A

Aalto University
School of Science

CS-E4530 Computational Complexity Theory

Lecture 6: The Cook—Levin Theorem

Aalto University
School of Science
Department of Computer Science

Spring 2019

Agenda

@ Boolean satisfiability
@ CNF formulas and Boolean functions
@ The Cook—Levin theorem

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
School of Science Department of Computer Science
2/23

NP-complete Problems

@ Last lecture:
» We saw that TMSAT is NP-complete
» Definition tied directly to the definition of NP
» Does not really tell us anything new about NP

@ This lecture:

» Prove that a problem called CNF-SAT is NP-complete
» First example of a natural NP-complete problem
» Starting point for further NP-completeness proofs

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
3/23

Cook-Levin Theorem

@ One of the founding results of computational complexity
» CNF-SAT is NP-complete
» Named after Stephen Cook and Leonid Levin
» Both independently proved the theorem around 1971

Stephen Cook Leonid Levin

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
4/23

Boolean Formulas

@ Boolean formula is built from the following primitives:
> Variables x1,x2,...,xy,
» Operators AND (A), OR (V), and NOT (—)
» Example: ¢ = (x; Axp) V (02 Ax3) V (x3 Axp)

Definition (Boolean formulas, recursive definition)

The set of Boolean formulas over variables x,x», ..., x; is defined as
follows:

@ x; is a Boolean formula forany i =1,2,...,n.
@ If ¢ is Boolean formula, then —¢ is Boolean formula.

@ If ¢ and y are Boolean formulas, then @ Ay and @ V y are
Boolean formulas.

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
A School of Science Department of Computer Science

5123

Value of a Boolean Formula

@ An assignment gives value 1 (true) or 0 (false) to each
variable

» Semantics of NOT, AND and OR are defined in the obvious way

Definition (Value of a Boolean formula)

Let z=(z1,22,.--,2x) € {0,1}" be an assignment. The value ¢(z) of
formula @ under assignment z is defined as follows:

@ If ¢ = x;, when 0(z) = z;.

o If =y, then 9(z) = 1 —y(2).

o If @=wy; Ay, then @(z) = 1if y(z) = y2(z) = 1, and ¢(z) =
otherwise.

o lIf@=wy;Vyy, then @(z) = 1ifyi(z) =1 orys(z) =1, and
9(z) = 0 otherwise.

School of Science Department of Computer Sci

Aalto University CS-E4530 Computational Complexity Theory / Lecture s
e 23

Value of a Boolean Formula

@ Assignment z satisfies formula ¢ if ¢(z) = 1
» A formula is satisfiable if there is a satisfying assignment
» A formula is unsatisfiable otherwise

o Examples:
> 0= ()C1 /\XQ) V (x2 /\X3) V ()C3 /\xl)
> @ is satisfiable

> Y= (X] vV —\X2) A—=x1 Axo
>\ is unsatisfiable

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
723

Conjunctive Normal Form

@ A formula in conjunctive normal form is a formula that is an
AND of ORs:

» Example: (x; V) A (x2V —x3) A (x3 V —xp)
@ Formally:
» A CNF formula is a formula of form

Ao

where each ¢;; is either an x or —x for some variable x
» Terms /;; are called literals
> Terms \/}‘:1 ¢;; are called clauses

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
A School of Science Department of Computer Science
8/23

CNF-SAT and k-SAT

Definition (CNF-SAT)
@ Instance: A CNF formula ¢.
@ Question: Is @ satisfiable?

Definition (k-SAT)
@ Instance: A CNF formula ¢ such that each clause in ¢ has at
most £ literals.

Question: Is @ satisfiable?

2-SAT instance: (x; Vx2) A (x2 V —x3) A (x3 V —xp)
3-SAT instance: (x; Vx; Vx3) A (x2 V-3 Vxg)
4-SAT instance: (x; Vxy Va3V —xg) A (xp V—x3Vy)

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
923

CNF-SAT and NP

Theorem
CNF-SAT is in NP. J

@ Proof: CNF-SAT has a polynomial-time verifier
> Input: a formula @ over variables x1,x2,...,x,
» Certificate: an assignment z € {0,1}"
» Verification algorithm: compute the value ¢(z), accept if @(z) = 1

Corollary
For any fixed k > 1, k-SAT is in NP. J

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
School of Science Department of Computer Science
10/23

Universality of CNF Formulas

@ CNF formulas can express all Boolean functions

» May require exponential number of clauses
» This does not matter: we want to use this construction for
constant number of variables

Lemma

Letf: {0,1}" — {0,1} be a Boolean function. Then there is a CNF
formula ¢ over n variables with at most 2" clauses such that

0(z) =f(z) forall z € {0,1}".

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
A School of Science Department of Computer Science
11/23

Universality of CNF Formulas: Proof

@ For each z € {0,1}", we construct clause C::
> Letl;=x;ifz;=0,and {; = —w; if z; = 1
> LetC; = \/?:1 ¢
» We now have C;(y) =0ifz=y,and C,(y) =1ifz#y

@ Foranyf: {0,1}" — {0,1}, we construct formula ¢:
Let O = /\z:f(z):O CZ

If f(y) = 0, then y does not satisfy the clause Cy in @y
If f(y) = 1, then y satisfies all clauses Cy, in ¢y

Thus, we have @¢(y) =f(y) forally € {0,1}"

v

v vy

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
School of Science Department of Computer Science
12/23

Cook-Levin Theorem

Theorem
CNF-SAT is NP-complete.

@ We have: CNF-SAT is in NP
@ Next: CNF-SAT is NP-hard

Aalto University
School of Science

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science
13/23

Cook-Levin Theorem: Proof

@ General template for the proof:
» Let L € NP be a language
» We prove that there is a polynomial-time reduction from L to
CNF-SAT

@ The only thing we know about L is that it is in NP

» There exists a verifier M for L

» For any x € L, there is a certificate for x of length at most ¢(]x|),
for some polynomial g
M runs on input (x,u) in time p(|x|) for some polynomial p with
q(n) <p(n)
M uses at most p(]x|) positions on each tape
We may assume M has one working tape, uses alphabet
{>,00,0,1}

v

v

v

School of Science Department of Computer Sci

Aalto University CS-E4530 Computational Cemple ity Theory / Leclu re s
14/ 23

Execution Tables

e Execution of M on input (x,«) can be viewed as a table:

» Row i describes the state of M, the positions of heads and the
contents of the tapes after step i
» Since M runs in time p(|x|), each row needs to store at most
1+3-2-p(|x]) entries
e three tapes, one (head,symbol)-pair per position on a tape
» The number of rows is at most p(|x|), and wlog we may assume
exactly p(|x|) (no moves after M enters halting state)

@ Table can be encoded as binary:
> |Q| bits for state
» 3 bits per each tape position on each of 3 tapes

e | bit for head marker (location indicator)
e 2 bits for current symbol encoding

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
School of Science Department of Computer Science
15/23

Execution Tables

@ Execution table is accepting if:

» State entry on the last row corresponds to the halting state
» The encoding of the output tape on the last row corresponds to
>100. ..

@ By definition:
» M has accepting execution table if and only if M accepts

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
16/23

Cook-Levin Theorem: Proof

@ Proof overview:

> Let x be ainstance of L
» We construct a CNF-SAT formula ¢, over
S=p(lx])- (10| +9p(|x])) variables
» Assignment z to ¢, encodes an execution table of M
» Formula @, is construed so that a given assignment z satisfies @,
if and only if:
(i) zencodes a valid execution table
(i) z encodes an execution table on input (x,u) for some u € {0,1}*
(iii) z encodes an accepting execution table

A Aalto University CS-E4530 Computational Complexity Theory / Lecture 6

School of Science Department of Computer Science
1723

Cook-Levin Theorem: Proof

@ Clauses of ¢, are constructed to /ocally enforce the
constraints

» We could use the universality lemma to directly construct a CNF
formula to enforce that the variables encode an accepting
execution table

» This would give exponential size in terms of |x|

> Need to be more careful to get polynomial size

@ Basic idea: encode /ocal constraints

A Aalto University CS-E4530 Computational Complexity Theory / Lecture 6

School of Science Department of Computer Science
18/23

Cook-Levin Theorem: Proof

@ Clauses of ¢, that enforce the starting and halting
conditions:

» Contents of the input tape on the first row of the execution table is
>xU. .. and of the other tapes >[I0 ..

> All heads start at position 1 and the first state is gg

» State on the last row of the execution table is gy,

» Contents of the output tape on the last row of the execution table
is >1001. ..

@ These can be encoded by a conjunction of O(p(]x|))
single-literal clauses

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
19/23

Cook-Levin Theorem: Proof

@ Clauses of ¢, that enforce consistency of the table:
» Only single head position and state for each row
» If head is not at position j, then the tape symbols at position j do
not change between steps
> If head is at position j, then the tape symbols and the head
markers around position j change correctly between steps
» The machine state changes correctly between steps

@ Each of these conditions can be viewed as a Boolean
function on a constant number of variables

» Atmost ¢ =2|Q|+3-2-6 variables per constraint
» Encode as a CNF with 2¢ clauses using universality lemma
> About O(p(|x|)?) constraints needed

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
20/23

Cook-Levin Theorem: Proof

@ The final CNF formula @, is conjunction of all constraints:
» A conjunction of CNF formulas is a CNF formula

@ By construction, this gives us a reduction from L to
CNF-SAT
» x € Lif and only if @, is satisfiable
> @, can be constructed in polynomial time

School of Science Department of Computer Science

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
21/23

CNF-SAT: Discussion

@ CNF-SAT is a relevant problem in practice

» Problem-specific reductions to CNF-SAT can be much more
compact than the general reduction given by Cook—Levin theorem

» E.g. Intel has used CNF-SAT solvers to verify and optimise
processor designs

» Highly efficient CNF-SAT solvers are available as open-source
software

» For many difficult optimisation problems, reducing to CNF-SAT
and applying off-the-shelf solvers can be much faster than
anything you implement yourself

Aalto University CS-E4530 Computational Complexity Theory / Lecture 6
A School of Science Department of Computer Science
22/23

Lecture 6: Summary

o CNF-SAT and k-SAT
@ CNF-SAT is NP-complete

School of Science Department of Computer Sci

Aalto University CS-E4530 Computation: al Cemple ity Theory / Leclu re s
23 23

