% probability of getting $5 \mathrm{M} €$

Question 4

- Imagine that a rare disease is breaking out in some community and is expected to kill 600 people. Two different programs are available to deal with the threat.
- If Program C is adopted, 400 of the 600 people will die,
- If Program D is adopted, there is a 33\% probability that nobody will die and a 67% probability that 600 people will die.
Which program will you choose?

1. Program C
2. Program D

Allais paradox

$\square \quad$ Which of the below alternatives would you choose?
A. A sure gain of $1 \mathrm{M} €$
B. A gamble in which there is a

- 1% probability of getting nothing,
- 89% probability of getting $1 \mathrm{M} €$, and
- 10% probability of getting 5M€
$\square \quad$ Which of the below alternatives would you choose?
C. A gamble in which there is a
- 89% probability of getting nothing and
- 11% probability of getting $1 \mathrm{M} €$
D. A gamble in which there is a
- 90% probability of getting nothing, and
- 10% probability of getting $5 \mathrm{M} €$

Most people choose A; hence
$E[u(A)]>E[u(B)]:$
$\mathrm{u}(1)>0.10 \mathrm{u}(5)+0.89 \mathrm{u}(1)+0.01 \mathrm{u}(0) \Rightarrow$

$$
0.11 u(1)>0.10 u(5)+0.01 u(0)
$$

Most people choose D; hence
$\mathrm{E}[\mathrm{u}(\mathrm{D})]>\mathrm{E}[\mathrm{u}(\mathrm{C})]$:
$0.10 u(5)+0.90 u(0)>0.11 u(1)+0.89 u(0) \Rightarrow$

$$
0.11 u(1)<0.10 u(5)+0.01 u(0)
$$

\square Actual choice behavior is not always consistent with EUT

Framing effect

- Most people choose A and D

People tend to be "risk-averse" about gains and "risk-seeking" about losses

Risk and risk preferences

- Risk: possibility of loss (or some other unpreferred outcome)
- Characterized by both the probability and magnitude of loss
- Risk preferences:
- How does the riskiness of a decision alternative affect its desirability?
- E.g., risk neutrality: choose the alternative with the highest expected (monetary) value, riskiness is not a factor
- Definition of risk preferences requires that outcomes T are quantitative and preferences among them monotonic
- E.g., profits, costs, lives saved etc.
- Here, we assume that more is preferred to less, i.e., $u(t)$ is increasing (and differentiable) for all t

Certainty equivalent in Expected Utility Theory

\square Definition: Certainty equivalent of a random variable X , denoted by $C E[X]$, is an outcome in T such that

$$
\begin{aligned}
& u(C E[X])=E[u(X)] \Leftrightarrow \\
& C E[X]=u^{-1}(E[u(X)])
\end{aligned}
$$

- IMPORTANT! $C E[X]$ is the certain outcome such that the DM is indifferent between alternatives X and $C E[X]$
- CE[X] depends on both the DM's utility function u (preferences) and the distribution of X (uncertainty)
- My CE for roulette may be different from yours
- My CE for roulette may be different from my CE for one-armed bandit

Certainty equivalent - Example

- Consider a decision alternative X with $f_{X}(3)=0.5$ and $f_{X}(5)=0.5$ and three DMs with the below utility functions
- Compute each DM's certainty equivalent for X

- The shape of the utility function seems to determine whether $\mathrm{CE}[\mathrm{X}]$ is below, above, or equal to $E[X]=4$

Convex and concave functions

- Definition: u is concave, if for any t_{1}, t_{2} :

$$
\lambda u\left(t_{1}\right)+(1-\lambda) u\left(t_{2}\right) \leq u\left(\lambda t_{1}+(1-\lambda) t_{2}\right) \forall \lambda \in[0,1]
$$

- A line drawn between any two points $u\left(t_{1}\right)$ and $u\left(t_{2}\right)$ is below (or equal to) $u(t)$
- $u^{\prime \prime}(t) \leq 0 \forall t \in T$, if the second derivative exists

D Definition: u is convex, if for any t_{1}, t_{2} :

$$
\lambda u\left(t_{1}\right)+(1-\lambda) u\left(t_{2}\right) \geq u\left(\lambda t_{1}+(1-\lambda) t_{2}\right) \forall \lambda \in[0,1]
$$

- A line drawn between any two points $u\left(t_{1}\right)$ and $u\left(t_{2}\right)$ is above (or equal to) $u(t)$
- $u^{\prime \prime}(t) \geq 0 \forall t \in T$, if the second derivative exists

Convex utility functions

- For any utility function $u, E[u(X)]=\sum f_{X}\left(t_{i}\right) u\left(t_{i}\right)$ for X with discrete set of outcomes $t_{i}, i=1, \ldots, n$
\square Note: $\sum f_{X}\left(t_{i}\right)=1$
\square Let u be convex. Then
- $\lambda u\left(t_{1}\right)+(1-\lambda) u\left(t_{2}\right) \geq u\left(\lambda t_{1}+(1-\lambda) t_{2}\right) \forall \lambda \in[0,1]$ (by def., previous slide)
\square And, specifically, by applying this definition several times,

$$
f_{X}\left(t_{1}\right) u\left(t_{1}\right)+\ldots+f_{X}\left(t_{n}\right) u\left(t_{n}\right)=E[U(X)] \geq u\left(\sum f_{X}\left(t_{i}\right) t_{i}\right)=U(E[X])
$$

- For convex u : Expected utility of X is higher than (expected) utility of $E(X)$

Jensen's inequality

- For any random variable X, if function u is
I. Convex, then $E[u(X)] \geq u(E[X])$
II. Concave, then $E[u(X)] \leq u(E[X])$
\Rightarrow

u concave	u convex
$\Rightarrow E[u(X)] \leq u(E[X])$	$\Rightarrow E[u(X)] \geq u(E[X])$
$\Leftrightarrow u^{-1}(E[u(X)]) \leq u^{-1}(u(E[X]))$	$\Leftrightarrow u^{-1}(E[u(X)]) \geq u^{-1}(u(E[X]))$
Allowed because is increasing	$\Leftrightarrow C E[X] \leq E[X]$

Risk attitudes in Expected Utility Theory

I. u is concave iff $C E[X] \leq E[X]$ for all X
II. u is convex iff $C E[X] \geq E[X]$ for all X
III. u is linear iff $\mathrm{CE}[\mathrm{X}]=\mathrm{E}[\mathrm{X}]$ for all X

\square A DM with a linear utility function is called risk neutral

- Indifferent between uncertain outcome X and a certain outcome equal to $\mathrm{E}[\mathrm{X}]$
\square A DM with a concave but not linear utility function is called risk averse
- Prefers a certain outcome smaller than E[X] to uncertain outcomeX
\square A DM with a convex but not linear utility function is called risk seeking
- Requires a certain outcome larger than E[X] to not choose uncertain outcome X

Risk premium in Expected Utility Theory

- Definition: Risk premium for random variable X is $\mathrm{RP}[X]=\mathrm{E}[X]-\mathrm{CE}[X]$
- $\quad R P[X]$ depends on both the DM's preferences (u) and the uncertainty in the decision alternative (distribution of X)
- $\mathrm{RP}[\mathrm{X}]$ is the premium that the DM requires on the expected value to change a certain outcome of CE[X] to an uncertain outcome X
I. $D M$ is risk neutral, iff $R P[X]=0$ for all X
II. DM is risk averse, iff $\operatorname{RP}[\mathrm{X}] \geq 0$ for all X
III. DM is risk seeking, iff $\mathrm{RP}[\mathrm{X}] \leq 0$ for all X

Computing CE and RP

1. Compute $\mathrm{E}[\mathrm{u}(\mathrm{X})]$ and $\mathrm{E}(\mathrm{X})$
2. Solve $u^{-1}(\cdot)$
3. Compute $C E[X]=u^{-1}(E[u(X)])$
4. Compute $\mathrm{RP}[X]=\mathrm{E}[X]-\mathrm{CE}[X]$

- Step 2: if $u^{-1}(\cdot)$ cannot be solved analytically, solve it numerically from $u(C E[X])=E[u(X)]$
- Trial and error
- Computer software

Example: Jane's $u(t)=t^{2}$ and her payoff is $Y \sim \operatorname{Uni}(3,5)$

1. $E[u(X)]=\int_{3}^{5} f_{Y}(t) u(t) d t=16.33$
2. $v=u(t)=t^{2} \Leftrightarrow t=u^{-1}(v)=\sqrt{v}$
3. $C E[X]=u^{-1}(16.33)=\sqrt{16.33}=4.04$
4. $R P[X]=4-4.04=-0.04$

Prospect theory

[. Expected Utility Theory assumes that people only care about the outcome in the absolute sense

- Yet, empirical evidence suggests that people tend to
- think of possible outcomes relative to a certain reference point (often the status quo),
- have different risk attitudes towards gains and losses with regard to the reference point,

- overweight extreme, but unlikely events, but underweight "average" events.
- Prospect theory seeks to accommodate these empirical findings:

Tversky, A. and D. Kahneman. "Advances in prospect theory: Cumulative representation of uncertainty." Journal of Risk and uncertainty 5.4 (1992): 297323.
] NOTE:

- EUT is a normative theory: tells what rational people should do
- Prospect theory is a descriptive theory: tries to describe what people tend to do in real life

Stochastic oomninance https://presemo.aalto.fi/stocdom/

Question: Which decision alternative would you choose?

1. X
2. Y

$$
F_{X}(t) \leq F_{Y}(t) \quad \forall t \in T
$$

First-degree Stochastic Dominance

Definition: X dominates Y in the sense of Firstdegree Stochastic Dominance (denoted $X \succcurlyeq_{\mathrm{FSD}} Y$), if

$$
F_{X}(t) \leq F_{Y}(t) \forall t \in T
$$

with strict inequality for some t.
Theorem: $X \geqslant_{F S D} Y$ if and only if
$E[u(X)] \geq E[u(Y)] \forall u \in U^{0}$,
where U^{0} is the set of all strictly increasing functions

Implication: If an alternative is strictly dominated in the sense of FSD, then any DM who prefers more to less should not choose it.

FSD: Mining example

- A mining company has an opportunity to bid on two separate parcels of land
\square Decisions to be made:
- Overall commitment of some \$500 million
- How much to bid?
- Bid alone or with partner?
- How to develop the site if the bid turns out successful?
- Large decision tree model built to obtain cumulative distribution functions of different strategies (= decision alternatives)

[^0]
FSD: Example (cont’d)

- Assume that the company prefers a larger net present value (NPV) to a smaller one
- Which strategies would you recommend?

55 Aalto University
Source: Hax and Wing (1977): "The use of decision analysis in a capital investment School of Science probelm" In Bell, Keeney, and Raiffa (eds.): Conflicting Objectives in Decisions, Wiley.

Second-degree Stochastic Dominance

- Theorem:
$E[u(X)] \geq E[u(Y)] \forall u \in U^{c c v} \Leftrightarrow \int_{-\infty}^{z}\left[F_{X}(t)-F_{Y}(t)\right] d t \leq 0 \quad \forall z \in T$,
where $U^{c c v}=\left\{u \in U^{0} \mid u\right.$ is concave $\}$.

D Definition: X dominates Y in the sense of Second-degree Stochastic Dominance (denoted $X \succcurlyeq_{\text {SSD }} Y$), if

$$
\int_{-\infty}^{z}\left[F_{X}(t)-F_{Y}(t)\right] d t \leq 0 \quad \forall z \in T
$$

with strict inequality for some z.
\square Implication: If an alternative is strictly dominated in the sense of SSD, then any riskaverse or risk neutral DM who prefers more to less should not choose it.

SSD: graphical interpretation

$$
\int_{-\infty}^{z}\left[F_{X}(t)-F_{Y}(t)\right] d t \leq 0 \quad \forall z \in T
$$

- Integral
$=$ the area between $F_{X}(t)$ and $F_{Y}(t)$ up to point z
$=$ the area between the $F_{X}(t)-F_{Y}(t)$ and the horizontal axis up to point z
\square If it is non-positive for all z, then $X \succcurlyeq_{\text {SSD }} Y$
- Here: $X \succcurlyeq_{\text {SSD }} Y$, because area \mathbf{A} is bigger than area \mathbf{B}, and \mathbf{A} is left of \mathbf{B}

Aalto University School of Science

SSD: Mining example revisited

- Assume that the mining company is either risk-averse or risk-neutral
- Which strategies would you recommend?

Properties of FSD and SSD

- Both FSD and SSD are transitive:
- If $X \succcurlyeq_{F S D} Y$ and $Y \succcurlyeq_{F S D} Z$, then $X \succcurlyeq_{F S D} Z$
- Why? Take anyt. Then, $F_{X}(t) \leq F_{Y}(t) \leq F_{Z}(t)$.
- If $\mathrm{X} \succcurlyeq_{\text {SSD }} \mathrm{Y}$ and $\mathrm{Y} \succcurlyeq_{\text {SSD }} \mathrm{Z}$, then $\mathrm{X} \succcurlyeq_{\text {SSD }} \mathrm{Z}$
- Why? Take any $u \in U^{c c v}$. Then, $E[u(X)]-E[u(Z)] \geq E[u(Y)]-E[u(Z)] \geq 0$.
\square FSD implies SSD:
- If X $\succcurlyeq_{\text {FSD }} Y$, then $X \succcurlyeq_{\text {SSD }} Y$.
- Why? Take any $u \in U^{c c v}$. Then, $u \in U^{0}$, and since $X \geqslant_{F S D} \mathrm{Y}$, we have $E[u(X)] \geq$ $E[u(Y)]$.
- Or consider the definitions of FSD and SSD: If $F_{X}(t) \leq F_{Y}(t) \forall t \in T$, then

$$
\int_{-\infty}^{z}\left[F_{X}(t)-F_{Y}(t)\right] d t \leq \int_{-\infty}^{z} 0 d t \leq 0 \forall z \in T
$$

Summary

- Utility function is elicited through specification of equally preferred lotteries
- Then: expected utilities equal
- The shape of the utility function determines the DM's risk attitude
- Linear utility function = risk neutral
- Concave utility function = risk averse
- Convex utility function = risk seeking
. Even if the utility function is not completely specified, decision recommendations may be implied by stochastic dominance
- If the DM prefers more to less, she should not choose an FSD dominated alternative
- If the DM is also risk averse, she should not choose an SSD dominated alternative

[^0]: $\Delta 5$
 Aalto University
 School of Scien
 Source: Hax and Wing (1977): "The use of decision analysis in a capital investment School of Science probelm" In Bell, Keeney, and Raiffa (eds.): Conflicting Objectives in Decisions, Wiley.

