
CS-E4530 Computational Complexity Theory

Lecture 6: The Cook–Levin Theorem

Aalto University
School of Science
Department of Computer Science

Spring 2019

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

2/23

Agenda

Boolean satisfiability

CNF formulas and Boolean functions

The Cook–Levin theorem

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

3/23

NP-complete Problems

Last lecture:
I We saw that TMSAT is NP-complete
I Definition tied directly to the definition of NP
I Does not really tell us anything new about NP

This lecture:
I Prove that a problem called CNF-SAT is NP-complete
I First example of a natural NP-complete problem
I Starting point for further NP-completeness proofs

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

4/23

Cook–Levin Theorem

One of the founding results of computational complexity
I CNF-SAT is NP-complete
I Named after Stephen Cook and Leonid Levin
I Both independently proved the theorem around 1971

Stephen Cook Leonid Levin

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

5/23

Boolean Formulas

Boolean formula is built from the following primitives:
I Variables x1,x2, . . . ,xn
I Operators AND (∧), OR (∨), and NOT (¬)
I Example: ϕ = (x1∧ x2)∨ (x2∧ x3)∨ (x3∧ x1)

Definition (Boolean formulas, recursive definition)
The set of Boolean formulas over variables x1,x2, . . . ,xk is defined as
follows:

xi is a Boolean formula for any i = 1,2, . . . ,n.

If ϕ is Boolean formula, then ¬ϕ is Boolean formula.

If ϕ and ψ are Boolean formulas, then ϕ∧ψ and ϕ∨ψ are
Boolean formulas.

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

6/23

Value of a Boolean Formula

An assignment gives value 1 (true) or 0 (false) to each
variable

I Semantics of NOT, AND and OR are defined in the obvious way

Definition (Value of a Boolean formula)

Let z = (z1,z2, . . . ,zn) ∈ {0,1}n be an assignment. The value ϕ(z) of
formula ϕ under assignment z is defined as follows:

If ϕ = xi, when ϕ(z) = zi.

If ϕ = ¬ψ, then ϕ(z) = 1−ψ(z).

If ϕ = ψ1∧ψ2, then ϕ(z) = 1 if ψ1(z) = ψ2(z) = 1, and ϕ(z) = 0
otherwise.

If ϕ = ψ1∨ψ2, then ϕ(z) = 1 if ψ1(z) = 1 or ψ2(z) = 1, and
ϕ(z) = 0 otherwise.

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

7/23

Value of a Boolean Formula

Assignment z satisfies formula ϕ if ϕ(z) = 1
I A formula is satisfiable if there is a satisfying assignment
I A formula is unsatisfiable otherwise

Examples:
I ϕ = (x1∧ x2)∨ (x2∧ x3)∨ (x3∧ x1)
I ϕ is satisfiable

I ψ = (x1∨¬x2)∧¬x1∧ x2
I ψ is unsatisfiable

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

8/23

Conjunctive Normal Form

A formula in conjunctive normal form is a formula that is an
AND of ORs:

I Example: (x1∨ x2)∧ (x2∨¬x3)∧ (x3∨¬x1)

Formally:
I A CNF formula is a formula of form

m∧
i=1

(k∨
j=1

`i,j

)
,

where each `i,j is either an x or ¬x for some variable x
I Terms `i,j are called literals
I Terms

∨k
j=1 `i,j are called clauses

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

9/23

CNF-SAT and k-SAT

Definition (CNF-SAT)
Instance: A CNF formula ϕ.

Question: Is ϕ satisfiable?

Definition (k-SAT)
Instance: A CNF formula ϕ such that each clause in ϕ has at
most k literals.

Question: Is ϕ satisfiable?

2-SAT instance: (x1∨ x2)∧ (x2∨¬x3)∧ (x3∨¬x1)

3-SAT instance: (x1∨ x2∨ x3)∧ (x2∨¬x3∨ x4)

4-SAT instance: (x1∨ x2∨ x3∨¬x4)∧ (x2∨¬x3∨ x4)

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

10/23

CNF-SAT and NP

Theorem
CNF-SAT is in NP.

Proof: CNF-SAT has a polynomial-time verifier
I Input: a formula ϕ over variables x1,x2, . . . ,xn
I Certificate: an assignment z ∈ {0,1}n

I Verification algorithm: compute the value ϕ(z), accept if ϕ(z) = 1

Corollary
For any fixed k ≥ 1, k-SAT is in NP.

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

11/23

Universality of CNF Formulas

CNF formulas can express all Boolean functions
I May require exponential number of clauses
I This does not matter: we want to use this construction for

constant number of variables

Lemma
Let f : {0,1}n→{0,1} be a Boolean function. Then there is a CNF
formula ϕ over n variables with at most 2n clauses such that
ϕ(z) = f (z) for all z ∈ {0,1}n.

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

12/23

Universality of CNF Formulas: Proof

For each z ∈ {0,1}n, we construct clause Cz:
I Let `i = xi if zi = 0, and `i = ¬xi if zi = 1
I Let Cz =

∨n
i=1 `i

I We now have Cz(y) = 0 if z = y, and Cz(y) = 1 if z 6= y

For any f : {0,1}n→{0,1}, we construct formula ϕ:
I Let ϕf =

∧
z : f (z)=0 Cz

I If f (y) = 0, then y does not satisfy the clause Cy in ϕf
I If f (y) = 1, then y satisfies all clauses Cy in ϕf
I Thus, we have ϕf (y) = f (y) for all y ∈ {0,1}n

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

13/23

Cook–Levin Theorem

Theorem
CNF-SAT is NP-complete.

We have: CNF-SAT is in NP

Next: CNF-SAT is NP-hard

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

14/23

Cook–Levin Theorem: Proof

General template for the proof:
I Let L ∈ NP be a language
I We prove that there is a polynomial-time reduction from L to

CNF-SAT

The only thing we know about L is that it is in NP
I There exists a verifier M for L
I For any x ∈ L, there is a certificate for x of length at most q(|x|),

for some polynomial q
I M runs on input (x,u) in time p(|x|) for some polynomial p with

q(n)≤ p(n)
I M uses at most p(|x|) positions on each tape
I We may assume M has one working tape, uses alphabet
{B,�,0,1}

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

15/23

Execution Tables

Execution of M on input (x,u) can be viewed as a table:
I Row i describes the state of M, the positions of heads and the

contents of the tapes after step i
I Since M runs in time p(|x|), each row needs to store at most

1+3 ·2 ·p(|x|) entries
• three tapes, one (head,symbol)-pair per position on a tape

I The number of rows is at most p(|x|), and wlog we may assume
exactly p(|x|) (no moves after M enters halting state)

Table can be encoded as binary:
I |Q| bits for state
I 3 bits per each tape position on each of 3 tapes

• 1 bit for head marker (location indicator)
• 2 bits for current symbol encoding

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

16/23

Execution Tables

Execution table is accepting if:
I State entry on the last row corresponds to the halting state
I The encoding of the output tape on the last row corresponds to
B1�� . . .

By definition:
I M has accepting execution table if and only if M accepts

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

17/23

Cook–Levin Theorem: Proof

Proof overview:
I Let x be a instance of L
I We construct a CNF-SAT formula ϕx over

S = p(|x|) · (|Q|+9p(|x|)) variables
I Assignment z to ϕx encodes an execution table of M
I Formula ϕx is construed so that a given assignment z satisfies ϕx

if and only if:
(i) z encodes a valid execution table
(ii) z encodes an execution table on input (x,u) for some u ∈ {0,1}∗
(iii) z encodes an accepting execution table

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

18/23

Cook–Levin Theorem: Proof

Clauses of ϕx are constructed to locally enforce the
constraints

I We could use the universality lemma to directly construct a CNF
formula to enforce that the variables encode an accepting
execution table

I This would give exponential size in terms of |x|
I Need to be more careful to get polynomial size

Basic idea: encode local constraints

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

19/23

Cook–Levin Theorem: Proof

Clauses of ϕx that enforce the starting and halting
conditions:

I Contents of the input tape on the first row of the execution table is
Bx�� . . . and of the other tapes B�� . . .

I All heads start at position 1 and the first state is q0
I State on the last row of the execution table is qh
I Contents of the output tape on the last row of the execution table

is B1�� . . .

These can be encoded by a conjunction of O(p(|x|))
single-literal clauses

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

20/23

Cook–Levin Theorem: Proof

Clauses of ϕx that enforce consistency of the table:
I Only single head position and state for each row
I If head is not at position j, then the tape symbols at position j do

not change between steps
I If head is at position j, then the tape symbols and the head

markers around position j change correctly between steps
I The machine state changes correctly between steps

Each of these conditions can be viewed as a Boolean
function on a constant number of variables

I At most c = 2 |Q|+3 ·2 ·6 variables per constraint
I Encode as a CNF with 2c clauses using universality lemma
I About O

(
p(|x|)2

)
constraints needed

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

21/23

Cook–Levin Theorem: Proof

The final CNF formula ϕx is conjunction of all constraints:
I A conjunction of CNF formulas is a CNF formula

By construction, this gives us a reduction from L to
CNF-SAT

I x ∈ L if and only if ϕx is satisfiable
I ϕx can be constructed in polynomial time

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

22/23

CNF-SAT: Discussion

CNF-SAT is a relevant problem in practice
I Problem-specific reductions to CNF-SAT can be much more

compact than the general reduction given by Cook–Levin theorem
I E.g. Intel has used CNF-SAT solvers to verify and optimise

processor designs
I Highly efficient CNF-SAT solvers are available as open-source

software
I For many difficult optimisation problems, reducing to CNF-SAT

and applying off-the-shelf solvers can be much faster than
anything you implement yourself

CS-E4530 Computational Complexity Theory / Lecture 6
Department of Computer Science

23/23

Lecture 6: Summary

CNF-SAT and k-SAT

CNF-SAT is NP-complete

