
!1CS-E5520 Spring 2019 – Lehtinen

Acceleration 
Structures for Ray Tracing

Hašan et al. 2007

http://www.cs.cornell.edu/~mhasan/mxsmp.pdf

Assignment 1 results (at least..)

!2CS-E5520 Spring 2019 – Lehtinen

Ray Tracing: Test All Combinations

!3CS-E5520 Spring 2019 – Lehtinen

rays

objects/triangles

(in principle)

“does ray x hit object y?”

x

y

all ray/object pairs

Accelerating Ray Casting

!4CS-E5520 Spring 2019 – Lehtinen

What if this thing had 1B
triangles and your ray tracer just
walked through all of them?

Accelerating Ray Casting
• Goal: Reduce the

number of ray/primitive
intersections

!5CS-E5520 Spring 2019 – Lehtinen

No, you’re NOT going to get the image any
time soon if you test every triangle!

WETA Digital / New Line Cinema

No, you’re NOT going to get the image any
time soon if you test every triangle!

WETA Digital / New Line Cinema

What to do about it?

Conservative Bounding Volume
• First check for an

intersection with a
conservative  
bounding volume

• Early reject: If ray
doesn’t hit volume,  
it doesn’t hit the  
triangles!

!9CS-E5520 Spring 2019 – Lehtinen

Conservative Bounding Volume
• What does

“conservative” mean?
– Volume must be big

enough to contain all
geometry within

!10CS-E5520 Spring 2019 – Lehtinen

CS-E5520 Spring 2019 – Lehtinen

Conservative Bounding Regions
bounding

sphere

axis-aligned
bounding box 
(AABB)

arbitrary convex region (bounding
half-spaces)

oriented  
bounding box 
(OBB)

!11

• Desiderata
– Tight →  

avoid false positives
– Fast to intersect

✔

Ray-Box Intersection

• Axis-aligned box
• Box: (X1, Y1, Z1) → (X2, Y2, Z2)
• Ray: P(t) = Ro + tRd

– Remember? Ro is ray origin, Rd is direction vector

!12

y=Y2

y=Y1

x=X1 x=X2

Ro

Rd

CS-E5520 Spring 2019 – Lehtinen

Naïve Ray-Box Intersection

• 6 plane equations: Compute all intersections
• Return closest intersection inside the box

– Verify intersections are on the correct side  
of each plane: Ax+By+Cz+D < 0

!13

y=Y2

y=Y1

x=X1 x=X2

Ro

Rd

CS-E5520 Spring 2019 – Lehtinen

Reducing Total Computation

• Pairs of planes have the same normal
• Normals have only one non-0 component
• Do computations one dimension at a time

!14

y=Y2

y=Y1

x=X1 x=X2

Ro

Rd

CS-E5520 Spring 2019 – Lehtinen

Test if Parallel

• If Rdx = 0 (ray is parallel) AND  
 Rox < X1 or Rox > X2 → no intersection

!15

y=Y2

y=Y1

x=X1 x=X2

Ro

Rd

CS-E5520 Spring 2019 – Lehtinen

(The same
for Y and Z,
of course)

Find Intersections Per Dimension
• Basic idea

– Determine an interval along the ray for each dimension
– The intersect these 1D intervals (remember CSG!)
– Done!

!16

Ro

y=Y2

y=Y1

x=X1 x=X2

CS-E5520 Spring 2019 – Lehtinen

Find Intersections Per Dimension
• Basic idea

– Determine an interval along the ray for each dimension
– The intersect these 1D intervals (remember CSG!)
– Done!

!17

Ro

y=Y2

y=Y1

x=X1 x=X2

CS-E5520 Spring 2019 – Lehtinen

Interval
between X1
and X2

Find Intersections Per Dimension
• Basic idea

– Determine an interval along the ray for each dimension
– The intersect these 1D intervals (remember CSG!)
– Done!

!18

Ro

y=Y2

y=Y1

x=X1 x=X2

CS-E5520 Spring 2019 – Lehtinen

Interval
between X1
and X2

Interval
between Y1
and Y2

Find Intersections Per Dimension
• Basic idea

– Determine an interval along the ray for each dimension
– The intersect these 1D intervals (remember CSG!)
– Done!

!19

Ro

y=Y2

y=Y1

x=X1 x=X2

CS-E5520 Spring 2019 – Lehtinen

Interval
between X1
and X2

Interval
between Y1
and Y2

Intersection

Intersecting 1D Intervals

!20CS-E5520 Spring 2019 – Lehtinen

Intersecting 1D Intervals

!21CS-E5520 Spring 2019 – Lehtinen

Start=  
max of mins

Intersecting 1D Intervals

!22CS-E5520 Spring 2019 – Lehtinen

Start=  
max of mins

End= 
min of maxs

Intersecting 1D Intervals

!23CS-E5520 Spring 2019 – Lehtinen

Start=  
max of mins

End= 
min of maxs

If Start > End, the intersection is empty!

Find Intersections Per Dimension
• Calculate intersection distance t1 and t2

– t1 = (X1 - Rox) / Rdx

– t2 = (X2 - Rox) / Rdx

– [t1, t2] is the X interval

!24

t1

t2

Ro

Rd

y=Y2

y=Y1

x=X1 x=X2

CS-E5520 Spring 2019 – Lehtinen

Then Intersect Intervals
• Init tstart & tend with X interval
• Update tstart & tend for each subsequent dimension

!25

y=Y2

y=Y1

x=X1 x=X2

CS-E5520 Spring 2019 – Lehtinen

tend
tstart

Then Intersect Intervals
• Compute t1 and t2 for Y...

!26

t1

t2
y=Y2

y=Y1

x=X1 x=X2

CS-E5520 Spring 2019 – Lehtinen

Then Intersect Intervals
• Update tstart & tend for each subsequent dimension

– If t1 > tstart, tstart = t1

– If t2 < tend, tend = t2

!27

y=Y2

y=Y1

x=X1 x=X2

CS-E5520 Spring 2019 – Lehtinen

t1

t2 tend
tstart

Then Intersect Intervals
• Update tstart & tend for each subsequent dimension

– If t1 > tstart, tstart = t1

– If t2 < tend, tend = t2

!28

tendy=Y2

y=Y1

x=X1 x=X2

CS-E5520 Spring 2019 – Lehtinen

tstart

t1

t2

Then Intersect Intervals
• Update tstart & tend for each subsequent dimension

– If t1 > tstart, tstart = t1

– If t2 < tend, tend = t2

!29

y=Y2

y=Y1

x=X1 x=X2

CS-E5520 Spring 2019 – Lehtinen

tend
tstart

:-)

Is there an Intersection?
• If tstart > tend → box is missed

!30

y=Y2

y=Y1

x=X1 x=X2

CS-E5520 Spring 2019 – Lehtinen

tend

tstart

Is the Box Behind the Eyepoint?
• If tend < tmin → box is behind

!31

y=Y2

y=Y1

x=X1 x=X2

CS-E5520 Spring 2019 – Lehtinen

tend

tstart

Return the Correct Intersection
• If tstart > tmin → closest intersection at tstart

• Else → closest intersection at tend

– Eye is inside box

!32

y=Y2

y=Y1

x=X1 x=X2

CS-E5520 Spring 2019 – Lehtinen

tend

tstart

Ray-Box Intersection Summary
• For each dimension,

– If Rdx = 0 (ray is parallel) AND  
 Rox < X1 or Rox > X2 → no intersection

• For each dimension, calculate intersection distances t1 and t2

– t1 = (X1 - Rox) / Rdx t2 = (X2 - Rox) / Rdx

– If t1 > t2, swap
– Maintain an interval [tstart, tend], intersect with current dimension
– If t1 > tstart, tstart = t1 If t2 < tend, tend = t2

• If tstart > tend → box is missed
• If tend < tmin → box is behind
• If tstart > tmin → closest intersection at tstart

• Else → closest intersection at tend

!33CS-E5520 Spring 2019 – Lehtinen

Efficiency Issues

• 1/Rdx, 1/Rdy and 1/Rdz can be pre-computed  

!34CS-E5520 Spring 2019 – Lehtinen

AA Bounding Box of a Triangle

!35

(xmin, ymin, zmin)

(xmax, ymax, zmax)
(x0, y0, z0)

(x1, y1, z1)

(x2, y2, z2)

= (min(x0,x1,x2),  
 min(y0,y1,y2),  
 min(z0,z1,z2))

= (max(x0,x1,x2), 
 max(y0,y1,y2), 
 max(z0,z1,z2))

CS-E5520 Spring 2019 – Lehtinen

AA Bounding Box of a Group

!36

(xmin_b, ymin_b, zmin_b)

(xmin, ymin, zmin)

(xmax, ymax, zmax)

= (min(xmin_a,xmin_b),  
 min(ymin_a,ymin_b),  
 min(zmin_a,zmin_b))

= (max(xmax_a,xmax_b),  
 max(ymax_a,ymax_b),  
 max(zmax_a,zmax_b))

(xmin_a, ymin_a, zmin_a)

(xmax_b, ymax_b, zmax_b)

(xmax_a, ymax_a, zmax_a)

CS-E5520 Spring 2019 – Lehtinen

AA Bounding Box After Transform

!37

(x'min, y'min, z'min)

(x'max, y'max, z'max)

= (min(x0,x1,x2,x3,x4,x5,x6,x7),  
 min(y0,y1,y2,y3,y4,x5,x6,x7),  
 min(z0,z1,z2,z3,z4,x5,x6,x7))

M

(xmin, ymin, zmin)
(x0,y0,z0) =  
M (xmin,ymin,zmin)

= (max(x0,x1,x2,x3,x4,x5,x6,x7),  
 max(y0,y1,y2,y3,y4,x5,x6,x7),  
 max(z0,z1,z2,z3,z4,x5,x6,x7))

(x1,y1,z1) =  
M (xmax,ymin,zmin)

(x2,y2,z2) =  
M (xmin,ymax,zmin)

(x3,y3,z3) =  
M (xmax,ymax,zmin)

(xmax, ymax, zmax)

CS-E5520 Spring 2019 – Lehtinen

Bounding box of transformed object IS NOT  
the transformation of the bounding box!

Questions?

!38CS-E5520 Spring 2019 – Lehtinen

Are Bounding Volumes Enough?

• If ray hits bounding volume,  
test all contained primitives?
– Lots of work, think of a 10M-triangle mesh

!39CS-E5520 Spring 2019 – Lehtinen

bounding
sphere

Bounding Volume Hierarchies

• If ray hits bounding volume,  
test all contained primitives?
– Lots of work, think of a 10M-triangle mesh

• You guessed it already, we’ll split the primitives in
groups and build recursive bounding volumes

!40CS-E5520 Spring 2019 – Lehtinen

bounding
sphere 

hierarchy

Bounding Volume Hierarchy (BVH)
• Find bounding box of objects/primitives
• Split objects/primitives into two, compute child BVs
• Recurse, build a binary tree

!41CS-E5520 Spring 2019 – Lehtinen

!42CS-E5520 Spring 2019 – Lehtinen

• Find bounding box of objects/primitives
• Split objects/primitives into two, compute child BVs
• Recurse, build a binary tree

Bounding Volume Hierarchy (BVH)

!43CS-E5520 Spring 2019 – Lehtinen

• Find bounding box of objects/primitives
• Split objects/primitives into two, compute child BVs
• Recurse, build a binary tree

Bounding Volume Hierarchy (BVH)

!44CS-E5520 Spring 2019 – Lehtinen

• Find bounding box of objects/primitives
• Split objects/primitives into two, compute child BVs
• Recurse, build a binary tree

Bounding Volume Hierarchy (BVH)

!45CS-E5520 Spring 2019 – Lehtinen

• Find bounding box of objects/primitives
• Split objects/primitives into two, compute child BVs
• Recurse, build a binary tree

Bounding Volume Hierarchy (BVH)

Where to Split Objects?
• At midpoint of current volume OR
• Sort along longest axis, put half of objects on each side OR
• Use modeling hierarchy

–(Actually, don’t. You’re relying on the artist for speed.)

!46CS-E5520 Spring 2019 – Lehtinen

Interlude

• The Path to Path Traced Movies

!47CS-E5520 Spring 2019 – Lehtinen

https://graphics.pixar.com/library/PathTracedMovies/paper.pdf

Where to Split Objects?
• At midpoint of current volume OR
• Sort, and put half of the objects on each side OR
• Use modeling hierarchy

–Actually, don’t. You’re relying on the artist for speed.

!48CS-E5520 Spring 2019 – Lehtinen

Better yet: 
optimize the Surface Area Heuristic (SAH)

We’ll get to these in a moment..

Ray-BVH Intersection

!49CS-E5520 Spring 2019 – Lehtinen

• Find tstart and tend for node
–If no hit, return

CS-E5520 Spring 2019 – Lehtinen

Ray-BVH Intersection

!50

• Compute tstart, tend for child nodes
–Recursively check sub-volume with closer intersection first

CS-E5520 Spring 2019 – Lehtinen

Ray-BVH Intersection

!51

• Don't return intersection immediately if the other
subvolume may have a closer intersection
–Nodes can and will overlap!

CS-E5520 Spring 2019 – Lehtinen

Intersection with BVH

!52

• Don't return intersection immediately if the other
subvolume may have a closer intersection
–Nodes can and will overlap!

CS-E5520 Spring 2019 – Lehtinen

Intersection with BVH

!53

• Must also check the farther child node if closest hit so
far () is inside its bounding volume

CS-E5520 Spring 2019 – Lehtinen

Intersection with BVH

!54

Questions?

!55CS-E5520 Spring 2019 – Lehtinen

Lehtinen et al. SIGGRAPH 2012

(It pays off to be smart, but not only in how fast your tracer is)

http://groups.csail.mit.edu/graphics/ilfr/

BVH Details

• In ray tracing, a BVH node contains
– The node’s bounding volume

• e.g. axis-aligned box

– Internal nodes: Pointers to left and right children
– Leaf nodes: List of primitives inside the node

!56CS-E5520 Spring 2019 – Lehtinen

Constructing a BVH, Pseudocode

!57CS-E5520 Spring 2019 – Lehtinen

function constructTree(list L, node N)
{

// must know node size, be it internal or leaf...
N.boundingBox = computeBB(L);
N.leftChild = N.rightChild = NULL;

if (L.numElements() > MAX_TRIS_PER_LEAF) // continue recursion?
{

// decide how to split primitives
plane S = chooseSplit(L);
// perform actual split: partition L into two disjoint sets
list leftChild, rightChild;
partitionPrimitives(L, S, leftChild, rightChild);
// construct left child primitivelist, recurse
N.leftChild = new Node();
constructTree(leftChild, N.leftChild);
// construct left child primitivelist, recurse
N.rightChild = new Node();
constructTree(rightChildList, N.rightChild);

}
else N.primitives = L; // no: store which primitives are in this leaf

}

main()
{

Node root = new Node();
construct(allPrimitives, root); // recursively builds entire tree

}

Constructing a BVH, Pseudocode

!58CS-E5520 Spring 2019 – Lehtinen

function constructTree(list L, node N)
{

// must know node size, be it internal or leaf...
N.boundingBox = computeBB(L);
N.leftChild = N.rightChild = NULL;

if (L.numElements() > MAX_TRIS_PER_LEAF) // continue recursion?
{

// decide how to split primitives
plane S = chooseSplit(L);
// perform actual split: partition L into two disjoint sets
list leftChild, rightChild;
partitionPrimitives(L, S, leftChild, rightChild);
// construct left child primitivelist, recurse
N.leftChild = new Node();
constructTree(leftChild, N.leftChild);
// construct left child primitivelist, recurse
N.rightChild = new Node();
constructTree(rightChildList, N.rightChild);

}
else N.primitives = L; // no: store which primitives are in this leaf

}

main()
{

Node root = new Node();
construct(allPrimitives, root); // recursively builds entire tree

}

Constructing a BVH, Pseudocode

!59CS-E5520 Spring 2019 – Lehtinen

function constructTree(list L, node N)
{

// must know node size, be it internal or leaf...
N.boundingBox = computeBB(L);
N.leftChild = N.rightChild = NULL;

if (L.numElements() > MAX_TRIS_PER_LEAF) // continue recursion?
{

// decide how to split primitives
plane S = chooseSplit(L);
// perform actual split: partition L into two disjoint sets
list leftChild, rightChild;
partitionPrimitives(L, S, leftChild, rightChild);
// construct left child primitivelist, recurse
N.leftChild = new Node();
constructTree(leftChild, N.leftChild);
// construct left child primitivelist, recurse
N.rightChild = new Node();
constructTree(rightChildList, N.rightChild);

}
else N.primitives = L; // no: store which primitives are in this leaf

}

main()
{

Node root = new Node();
construct(allPrimitives, root); // recursively builds entire tree

}

Constructing a BVH, Pseudocode

!60CS-E5520 Spring 2019 – Lehtinen

function constructTree(list L, node N)
{

// must know node size, be it internal or leaf...
N.boundingBox = computeBB(L);
N.leftChild = N.rightChild = NULL;

if (L.numElements() > MAX_TRIS_PER_LEAF) // continue recursion?
{

// decide how to split primitives
plane S = chooseSplit(L);
// perform actual split: partition L into two disjoint sets
list leftChild, rightChild;
partitionPrimitives(L, S, leftChild, rightChild);
// construct left child primitivelist, recurse
N.leftChild = new Node();
constructTree(leftChild, N.leftChild);
// construct left child primitivelist, recurse
N.rightChild = new Node();
constructTree(rightChildList, N.rightChild);

}
else N.primitives = L; // no: store which primitives are in this leaf

}

main()
{

Node root = new Node();
construct(allPrimitives, root); // recursively builds entire tree

}

Constructing a BVH, Pseudocode

!61CS-E5520 Spring 2019 – Lehtinen

function constructTree(list L, node N)
{

// must know node size, be it internal or leaf...
N.boundingBox = computeBB(L);
N.leftChild = N.rightChild = NULL;

if (L.numElements() > MAX_TRIS_PER_LEAF) // continue recursion?
{

// decide how to split primitives
plane S = chooseSplit(L);
// perform actual split: partition L into two disjoint sets
list leftChild, rightChild;
partitionPrimitives(L, S, leftChild, rightChild);
// construct left child primitivelist, recurse
N.leftChild = new Node();
constructTree(leftChild, N.leftChild);
// construct left child primitivelist, recurse
N.rightChild = new Node();
constructTree(rightChildList, N.rightChild);

}
else N.primitives = L; // no: store which primitives are in this leaf

}

main()
{

Node root = new Node();
construct(allPrimitives, root); // recursively builds entire tree

}

Constructing a BVH, Pseudocode

!62CS-E5520 Spring 2019 – Lehtinen

function constructTree(list L, node N)
{

// must know node size, be it internal or leaf...
N.boundingBox = computeBB(L);
N.leftChild = N.rightChild = NULL;

if (L.numElements() > MAX_TRIS_PER_LEAF) // continue recursion?
{

// decide how to split primitives
plane S = chooseSplit(L);
// perform actual split: partition L into two disjoint sets
list leftChild, rightChild;
partitionPrimitives(L, S, leftChild, rightChild);
// construct left child node, recurse
N.leftChild = new Node();
constructTree(leftChild, N.leftChild);
// construct left child primitivelist, recurse
N.rightChild = new Node();
constructTree(rightChildList, N.rightChild);

}
else N.primitives = L; // no: store which primitives are in this leaf

}

main()
{

Node root = new Node();
construct(allPrimitives, root); // recursively builds entire tree

}

Constructing a BVH, Pseudocode

!63CS-E5520 Spring 2019 – Lehtinen

function constructTree(list L, node N)
{

// must know node size, be it internal or leaf...
N.boundingBox = computeBB(L);
N.leftChild = N.rightChild = NULL;

if (L.numElements() > MAX_TRIS_PER_LEAF) // continue recursion?
{

// decide how to split primitives
plane S = chooseSplit(L);
// perform actual split: partition L into two disjoint sets
list leftChild, rightChild;
partitionPrimitives(L, S, leftChild, rightChild);
// construct left child node, recurse
N.leftChild = new Node();
constructTree(leftChild, N.leftChild);
// construct left child node, recurse
N.rightChild = new Node();
constructTree(rightChildList, N.rightChild);

}
else N.primitives = L; // no: store which primitives are in this leaf

}

main()
{

Node root = new Node();
construct(allPrimitives, root); // recursively builds entire tree

}

Neat Implementation Trick

• In a BVH, the split always divides  
the primitives (triangles) to two non-overlapping sets
– The bounding boxes of the child nodes will most often overlap

in space, but each primitive always lands in exactly one of the
children

• In contrast, space-partitioning trees, such as kD-trees
or BSP trees, have non-overlapping spatial nodes, but
primitives that straddle the split plane land in both
children

!64CS-E5520 Spring 2019 – Lehtinen

Neat Implementation Trick

• In a BVH, the split always divides  
the primitives to two non-overlapping sets
– The bounding boxes of the child nodes will most often overlap

in space, but each primitive always lands in exactly one of the
children

!65CS-E5520 Spring 2019 – Lehtinen

Primitive that lands in left child

Primitive that lands in right child

List L

Neat Implementation Trick

• In a BVH, the split always divides  
the primitives to two non-overlapping sets
– The bounding boxes of the child nodes will most often overlap

in space, but each primitive always lands in exactly one of the
children

!66CS-E5520 Spring 2019 – Lehtinen

List L

Can rearrange list in-place

Neat Implementation Trick

• Each nodes doesn’t actually hold its entire own list of
primitives
– It suffices to mark the start and end indices in a global index

list

!67CS-E5520 Spring 2019 – Lehtinen

Construct(root.leftChild, 
L, 0, S)

Construct(root.rightChild, 
L, S, N)

Construct(root, L, 0, numElements(L))List L

0 S N

0 N

Neat Implementation Trick

• Each nodes doesn’t actually hold its entire own list of
primitives
– It suffices to mark the start and end indices in a global index

list

!68CS-E5520 Spring 2019 – Lehtinen

Construct(root.leftChild, 
L, 0, S)List L

0 S N

0 S NS’

Neat Implementation Trick

!69CS-E5520 Spring 2019 – Lehtinen

Construct(root.leftChild, 
L, 0, S)List L

0 S N

0 S NS’

struct Node
{

Vec3f bbMin, bbMax; // axis-aligned BB
int startPrim, endPrim; // these are indices in the global list
Node* pLeft, pChild; // these are NULL if node is leaf

}; (Lots of room for optimizations!)

In practice

• You can either
– Keep one global list of triangles in their original order, and

maintain an index list during traversal
• Recommended
• Index list initialized to {0, 1, 2, ..., n} before calling construct for root
• Index list is shuffled in-place by the tree construction code
• Final index list gives the nodes’ as indices to the global triangle list

– You can also just shuffle the global list of triangles without the
indirection

– Not recommended to use lists of pointers to triangles, will
make save/load more complicated
• Pointer references an actual memory location, will vary between runs!

!70CS-E5520 Spring 2019 – Lehtinen

Is it Important to Optimize Splits?

• Given the same traversal code, the quality of the tree
may have a big impact on performance, e.g. a factor of
2 compared to naive middle split
– But then, you should consider carefully if you need that extra

performance
– And constructing better trees is slower!
– Could you optimize something else for bigger gain?

!71CS-E5520 Spring 2019 – Lehtinen

Karras, Aila HPG 2013 (underline means link!)

!72CS-E5520 Spring 2019 – Lehtinen

Efficiency measured as a function of TOTAL
WALLCLOCK TIME PER RAY, taking into account
both BVH construction and actual tracing.

https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

Karras, Aila HPG 2013 (underline means link!)

!73CS-E5520 Spring 2019 – Lehtinen

Efficiency measured as a function of TOTAL
WALLCLOCK TIME PER RAY, taking into account
both BVH construction and actual tracing.

If you don’t have too
many rays to trace, it
probably pays off to
construct BVH really
quickly, even if tracing
wasn’t as fast per ray

https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

Karras, Aila HPG 2013 (underline means link!)

!74CS-E5520 Spring 2019 – Lehtinen

Efficiency measured as a function of TOTAL
WALLCLOCK TIME PER RAY, taking into account
both BVH construction and actual tracing.

After some point a faster
but slower-to-build BVH’s
increased tracing speed
starts to pay off

https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

Ways of Choosing Splits

• Spatial median
– Pick the longest axis (x/y/z) of current node’s bounding box
– Distribute primitives to positive/negative based on which side

the primitive’s centroid lies

!75CS-E5520 Spring 2019 – Lehtinen

• Spatial median
– Pick the longest axis (x/y/z) of current node’s bounding box
– Distribute primitives to positive/negative based on which side

the primitive’s centroid lies

CS-E5520 Spring 2019 – Lehtinen

Ways of Choosing Splits

!76

L

0.5L 0.5L

Ways of Choosing Splits

• Spatial median
– Pick the longest axis (x/y/z) of current node’s bounding box
– Distribute primitives to positive/negative based on which side

the primitive’s centroid lies

!77CS-E5520 Spring 2019 – Lehtinen

L

0.5L 0.5L

• Object median
– Pick an axis (you can try them all)
– Sort primitives along the axis
– Assign half of the primitives to left, half to right

CS-E5520 Spring 2019 – Lehtinen

Ways of Choosing Splits

!78

• Object median
– Pick an axis (you can try them all)
– Sort primitives along the axis
– Assign half of the primitives to left, half to right

CS-E5520 Spring 2019 – Lehtinen

Ways of Choosing Splits

!79

• Object median
– Pick an axis (you can try them all)
– Sort primitives along the axis
– Assign half of the primitives to left, half to right

CS-E5520 Spring 2019 – Lehtinen

Ways of Choosing Splits

!80

Which one is better...?

Traversal Cost

• Spatial and object median are heuristics to prune
efficiently either
– space (spatial median)

• The volumes of the nodes shrink as fast as possible

– tree depth (object median)
• The number of primitives in each node shrinks as fast as possible
• Builds a balanced tree. That’s a good thing – right…?

• Do these actually determine how fast the tree is able to
answer ray queries?
– What determines ray tracing cost?

!81CS-E5520 Spring 2019 – Lehtinen

Surface Area Heuristic (SAH)

• MacDonald, Booth 1990: Heuristics for ray tracing
using space subdivision, Visual Computer (6) 153-166.

• Rather simple, but surprisingly effective heuristic to
choose split planes. Main ideas:

1. Assume rays are uniformly distributed in space.
2. Then, the probability of a ray hitting a BVH node is

directly proportional to the node’s surface area.
3. The cost of traversing a node is proportional to the number

of primitives (triangles) it contains, plus some fixed
constant, plus the cost of the subtree rooted at the node

4. Ergo: a good split is one that minimizes the expected cost  
(Note! Greedy algorithm. Global optimum over entire tree is
unattainable.) !82CS-E5520 Spring 2019 – Lehtinen

http://graphics.ucsd.edu/courses/cse168_s06/ucsd/heuristics.pdf
http://graphics.ucsd.edu/courses/cse168_s06/ucsd/heuristics.pdf

SAH cont’d

• MacDonald and Booth suggest choosing split planes by
minimizing  
 
 

• where b is the position of the split along an axis,
normalized to [0,1] along the extents of the node,

• LSA/RSA is the surface area of the resulting left/right
child nodes,

• L(b) is the number of primitives in the left child, and
• n is the number of primitives in the node being split.

!83CS-E5520 Spring 2019 – Lehtinen

f(b) = LSA(b) · L(b) +RSA(b) · (n� L(b))

SAH Notes

• It’s a top-down greedy heuristic. Does not guarantee
any sort of global optimality.

• However, works surprisingly well in practice
– The research community has been confused as to why ;)

• Can also be done bottom-up, but harder
– Walter et al. 2008, Fast agglomerative clustering for rendering,

Proc. IRT 2008
• Strongly suggested for extra credit  

in your first assignment
– Try object median, spatial median, SAH; which one gives you

the fastest tracer? The more test cases you have and the fancier
you describe results, the more points!

!84CS-E5520 Spring 2019 – Lehtinen

http://www.graphics.cornell.edu/~bjw/IRT08Agglom3.pdf

“The research community has been confused
as to why ;)”
• Not true any more!
• Timo Aila and Tero Karras and Samuli Laine

(NVResearch) finally shed some light on this in 2013
“On Quality Metrics of Bounding Volume Hierarchies”
– See also slides from Timo’s homepage
– Highly recommended reading!
– Turns out the above doesn’t actually optimize  

what it promises to optimize..

• Timo will tell you all about it in a few weeks!

!85CS-E5520 Spring 2019 – Lehtinen

https://users.aalto.fi/~ailat1/publications/aila2013hpg_paper.pdf
https://users.aalto.fi/~ailat1/

Questions?

!86CS-E5520 Spring 2019 – Lehtinen

BVH Discussion

• Advantages
– easy to construct
– easy to traverse
– binary tree (=simple structure)

• Disadvantages
– Choosing splits requires care

• Current fastest tracers use BVHs
– You should, too.
– The other choice: kD-trees

• Not going to cover here.
!87CS-E5520 Spring 2019 – Lehtinen

Elephant in the Room

• Optimizing SAH makes sense in a static context where
the frame is going to take long to render anyway

• What about dynamic scenes?
– Greedy SAH way too slow
– Research in BVH construction for dynamic scenes advancing

rapidly these days

!88CS-E5520 Spring 2019 – Lehtinen

Fast BVH Construction

• “Recent” (~2009) Hot Idea: use space-filling curves
– Treat triangles as points (just take their centroid)
– Sort them along a Morton curve (a kind of space-filling curve)
– Morton sorting order implicitly corresponds to a hierarchy in a

uniform spatial median split
– Emit corresponding tree nodes
– Done!

• ~State of the Art pushed by Finns
– Tero Karras, 2012: Maximizing Parallelism in the

Construction of BVHs, Octrees and k-d trees. Proc. High
Performance Graphics 2012

– (Tero’s magic happens in hierarchy emission)
!89CS-E5520 Spring 2019 – Lehtinen

http://en.wikipedia.org/wiki/Z-order_curve
http://www.tml.tkk.fi/~jaakko/T111-5310/K2013/karras-HPG2012.pdf
http://www.tml.tkk.fi/~jaakko/T111-5310/K2013/karras-HPG2012.pdf
http://www.tml.tkk.fi/~jaakko/T111-5310/K2013/karras-HPG2012.pdf

Absolute Top Perf

• Build bad tree fast using space-filling curves; then
perform exhaustive local optimization on tree topology.
– See Tero & Timo’s paper (HPG 2013)

!90CS-E5520 Spring 2019 – Lehtinen

https://research.nvidia.com/publication/fast-parallel-construction-high-quality-bounding-volume-hierarchies

Morton Curves

• 2D Morton 
known as Z-curve

!91CS-E5520 Spring 2019 – Lehtinen

Morton Curves

• 2D Morton 
known as Z-curve

• Obtained by scaling
the x, y, z
coordinates to some
convenient integer
range and then
interleaving bits
– E.g. 21-bit integer

coordinates result in
63-bit Morton code,
still fits in register

!92CS-E5520 Spring 2019 – Lehtinen

Scaling

!93CS-E5520 Spring 2019 – Lehtinen

X integer coordinate [0,2^n[
Y

in
te

ge
r c

oo
rd

in
at

e
[0

,2
^n

[

AABB of 

Entire Scene

Upper bound is exclusive, e.g. 0…255 = 2^8-1

Why Does This Work?

!94CS-E5520 Spring 2019 – Lehtinen

X=0
Y=0

X=0
Y=1

X=1
Y=0

X=1
Y=1

Two one-bit
coordinates

specify a
quadrant

YX=00 YX=01

YX=10 YX=11

Interpreting
the 2 bits as

a binary
number gives
the one-level

Z order

Why Does This Work?

!95CS-E5520 Spring 2019 – Lehtinen

00 00 00 01

00 10 00 11

01 00 01 01

01 10 01 11

11 00 11 01

11 10 11 11

10 00 10 01

10 10 10 11

Let’s group
the bits!

First level:
first two bits

Second level:
2nd two bits

..and so on

!96CS-E5520 Spring 2019 – Lehtinen

Level 1 Level 2

Level 4...Level 3

..and so on

!97CS-E5520 Spring 2019 – Lehtinen

Level 1

Level 3

Key ideas:
 

1. Short 1D
distance along

this curve
usually

corresponds
to spatial
proximity

2. It’s
hierarchical by
construction

The Implicit Hierarchy

!98CS-E5520 Spring 2019 – Lehtinen

The Implicit Quadtree Hierarchy

!99CS-E5520 Spring 2019 – Lehtinen

00 ...
First level:
first two bits 00 ...

00 ...

01 ...

01 ...

01 ...

11 ...

11 ...
11 ...

10 ...

10 ...

10 ...

The Implicit Quadtree Hierarchy

!100CS-E5520 Spring 2019 – Lehtinen

0000..
Second level:
next two bits 0001..

0010..

0001..

0011..

Notes

• In 2D, Morton order provides implicit quadtree
subdivision
– Every node splits in 4 quadrants

• In 3D, it’s an octree
– Every node splits into 8

• Trivially easy to convert into a binary tree
– Each octree node becomes three binary tree nodes
– First split x, then y, then z

• Each split becomes a binary tree node. Simple!
!101CS-E5520 Spring 2019 – Lehtinen

Morton Code BVH builders

• Extremely fast, can build trees from millions of
triangles in milliseconds [Karras2012]

• Also highly convenient for out-of-core builders
– DreamWorks’ point-based global illumination solver uses one

of these, see Kontkanen, Tabellion, Overbeck 2011, Coherent
Out-of-core Point-Based Global Illumination. Proc. EGSR
2011.

!102CS-E5520 Spring 2019 – Lehtinen

http://www.tabellion.org/et/paper11/index.html
http://www.tabellion.org/et/paper11/index.html

Assignment 1

• We will publish an leaderboard on the ray tracers you
write in the 1st assignment ;)
– No names shown, of course

!103CS-E5520 Spring 2019 – Lehtinen

Questions?

!104CS-E5520 Spring 2019 – Lehtinen

