

Decision making and problem solving – Lecture 3

- Modeling risk preferences
- Stochastic dominance

Liesiö, Punkka, Salo, Vilkkumaa

Motivation

Last time:

- Decisions should be based on expected value of the alternatives' outcomes (if and) only if the DM is risk neutral
- Under 4 axioms for the DM's preference relation between risky alternatives, there
 exists a real-valued function ("utility function") so that
 - The DM should choose the alternative with the highest expected utility
 - It is unique up to positive affine transformations -> we can normalize the utility function the way we want

□ This time:

- What is this utility function and how to model the DM's preferences with it?
- We learn how these preferences correspond to the DM's attitude towards risk

Assessment of utility functions

- □ Utility functions are assessed by asking the DM to choose between a simple lottery and a certain outcome (i.e., a degenerate lottery)
 - X: Certain payoff t
 - Y: Payoff t^+ (t^-) with probability p (1-p)
- General idea:

- Vary the parameters (p,t,t^+,t^-) until the DM is indifferent between X and Y: $E[u(X)] = E[u(Y)] \Leftrightarrow u(t) = pu(t^+) + (1-p)u(t^-)$
- Repeat until sufficiently many points for the utility function have been obtained
- Because u is unique up to positive affine transformations, u can be fixed at two points
 - Usually, u is set at 1 at the most preferred level, and at 0 at the least preferred

Aalto University School of Science

Assessment: The certainty equivalence approach

□ The DM assesses *t*

Example: Assess utility function for the interval [-10,50] euros

Other approaches to utility assessment

- Often in applications, the analyst chooses a family of utility functions and then asks the DM to compare lotteries to fix the parameter(s)
 - E.g., the exponential utility function (parameter ρ)

$$u(t) = 1 - e^{-\frac{t}{\rho}}, \rho > 0$$

Reference lottery revisited

- Assume that an expected utility maximizer with utility function u uses a reference lottery to assess the probability of event A
- □ She thus adjusts *p* such that she is indifferent between lottery X and reference lottery Y: E[u(X)] = E[u(Y)] $\Leftrightarrow P(A)u(t^+) + (1 - P(A))u(t^-) = pu(t^+) + (1 - p)u(t^-)$ $\Leftrightarrow P(A)(u(t^+) - u(t^-)) = p(u(t^+) - u(t^-))$ $\Leftrightarrow P(A) = p$

Utility function u does not affect the result

Expected utility in decision trees

- Do everything in the usual way, but
 - Chance node: compute the expected <u>utility</u>
 - Decision node: select the alternative corresponding to maximum expected <u>utility</u>
 - Cf. the umbrella example, in which 'some numbers' represented preferences

Expected utility in Monte Carlo

- □ For each sample $x_1, ..., x_n$ of random variable X, compute utility $u(x_i)$
- □ Mean of sample utilities $u(x_1), ..., u(x_n)$ provides an estimate for E[u(X)]

\geq	$\langle \checkmark$	$f_x = 2-EXP(-$	F12/1000)			
	С	D	Е	F	G	н
			Col.mean	Col.mean	Col.mean	
			0.502964	990.3014	1.580972	
_		Sample	u	x	Utility	
		1	0.464077	954.9167	1.615156	
		2	0.704234	1268.308	1.718693	
		3	0.777865	1382.501	1.74905	
		4	0.534927	1043.831	1.647897	
		5	0.4426	927.8094	1.604581	
		6	0.916252	1690.147	1.815508	
		7	0.649453	1191.922	1.696363	
		8	0.65278	1196.418	1.697725	
		9	0.110887	389.0874	1.322325	
		10	0.189275	559.714	1.428628	
		11	0.902882	1649.073	1.807772	

EUT for normative decision support

- EUT is a normative theory: if the DM is rational, she should select the alternative with the highest expected utility
 - Not descriptive or predictive: EUT does not describe or predict how people actually do select among alternatives with uncertain outcomes
- The four axioms characterize properties that are required for rational decision support
 - Cf. probability axioms describe a rational model for uncertainty
 - The axioms are not assumptions about the DM's preferences

http://presemo.aalto.fi/2134lec2

□ Which of the below alternatives would you choose?

- 1. A sure gain of 1 M€
- 2. A gamble in which there is a
 - o 1% probability of getting nothing,
 - o 89% probability of getting 1M€, and
 - o 10% probability of getting 5M€

http://presemo.aalto.fi/2134lec2

- Imagine that a rare disease is breaking out in a community and is expected to kill 600 people. Two different programs are available to deal with the threat.
 - If Program A is adopted, 200 people will be saved
 - If Program B is adopted, there's a 33% probability that all 600 will be saved and a 67% probability that no one will be saved.

Which program will you choose?

- 1. Program A
- 2. Program B

http://presemo.aalto.fi/2134lec2

□ Which of the below alternatives would you choose?

- 1. A gamble in which there is a
 - o 89% probability of getting nothing and
 - o 11% probability of getting 1M€
- 2. A gamble in which there is a
 - o 90% probability of getting nothing, and
 - o 10% probability of getting 5M€

http://presemo.aalto.fi/2134lec2

- Imagine that a rare disease is breaking out in some community and is expected to kill 600 people. Two different programs are available to deal with the threat.
 - If Program C is adopted, 400 of the 600 people will die,
 - If Program D is adopted, there is a 33% probability that nobody will die and a 67% probability that 600 people will die.

Which program will you choose?

- 1. Program C
- 2. Program D

Allais paradox

□ Which of the below alternatives would you choose?

- A. A sure gain of 1 M€
- B. A gamble in which there is a
 - o 1% probability of getting nothing,
 - o 89% probability of getting 1M€, and
 - o 10% probability of getting 5M€
- □ Which of the below alternatives would you choose?
 - C. A gamble in which there is a
 - o 89% probability of getting nothing and
 - o 11% probability of getting 1M€
 - D. A gamble in which there is a
 - o 90% probability of getting nothing, and
 - o 10% probability of getting 5M€

Most people choose A; hence E[u(A)] > E[u(B)]: $u(1) > 0.10u(5)+0.89u(1)+0.01u(0) \Rightarrow$

0.11u(1) > 0.10u(5)+0.01u(0)

Most people choose D; hence E[u(D)]>E[u(C)]: 0.10u(5)+0.90u(0) > 0.11u(1)+0.89u(0) ⇒

0.11u(1) < 0.10u(5)+0.01u(0)

□ Actual choice behavior is not always consistent with EUT

Aalto University School of Science

Framing effect

- □ Most people choose A and D
- People tend to be "risk-averse" about gains and "risk-seeking" about losses

Risk and risk preferences

□ Risk: possibility of loss (or some other unpreferred outcome)

- Characterized by both the probability and magnitude of loss

□ Risk preferences:

- How does the riskiness of a decision alternative affect its desirability?
- E.g., risk neutrality: choose the alternative with the highest expected (monetary) value, riskiness is not a factor
- Definition of risk preferences requires that outcomes T are quantitative and preferences among them *monotonic*
 - E.g., profits, costs, lives saved etc.
- □ Here, we assume that more is preferred to less, i.e., u(t) is increasing (and differentiable) for all t

Certainty equivalent in Expected Utility Theory

Definition: Certainty equivalent of a random variable X, denoted by CE[X], is an outcome in T such that

- IMPORTANT! CE[X] is the certain outcome such that the DM is indifferent between alternatives X and CE[X]
 - CE[X] depends on both the DM's utility function u (preferences) and the distribution of X (uncertainty)
 - My CE for roulette may be different from yours
 - o My CE for roulette may be different from my CE for one-armed bandit

Certainty equivalent - Example

- □ Consider a decision alternative *X* with $f_X(3) = 0.5$ and $f_X(5) = 0.5$ and three DMs with the below utility functions
- \Box Compute each DM's certainty equivalent for X

The shape of the utility function seems to determine whether CE[X] is below, above, or equal to E[X]=4

Convex and concave functions

Definition: *u* is concave, if for any t_1, t_2 :

 $\lambda u(t_1) + (1 - \lambda)u(t_2) \le u(\lambda t_1 + (1 - \lambda)t_2) \quad \forall \lambda \in [0, 1]$

- A line drawn between any two points $u(t_1)$ and $u(t_2)$ is below (or equal to) u(t)
- $u''(t) \le 0 \forall t \in T$, if the second derivative exists

Definition: *u* is convex, if for any t_1, t_2 :

 $\lambda u(t_1) + (1 - \lambda)u(t_2) \ge u(\lambda t_1 + (1 - \lambda)t_2) \quad \forall \lambda \in [0, 1]$

- A line drawn between any two points $u(t_1)$ and $u(t_2)$ is above (or equal to) u(t)
- $u''(t) \ge 0 \ \forall t \in T$, if the second derivative exists

Convex utility functions

□ For any utility function $u, E[u(X)] = \sum f_X(t_i) u(t_i)$ for X with discrete set of outcomes $t_i, i = 1, ..., n$

D Note: $\sum f_X(t_i) = 1$

Let *u* be convex. Then

 $\Box \quad \lambda u(t_1) + (1 - \lambda)u(t_2) \ge u(\lambda t_1 + (1 - \lambda)t_2) \quad \forall \lambda \in [0, 1] \text{ (by def., previous slide)}$

□ And, specifically, by applying this definition several times,

$$f_X(t_1)u(t_1) + \dots + f_X(t_n)u(t_n) = E[U(X)] \ge u\left(\sum f_X(t_i)t_i\right) = U(E[X])$$

For convex u: Expected utility of X is higher than (expected) utility of E(X)

Jensen's inequality

\Box For any random variable X, if function u is

- Convex, then $E[u(X)] \ge u(E[X])$ Ι.
- Concave, then $E[u(X)] \leq u(E[X])$ П.

u concave $\Rightarrow E[u(X)] \le u(E[X]) \qquad \Rightarrow E[u(X)] \ge u(E[X])$ $\Leftrightarrow u^{-1}(E[u(X)]) \leq u^{-1}(u(E[X])) \qquad \Leftrightarrow u^{-1}(E[u(X)]) \geq u^{-1}(u(E[X]))$ $\Leftrightarrow CE[X] \leq E[X] \qquad \Leftrightarrow CE[X] \geq E[X]$ because u is increasing

u convex

 \Rightarrow

Risk attitudes in Expected Utility Theory

- *I. u* is concave iff $CE[X] \le E[X]$ for all X
- *II. u* is convex iff $CE[X] \ge E[X]$ for all X
- *III. u* is linear iff CE[X]=E[X] for all X

- □ A DM with a linear utility function is called *risk neutral*
 - Indifferent between uncertain outcome X and a certain outcome equal to E[X]
- □ A DM with a concave but not linear utility function is called *risk averse*
 - Prefers a certain outcome smaller than E[X] to uncertain outcome X
- □ A DM with a convex but not linear utility function is called *risk seeking*
 - Requires a certain outcome larger than E[X] to not choose uncertain outcome X

Risk premium in Expected Utility Theory

Definition: Risk premium for random variable X is RP[X] = E[X] - CE[X]

- RP[X] depends on both the DM's preferences (u) and the uncertainty in the decision alternative (distribution of X)
- RP[X] is the premium that the DM requires on the expected value to change a certain outcome of CE[X] to an uncertain outcome X
- I. DM is risk neutral, iff RP[X]=0 for all X
- II. DM is risk averse, iff $RP[X] \ge 0$ for all X
- III. DM is risk seeking, iff $RP[X] \le 0$ for all X

Computing CE and RP

- 1. Compute E[u(X)] and E(X)
- 2. Solve $u^{-1}(\cdot)$
- 3. Compute $CE[X] = u^{-1}(E[u(X)])$
- 4. Compute RP[X] = E[X] CE[X]
- □ Step 2: if $u^{-1}(\cdot)$ cannot be solved analytically, solve it numerically from u(CE[X]) = E[u(X)]
 - Trial and error
 - Computer software

Example: Jane's $u(t) = t^2$ and her payoff is *Y*~*Uni*(3,5)

- 1. $E[u(X)] = \int_3^5 f_Y(t)u(t)dt = 16.33$
- 2. $v = u(t) = t^2 \Leftrightarrow t = u^{-1}(v) = \sqrt{v}$
- 3. $CE[X] = u^{-1}(16.33) = \sqrt{16.33} = 4.04$

4.
$$RP[X] = 4 - 4.04 = -0.04$$

Prospect theory

- □ Expected Utility Theory assumes that people only care about the outcome in the *absolute* sense
- Yet, empirical evidence suggests that people tend to
 - think of possible outcomes relative to a certain reference point (often the status quo),
 - have different risk attitudes towards gains and losses with regard to the reference point,
 - overweight extreme, but unlikely events, but underweight "average" events.
- □ Prospect theory seeks to accommodate these empirical findings:

Tversky, A. and D. Kahneman. "Advances in prospect theory: Cumulative representation of uncertainty." *Journal of Risk and uncertainty* 5.4 (1992): 297-323.

□ NOTE:

- EUT is a <u>normative</u> theory: tells what rational people should do
- Prospect theory is a <u>descriptive</u> theory: tries to describe what people tend to do in real life

Stochastic dominance https://presemo.aalto.fi/stocdom/

Question: Which decision alternative would you choose?

First-degree Stochastic Dominance

Definition: X dominates Y in the sense of Firstdegree Stochastic Dominance (denoted $X \ge_{FSD} Y$), if

 $F_X(t) \le F_Y(t) \ \forall t \in T$

with strict inequality for some t.

Theorem: $X \geq_{FSD} Y$ if and only if $E[u(X)] \geq E[u(Y)] \quad \forall u \in U^0$, where U^0 is the set of all strictly increasing functions

<u>Implication:</u> If an alternative is strictly dominated in the sense of FSD, then any DM who prefers more to less should not choose it.

FSD: Mining example

- A mining company has an opportunity to bid on two separate parcels of land
- Decisions to be made:
- Overall commitment of some \$500 million
 - How much to bid?
 - Bid alone or with partner?
 - How to develop the site if the bid turns out successful?
- Large decision tree model built to obtain cumulative distribution functions of different strategies (= decision alternatives)

FSD: Example (cont'd)

Assume that the company prefers a larger net present value (NPV) to a smaller one

Which strategies would you recommend?

Aalto University Source: Hax and Wing (1977): "The use of decision analysis in a capital investment probelm" In Bell, Keeney, and Raiffa (eds.): *Conflicting Objectives in Decisions*, Wiley.

Second-degree Stochastic Dominance

Theorem:

$$E[u(X)] \ge E[u(Y)] \ \forall u \in U \ ^{ccv} \Leftrightarrow \int_{-\infty}^{z} [F_X(t) - F_Y(t)] dt \le 0 \ \forall z \in T,$$

where $U^{ccv} = \{u \in U^0 | u \text{ is concave}\}.$

□ **Definition:** X dominates Y in the sense of Second-degree Stochastic Dominance (denoted $X \ge_{SSD} Y$), if

$$\int_{-\infty}^{z} [F_X(t) - F_Y(t)] dt \le 0 \ \forall z \in T.$$

with strict inequality for some z.

Implication: If an alternative is strictly dominated in the sense of SSD, then any riskaverse or risk neutral DM who prefers more to less should not choose it.

SSD: graphical interpretation

0.2

0.1

-0.1

-0.2

-0.3L -10 $-F_{\chi}(t)-F_{\chi}(t)$

0

Α

10

$$\int_{-\infty}^{z} [F_X(t) - F_Y(t)] dt \le 0 \ \forall z \in T$$

- □ Integral
 - = the area between $F_X(t)$ and $F_Y(t)$ up to point z
 - = the area between the $F_X(t)$ - $F_Y(t)$ and the horizontal axis up to point *z*
- □ If it is non-positive for all *z*, then $X \ge SSD^{Y}$
- □ Here: $X \ge_{SSD} Y$, because area **A** is bigger than area **B**, and **A** is left of **B**

В

20

-1.5

-2

-2.5 └─ -10

0

10

z

3(

28.1.2019 31

30

20

SSD: Mining example revisited

- Assume that the mining company is either risk-averse or risk-neutral
- Which strategies would you recommend?

Properties of FSD and SSD

□ Both FSD and SSD are transitive:

- − If $X \ge_{FSD} Y$ and $Y \ge_{FSD} Z$, then $X \ge_{FSD} Z$
 - Why? Take any t. Then, $F_X(t) \le F_Y(t) \le F_Z(t)$.
- − If $X \ge_{SSD} Y$ and $Y \ge_{SSD} Z$, then $X \ge_{SSD} Z$
 - Why? Take any $u \in U^{ccv}$. Then, $E[u(X)] E[u(Z)] \ge E[u(Y)] E[u(Z)] \ge 0$.

□ FSD implies SSD:

- If $X \ge_{FSD} Y$, then $X \ge_{SSD} Y$.
 - Why? Take any $u \in U^{ccv}$. Then, $u \in U^0$, and since $X \ge FSD Y$, we have $E[u(X)] \ge E[u(Y)]$.
 - Or consider the definitions of FSD and SSD: If $F_X(t) \le F_Y(t) \ \forall t \in T$, then

$$\int_{-\infty}^{z} [F_X(t) - F_Y(t)] dt \le \int_{-\infty}^{z} 0 dt \le 0 \ \forall z \in T$$

Summary

Utility function is elicited through specification of equally preferred lotteries

□ Then: expected utilities equal

□ The **shape** of the utility function determines the DM's **risk attitude**

- Linear utility function = risk neutral
- Concave utility function = risk averse
- Convex utility function = risk seeking

Even if the utility function is not completely specified, decision recommendations may be implied by stochastic dominance

- If the DM prefers more to less, she should not choose an FSD dominated alternative
- If the DM is also risk averse, she should not choose an SSD dominated alternative

