

CS-E4530 Computational Complexity Theory

Lecture 6: The Cook-Levin Theorem

Aalto University School of Science Department of Computer Science

Spring 2019

Agenda

- Boolean satisfiability
- CNF formulas and Boolean functions
- The Cook-Levin theorem

NP-complete Problems

Last lecture:

- We saw that TMSAT is NP-complete
- Definition tied directly to the definition of NP
- Does not really tell us anything new about NP

• This lecture:

- Prove that a problem called CNF-SAT is NP-complete
- First example of a natural NP-complete problem
- Starting point for further NP-completeness proofs

Cook-Levin Theorem

- One of the founding results of computational complexity
 - CNF-SAT is NP-complete
 - Named after Stephen Cook and Leonid Levin
 - Both independently proved the theorem around 1971

Stephen Cook

Leonid Levin

Boolean Formulas

Boolean formula is built from the following primitives:

- $ightharpoonup Variables x_1, x_2, \dots, x_n$
- ▶ *Operators* AND (\land) , OR (\lor) , and NOT (\neg)
- **► Example:** $\phi = (x_1 \land x_2) \lor (x_2 \land x_3) \lor (x_3 \land x_1)$

Definition (Boolean formulas, recursive definition)

The set of *Boolean formulas* over variables $x_1, x_2, ..., x_k$ is defined as follows:

- x_i is a Boolean formula for any i = 1, 2, ..., n.
- If ϕ is Boolean formula, then $\neg \phi$ is Boolean formula.
- If ϕ and ψ are Boolean formulas, then $\phi \wedge \psi$ and $\phi \vee \psi$ are Boolean formulas.

Value of a Boolean Formula

- An assignment gives value 1 (true) or 0 (false) to each variable
 - Semantics of NOT, AND and OR are defined in the obvious way

Definition (Value of a Boolean formula)

Let $z = (z_1, z_2, \dots, z_n) \in \{0, 1\}^n$ be an assignment. The *value* $\varphi(z)$ *of formula* φ *under assignment* z is defined as follows:

- If $\varphi = x_i$, when $\varphi(z) = z_i$.
- If $\varphi = \neg \psi$, then $\varphi(z) = 1 \psi(z)$.
- If $\varphi = \psi_1 \wedge \psi_2$, then $\varphi(z) = 1$ if $\psi_1(z) = \psi_2(z) = 1$, and $\varphi(z) = 0$ otherwise.
- If $\varphi = \psi_1 \lor \psi_2$, then $\varphi(z) = 1$ if $\psi_1(z) = 1$ or $\psi_2(z) = 1$, and $\varphi(z) = 0$ otherwise.

Value of a Boolean Formula

- Assignment z satisfies formula φ if $\varphi(z) = 1$
 - A formula is satisfiable if there is a satisfying assignment
 - ► A formula is *unsatisfiable* otherwise

Examples:

- φ is satisfiable
- $\psi = (x_1 \vee \neg x_2) \wedge \neg x_1 \wedge x_2$
- ψ is unsatisfiable

Conjunctive Normal Form

- A formula in conjunctive normal form is a formula that is an AND of ORs:
 - **► Example:** $(x_1 \lor x_2) \land (x_2 \lor \neg x_3) \land (x_3 \lor \neg x_1)$
- Formally:
 - ▶ A CNF formula is a formula of form

$$\bigwedge_{i=1}^{m} \left(\bigvee_{j=1}^{k} \ell_{i,j} \right),$$

where each $\ell_{i,j}$ is either an x or $\neg x$ for some variable x

- ▶ Terms $\ell_{i,j}$ are called *literals*
- ▶ Terms $\bigvee_{j=1}^{k} \ell_{i,j}$ are called *clauses*

CNF-SAT and k-SAT

Definition (CNF-SAT)

- Instance: A CNF formula φ.
- Question: Is φ satisfiable?

Definition (k-SAT)

- Instance: A CNF formula φ such that each clause in φ has at most k literals.
- Question: Is φ satisfiable?

- **2-SAT instance:** $(x_1 \lor x_2) \land (x_2 \lor \neg x_3) \land (x_3 \lor \neg x_1)$
- **3-SAT instance:** $(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \neg x_3 \lor x_4)$
- 4-SAT instance: $(x_1 \lor x_2 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_4)$

CNF-SAT and NP

Theorem

CNF-SAT is in NP.

- Proof: CNF-SAT has a polynomial-time verifier
 - ▶ *Input*: a formula φ over variables $x_1, x_2, ..., x_n$
 - ► *Certificate:* an assignment $z \in \{0,1\}^n$
 - ▶ *Verification algorithm:* compute the value $\varphi(z)$, accept if $\varphi(z) = 1$

Corollary

For any fixed $k \ge 1$, k-SAT is in NP.

Universality of CNF Formulas

CNF formulas can express all Boolean functions

- May require exponential number of clauses
- This does not matter: we want to use this construction for constant number of variables

Lemma

Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean function. Then there is a CNF formula φ over n variables with at most 2^n clauses such that $\varphi(z) = f(z)$ for all $z \in \{0,1\}^n$.

Universality of CNF Formulas: Proof

- For each $z \in \{0,1\}^n$, we construct clause C_z :
 - ▶ Let $\ell_i = x_i$ if $z_i = 0$, and $\ell_i = \neg x_i$ if $z_i = 1$
 - ightharpoonup Let $C_z = \bigvee_{i=1}^n \ell_i$
 - We now have $C_z(y) = 0$ if z = y, and $C_z(y) = 1$ if $z \neq y$
- For any $f: \{0,1\}^n \to \{0,1\}$, we construct formula φ :
 - Let $\varphi_f = \bigwedge_{z: f(z)=0} C_z$
 - ▶ If f(y) = 0, then y does not satisfy the clause C_y in $φ_f$
 - ▶ If f(y) = 1, then y satisfies all clauses C_y in $φ_f$
 - ► Thus, we have $\varphi_f(y) = f(y)$ for all $y \in \{0,1\}^n$

Cook-Levin Theorem

Theorem

CNF-SAT is NP-complete.

• We have: CNF-SAT is in NP

Next: CNF-SAT is NP-hard

General template for the proof:

- ▶ Let $L \in NP$ be a language
- We prove that there is a polynomial-time reduction from L to CNF-SAT

The only thing we know about L is that it is in NP

- ▶ There exists a verifier *M* for *L*
- For any $x \in L$, there is a certificate for x of length at most q(|x|), for some polynomial q
- M runs on input (x,u) in time p(|x|) for some polynomial p with $q(n) \le p(n)$
- ▶ M uses at most p(|x|) positions on each tape
- ▶ We may assume M has one working tape, uses alphabet $\{\triangleright, \square, 0, 1\}$

Execution Tables

• Execution of M on input (x, u) can be viewed as a table:

- Row i describes the state of M, the positions of heads and the contents of the tapes after step i
- Since M runs in time p(|x|), each row needs to store at most $1+3\cdot 2\cdot p(|x|)$ entries
 - three tapes, one (head,symbol)-pair per position on a tape
- The number of rows is at most p(|x|), and wlog we may assume exactly p(|x|) (no moves after M enters halting state)

Table can be encoded as binary:

- ▶ |Q| bits for state
- ▶ 3 bits per each tape position on each of 3 tapes
 - 1 bit for head marker (location indicator)
 - 2 bits for current symbol encoding

Execution Tables

Execution table is accepting if:

- State entry on the last row corresponds to the halting state
- The encoding of the output tape on the last row corresponds to ▷1□□...

By definition:

M has accepting execution table if and only if M accepts

Proof overview:

- Let x be a instance of L
- We construct a CNF-SAT formula ϕ_x over

$$S = p(|x|) \cdot (|Q| + 9p(|x|))$$
 variables

- Assignment z to φ_x encodes an execution table of M
- Formula φ_x is construed so that a given assignment z satisfies φ_x if and only if:
 - (i) z encodes a valid execution table
 - (ii) z encodes an execution table on input (x, u) for some $u \in \{0, 1\}^*$
 - (iii) z encodes an accepting execution table

- Clauses of φ_x are constructed to locally enforce the constraints
 - We could use the universality lemma to directly construct a CNF formula to enforce that the variables encode an accepting execution table
 - ▶ This would give *exponential* size in terms of |x|
 - Need to be more careful to get polynomial size
- Basic idea: encode local constraints

- Clauses of φ_x that enforce the starting and halting conditions:
 - ▶ Contents of the input tape on the first row of the execution table is $\triangleright x \square \square \ldots$ and of the other tapes $\triangleright \square \square \ldots$
 - lacktriangle All heads start at position 1 and the first state is q_0
 - State on the last row of the execution table is q_h
 - Contents of the output tape on the last row of the execution table is ▷1□□...
- These can be encoded by a conjunction of O(p(|x|)) single-literal clauses

• Clauses of ϕ_x that enforce consistency of the table:

- Only single head position and state for each row
- ▶ If head *is not* at position *j*, then the tape symbols at position *j* do not change between steps
- If head is at position j, then the tape symbols and the head markers around position j change correctly between steps
- The machine state changes correctly between steps

Each of these conditions can be viewed as a Boolean function on a constant number of variables

- At most $c = 2|Q| + 3 \cdot 2 \cdot 6$ variables per constraint
- Encode as a CNF with 2^c clauses using universality lemma
- About $O(p(|x|)^2)$ constraints needed

- The final CNF formula ϕ_x is conjunction of all constraints:
 - A conjunction of CNF formulas is a CNF formula
- ullet By construction, this gives us a reduction from L to CNF-SAT
 - $x \in L$ if and only if φ_x is satisfiable
 - φ_x can be constructed in polynomial time

CNF-SAT: Discussion

CNF-SAT is a relevant problem in practice

- Problem-specific reductions to CNF-SAT can be much more compact than the general reduction given by Cook–Levin theorem
- E.g. Intel has used CNF-SAT solvers to verify and optimise processor designs
- Highly efficient CNF-SAT solvers are available as open-source software
- For many difficult optimisation problems, reducing to CNF-SAT and applying off-the-shelf solvers can be much faster than anything you implement yourself

Lecture 6: Summary

- CNF-SAT and k-SAT
- CNF-SAT is NP-complete