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http://www.cs.cornell.edu/~mhasan/mxsmp.pdf

Assignment 1 results (at least..
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Ray Tracing: Test All Combmatlons

(in principle)

objects/triangles

“does ray x hit object y?”
y O

rays

CS-E5520 Spring 2019 — Lehtinen



Accelerating Ray Casting

What if this thing had 1B
triangles and your ray tracer just
walked through all of them?

CS-E5520 Spring 2019 — Lehtinen



Accelerating Ray Casting

 Goal: Reduce the
number of ray/primitive
Intersections
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WETA Dlgltal / New Line Clnema

No, you’re NOT gomg to get the image any
time soon if you test every triangle!



WETA Digital / New Line Cinema
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No, you’re NOT going to get the image any
time soon if you test every triangle!




What to do about it?



Conservative Bounding Volume

e First check for an
intersection with a
conservative
bounding volume

* Early reject: If ray
doesn’t hit volume,
1t doesn’t hit the
triangles!
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Conservative Bounding Volume

e What does
“conservative” mean?
— Volume must be big

enough to contain all
geometry within

CS-E5520 Spring 2019 — Lehtinen

10



Conservative Bounding Regions

bounding
sphere

e Desiderata

—Tight —
avoid false positives

—Fast to intersect

oriented
bounding box

(OBB)

axis-aligned
bounding box
(AABB)

v

\

arbitrary convex region (bounding
half-spaces)

11



Ray-Box Intersection

» Axis-aligned box
» Box: (Xla Yla Zl) — (X29 Y29 ZZ)
« Ray: P(t) =R, +tR;

—Remember? R is ray origin, R is direction vector

y=Y,

CS-E5520 Spring 2019 — Lehtinen
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Nalve Ray-Box Intersection

* 6 plane equations: Compute all intersections
* Return closest intersection inside the box

— Verity intersections are on the correct side
of each plane: Ax+By+Cz+D <0

y=Y,

y=Y,

%, R4 X=X, x=X,
R

CS-E5520 Spring 2019 — Lehtinen
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Reducing Total Computation

 Pairs of planes have the same normal
* Normals have only one non-0 component
* Do computations one dimension at a time

CS-E5520 Spring 2019 — Lehtinen
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Test if Parallel

« [f Ry, =0 (ray 1s parallel) AND
R,,<X;orR_ , > X, — nointersection

y=Y,

|

I

I

l

I

I

|

I

I

|

y=Y,
Rd
X=X, x=X,
g ; IQO

CS-E5520 Spring 2019 — Lehtinen

(The same
for Y and Z,
of course)
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Find Intersections Per Dimension

* Basic i1dea
—Determine an interval along the ray for each dimension
—The 1ntersect these 1D intervals (remember CSG!)
—Done!

y=Y,
(0]
y=Y,

X=X, X=X,
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Find Intersections Per Dimension

* Basic i1dea
—Determine an interval along the ray for each dimension
—The 1ntersect these 1D intervals (remember CSG!)

—Done!
’ Interval
between X;
y=Y2 m B
y:Y,I /;//

X=X, X=X,

CS-E5520 Spring 2019 — Lehtinen
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Find Intersections Per Dimension

* Basic i1dea
—Determine an interval along the ray for each dimension
—The 1ntersect these 1D intervals (remember CSG!)

—Done!
) Interval
between Xi
y=Y, i— and X
y=Y,

X=X, X=X,

CS-E5520 Spring 2019 — Lehtinen
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Find Intersections Per Dimension

* Basic i1dea
—Determine an interval along the ray for each dimension
—The 1ntersect these 1D intervals (remember CSG!)

—Done!
’ Interval
Rl between X;
y=Y5 and X2
y=Y1 -
Intersection

X=X, X=X,

CS-E5520 Spring 2019 — Lehtinen 19



Intersecting 1D Intervals

0
C O
.—‘

CS-E5520 Spring 2019 — Lehtinen
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Intersecting 1D Intervals

Start=
max of mins

O O

CS-E5520 Spring 2019 — Lehtinen
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Intersecting 1D Intervals

Start=
max of mins

£

End=
min of maxs

CS-E5520 Spring 2019 — Lehtinen
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Intersecting 1D Intervals

If Start > End, the intersection is empty!

Start=
max of mins

:E,

End=
min of maxs

CS-E5520 Spring 2019 — Lehtinen
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Find Intersections Per Dimension

 Calculate intersection distance t; and t,
—t;= (X - Ro) / Ryy
—t, = (X5- Roy) / Ryy
—[t1, t2] 1s the X interval

t,

P

y=Y,

L |/
A

X=X, X=X,

y=Y,

CS-E5520 Spring 2019 — Lehtinen
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Then Intersect Intervals

® Imt tstart & tend Wlth X interval
» Update tstart & tend for each subsequent dimension

V=Y, tend

X=X, X=X,

CS-E5520 Spring 2019 — Lehtinen
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Then Intersect Intervals

» Compute t; and t; for Y...

t,
y=Y, i—
. M
y=Y, O

X=X, X=X,

CS-E5520 Spring 2019 — Lehtinen
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Then Intersect Intervals

» Update tstart & tend fOr €ach subsequent dimension

_If tl > tstarta tstart — tl

—If t2 < tend9 tend — t2
t,
V=Y, ¢ tend
start
t, A
y=Y, O
X=X, X=X,

CS-E5520 Spring 2019 — Lehtinen
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Then Intersect Intervals

» Update tstart & tend fOr €ach subsequent dimension
—If tl > tstarta tstart — tl
Ift, <t tg =t

end> end

V=Y, tend
tstart

X=X, X=X,

CS-E5520 Spring 2019 — Lehtinen

28



Then Intersect Intervals

» Update tstart & tend fOr €ach subsequent dimension

_If tl > tstarta tstart — tl

—If t2 < tend9 tend — t2
_v tend
y=r1, t
start
. )
I
|
y=Y,
X=X, X=X,
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|s there an Intersection?

o If t,, > t.,qg — box is missed

tstLrt

tend /’
Y=Y, -

A/

y=Y,

X=X, X=X,

CS-E5520 Spring 2019 — Lehtinen
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Is the Box Behind the Eyepoint?

e Ift, <t — box is behind

tend s

tstart "

y=Y,

X=X, X=X,

CS-E5520 Spring 2019 — Lehtinen
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Return the Correct Intersection

o If't,. > t ., — closest intersection at t, .

min

e Flse — closest intersection at t, 4

—Eye 1s 1nside box

tend ,//
y=Y, /

tstart

/z
Y
Y
7’
7
Y
Y
7’

X=X, X=X,

y=Y,

CS-E5520 Spring 2019 — Lehtinen
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Ray-Box Intersection Summary

e For each dimension,
— It Ry =0 (ray 1s parallel) AND
R, <X, or R ,> X, — no intersection

« For each dimension, calculate intersection distances t; and t,
_tl — (Xl B ROX) / Rdx t2 — (X2 B ROX) / Rdx
—Ift, >t,, swap
— Maintain an interval [ty t..q], Intersect with current dimension
- Iftl > tstarta tstart — tl If t2 < tenda tend — t2
o Ift,«>t,qg — boxis missed
o [f tend < tmin — box is behind
o Ift,.« > t,;, — closest intersection at t.,

e Else — closest intersection at t_, 4

CS-E5520 Spring 2019 — Lehtinen
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Efficiency Issues

« I/Ryy, 1/Ry4y and 1/R, can be pre-computed

CS-E5520 Spring 2019 — Lehtinen
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AA Bounding Box of a Triangle

. (meZX’ y max’ Zmax )

= (max(x,,x;x,),

max(yyyy2),
max(z,z,.2,))

(xmin’ Y min’ Zmin) ’

— (min(XO,xl,XZ),

min(y,y.y2),
min(z,z,,z,))

CS-E5520 Spring 2019 — Lehtinen
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AA Bounding Box of a Group

z

(xmax_a’ Y max_a’ max_a)

()C max_b’ Y max_b’ 2 max_b)

(xmin_b’ Y min_b’ Zmin_b)

()C min_a’ Y min_a’

Z

min_a)

(xmin’ ymin) Zmin) — (min(xmin_a’xmin_b)’

min (ymin_a’y min_b) ’
n/ZlI”l (Zmln_a)ZWIln_b))

CS-E5520 Spring 2019 — Lehtinen

. (xmax’ y max’ ZWZCZX)

— (WZCDC (xmax_a) xmax_b)’
max (ymax_a’y max_b) ’
MAX(Zyax 0 Zmax b))
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AA Bounding Box After Transform

Bounding box of transformed object IS NOT (X e V' maw Z'max)
the transformation of the bounding box! = (MAX(X X 1, XX 3X X5, X 5X7),

Max(yp.y VY3V 4X5X6X7),

(xma.X’ y max? Zmax )
maX(Zo,21,22,23;Z4yx5)x6)x7))

o
® o
(3,13235) =
M (xmax’y max mm)
O (2.v272) = (xpypz )=
M (xmin’y maxJZmin) M (xmax’ymin’ min)
o =
® , ® , (X0 Y020) =
(xmin’ ymin’ Zmin) (X i Y min> 2 min) M (xmm’ymm) mzn)

= (MIN(x;,Xx,X5X3,X,X5,X6X7),

m | n()/O,yl,yg,y3,y4,x5;x6:x7)5
min(ZO,ZI,ZZ,Z3,Z4’X5:X6’X7))
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Questions?

CS-E5520 Spring 2019 — Lehtinen
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Are Bounding Volumes Enough?

o If ray hits bounding volume,
test all contained primitives?

—Lots of work, think of a 10M-triangle mesh

bounding
sphere

CS-E5520 Spring 2019 — Lehtinen
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Bounding Volume Hierarchies

o If ray hits bounding volume,
test all contained primitives?

—Lots of work, think of a 10M-triangle mesh

* You guessed 1t already, we’ll split the primitives in
groups and build recursive bounding volumes

CS-E5520 Spring 2019 — Lehtinen
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Bounding Volume Hierarchy (BVH)

* Find bounding box of objects/primitives
* Split objects/primitives into two, compute child BVs

aQ

* Recurse, build a binary tree

CS-E5520 Spring 2019 — Lehtinen
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Bounding Volume Hierarchy (BVH)

* Find bounding box of objects/primitives
* Split objects/primitives into two, compute child BVs
* Recurse, build a binary tree

CS-E5520 Spring 2019 — Lehtinen
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Bounding Volume Hierarchy (BVH)

* Find bounding box of objects/primitives
* Split objects/primitives into two, compute child BVs
* Recurse, build a binary tree

l
I CS-E5520 Spring 2019 — Lehtinen
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Bounding Volume Hierarchy (BVH)

* Find bounding box of objects/primitives
* Split objects/primitives into two, compute child BVs
* Recurse, build a binary tree

CS-E5520 Spring 2019 — Lehtinen
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Bounding Volume Hierarchy (BVH)

* Find bounding box of objects/primitives
* Split objects/primitives into two, compute child BVs
* Recurse, build a binary tree

CS-E5520 Spring 2019 — Lehtinen
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Where to Split Objects?

* At midpoint of current volume OR
» Sort along longest axis, put half of objects on each side OR
* Use modeling hierarchy

—(Actually, don’t. You’re relying on the artist for speed.)

l
I CS-E5520 Spring 2019 — Lehtinen
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Interlude

 The Path to Path Traced Movies

The Path to Path-Traced Movies

Per H. Christensen Wojciech Jarosz
Pixar Animation Studios Dartmouth College
per@pixar.com wojciech.k.jarosz@Qdartmouth.edu

CS-E5520 Spring 2019 — Lehtinen

47


https://graphics.pixar.com/library/PathTracedMovies/paper.pdf

Better yet:
optimize the Surface Area Heuristic (SAH)

We'll get to these In a moment..



Ray-BVH Intersection

CS-E5520 Spring 2019 — Lehtinen
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Ray-BVH Intersection

. Flnd tstart and tend fOI’ Il()de

—If no hit, return

A

L
\V4

CS-E5520 Spring 2019 — Lehtinen
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Ray-BVH Intersection

» Compute tstart, tend for child nodes

—Recursively check sub-volume with closer intersection first

L
\V4

A

CS-E5520 Spring 2019 — Lehtinen
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Intersection with BVH

* Don't return intersection immediately 1f the other
subvolume may have a closer intersection

—Nodes can and will overlap!

~J

CS-E5520 Spring 2019 — Lehtinen
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Intersection with BVH

* Don't return intersection immediately 1f the other
subvolume may have a closer intersection

—Nodes can and will overlap!

~J

CS-E5520 Spring 2019 — Lehtinen
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Intersection with BVH

 Must also check the farther child node 1f closest hit so
far (@) 1s inside its bounding volume

™

7
p
v W4

~J
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Questions?

Lehtinen et al. SIGGRAPH 2012

Our reconstruction Path tracing (512 spp)

(It pays off to be smart, but not only in how fast your tracer is)
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http://groups.csail.mit.edu/graphics/ilfr/

BVH Detalls

* In ray tracing, a BVH node contains

—The node’s bounding volume
e ¢.g. axis-aligned box

—Internal nodes: Pointers to left and right chi!

dren

—Leaf nodes: List of primitives inside the noc

CS-E5520 Spring 2019 — Lehtinen
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Constructing a BVH, Pseudocode

function constructTree( list L, node N )

{

}

main()

{

Node root = new Node();
construct( allPrimitives, root ); // recursively builds entire tree

}

S7



Constructing a BVH, Pseudocode

function constructTree( list L, node N )

{
/l must know node size, be it internal or leaf...
N.boundingBox = computeBB( L );
N.leftChild = N.rightChild = NULL;

}

main()

{

Node root = new Node();
construct( allPrimitives, root ); // recursively builds entire tree

}
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Constructing a BVH, Pseudocode

function constructTree( list L, node N )

{
/l must know node size, be it internal or leaf...
N.boundingBox = computeBB( L );
N.leftChild = N.rightChild = NULL;
if ( L.numElements() > MAX_TRIS_PER_LEAF ) // continue recursion?
{
}
else N.primitives = L; // no: store which primitives are in this leaf
}
main()
{

Node root = new Node();
construct( allPrimitives, root ); // recursively builds entire tree

}
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Constructing a BVH, Pseudocode

function constructTree( list L, node N )

{
/l must know node size, be it internal or leaf...
N.boundingBox = computeBB( L );
N.leftChild = N.rightChild = NULL;
if ( L.numElements() > MAX_TRIS_PER_LEAF ) // continue recursion?
{
// decide how to split primitives
plane S = chooseSplit( L );
}
else N.primitives = L; // no: store which primitives are in this leaf
}
main()
{

Node root = new Node();
construct( allPrimitives, root ); // recursively builds entire tree

}
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Constructing a BVH, Pseudocode

function constructTree( list L, node N )

{
/l must know node size, be it internal or leaf...
N.boundingBox = computeBB( L );
N.leftChild = N.rightChild = NULL;
if ( L.numElements() > MAX_TRIS_PER_LEAF ) // continue recursion?
{
// decide how to split primitives
plane S = chooseSplit( L );
// perform actual split: partition L into two disjoint sets
list leftChild, rightChild;
partitionPrimitives( L, S, leftChild, rightChild );
}
else N.primitives = L; // no: store which primitives are in this leaf
}
main()
{

Node root = new Node();
construct( allPrimitives, root ); // recursively builds entire tree

}
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Constructing a BVH, Pseudocode

function constructTree( list L, node N )

{
// must know node size, be it internal or leaf...
N.boundingBox = computeBB( L );
N.leftChild = N.rightChild = NULL,;
if ( L.numElements() > MAX_TRIS_PER_LEAF ) // continue recursion?
{
// decide how to split primitives
plane S = chooseSplit( L );
// perform actual split: partition L into two disjoint sets
list leftChild, rightChild;
partitionPrimitives( L, S, leftChild, rightChild );
// construct left child node, recurse
N.leftChild = new Node();
constructTree( leftChild, N.leftChild );
}
else N.primitives = L; // no: store which primitives are in this leaf
}
main()
{

Node root = new Node();
construct( allPrimitives, root ); // recursively builds entire tree

}
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Constructing a BVH, Pseudocode

function constructTree( list L, node N )

{
/l must know node size, be it internal or leaf...
N.boundingBox = computeBB( L );
N.leftChild = N.rightChild = NULL,;
if ( L.numElements() > MAX_TRIS_PER_LEAF ) // continue recursion?
{
// decide how to split primitives
plane S = chooseSplit( L );
// perform actual split: partition L into two disjoint sets
list leftChild, rightChild;
partitionPrimitives( L, S, leftChild, rightChild );
// construct left child node, recurse
N.leftChild = new Node();
constructTree( leftChild, N.leftChild );
/] construct left child node, recurse
N.rightChild = new Node();
constructTree( rightChildList, N.rightChild );
}
else N.primitives = L; // no: store which primitives are in this leaf
}
main()
{

Node root = new Node();
construct( allPrimitives, root ); // recursively builds entire tree

}



Neat Implementation Trick

* In a BVH, the split always divides
the primitives (triangles) to two non-overlapping sets
—The bounding boxes of the child nodes will most often overlap

in space, but each primitive always lands 1n exactly one of the
children

* In contrast, space-partitioning trees, such as kD-trees
or BSP trees, have non-overlapping spatial nodes, but
primitives that straddle the split plane land 1n both
children
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Neat Implementation Trick

* In a BVH, the split always divides
the primitives to two non-overlapping sets

—The bounding boxes of the child nodes will most often overlap
in space, but each primitive always lands 1n exactly one of the
children

B Primitive that lands in left child

N Primitive that lands in right child
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Neat Implementation Trick

» In a BVH, the split always divides
the primitives to two non-overlapping sets

—The bounding boxes of the child nodes will most often overlap
in space, but each primitive always lands 1n exactly one of the
children

~_~ Can rearrange list in-place
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Neat Implementation Trick

* Each nodes doesn’t actually hold its entire own list of
primitives
— It suffices to mark the start and end indices 1n a global index
list

List L Construct( root, L, 0, numElements(L) )

~ N
S S
Construct( root.leftChild, Construct( root.rightChild,
L,0,S) L,S,N)

0 S N

CS-E5520 Spring 2019 — Lehtinen
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Neat Implementation Trick

* Each nodes doesn’t actually hold 1ts entire own list of
primitives

— It suffices to mark the start and end indices 1n a global index

l1st
' Construct( root.leftChild,
st L
0 S N

S
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Neat Implementation Trick

struct Node

{
Vec3f bbMin, bbMax; // axis-aligned BB
iInt startPrim, endPrim; //these are indices in the global list
Node™* pLeft, pChild; // these are NULL if node is leaf
$ (Lots of room for optimizations!)
List L Construct( root.leftChild,

L,0,S)

S N

CS-E5520 Spring 2019 — Lehtinen
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In practice

* You can either

—Keep one global list of triangles 1n their original order, and
maintain an index list during traversal
* Recommended
* Index list mmitialized to {0, 1, 2, ..., n} before calling construct for root
* Index list 1s shuffled in-place by the tree construction code

 Final index list gives the nodes’ as indices to the global triangle list

—You can also just shuffle the global list of triangles without the
indirection

—Not recommended to use lists of pointers to triangles, will
make save/load more complicated

 Pointer references an actual memory location, will vary between runs!
CS-E5520 Spring 2019 — Lehtinen 70



Is it Important to Optimize Splits?

» G1ven the same traversal code, the quality of the tree
may have a big impact on performance, ¢.g. a factor of
2 compared to naive middle split

—But then, you should consider carefully if you need that extra
performance

— And constructing better trees 1s slower!

—Could you optimize something else for bigger gain?

CS-E5520 Spring 2019 — Lehtinen
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Ka 'ras Alla HPG 201 3 (underline means link!)

MRays/s relative to maximum achievable ray tracing

Efficiency measured as a function of TOTAL
WALLCLOCK TIME PER RAY, taking into account

performance of SweepSAH
both BVH construction and actual tracing.
140%
......... — SweepSAH
0 I B Lt
IZOA ....,.................................::.u ................... Our
100% o ——1BVH
e —— HLBVH
80%
— GridSAH

60%

° - Kensler
40% — Bittner
20% ...... SBVH

------ Our+split
0% = - — (30%)
1M 10M 100M 1G 10G 100G 1T
Number of rays
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https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

Ka 'rasS Alla HPG 201 3 (underline means link!)

Efficiency measured as a function of TOTAL

If you don’t have too *  WALLCLOCK TIME PER RAY, taking into account
many rays to trace, it both BVH construction and actual tracing.
probably pays offto —— SweepSAH
construct BVH really T R S our

quickly, even if tracing

wasn’t as fast per ray S
——HLBVH
. ' I
et . —— GridSAH

60% P
/ ' - Kensler
40% / — Bittner
0% £ S oA e SBVH
o e L Our+split
0% e (30%)
1M 10M 100M 1G 10G 100G 1T
Number of rays
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https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

Karras, Alla HP (G 2013 e means ine;

g Efficiency measured as a function of TOTAL
After some point a faster = ..\ ¢/ 6ck TIME PER RAY, taking into account

but slower-to-build BVH’s both BVH construction and actual tracing.
increased tracing speed
starts to pay off

— SweepSAH

100%
30% BVH
GridSAH

60% - Kensler

40% — Bittner

20% ...... SBVH

......... - -eee++ Our+split
0% - : (30%)
1M 10M 100M 1G 10G 100G 1T

Number of rays
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Ways of Choosing Splits

* Spatial median

—Pick the longest axis (x/y/z) of current node’s bounding box

— Daistribute primitives to positive/negative based on which side
the primitive’s centroid lies

CS-E5520 Spring 2019 — Lehtinen 75



Ways of Choosing Splits

* Spatial median

—Pick the longest axis (x/y/z) of current node’s bounding box

— Daistribute primitives to positive/negative based on which side
the primitive’s centroid lies

0.5L 0.5L
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Ways of Choosing Splits

* Spatial median

—Pick the longest axis (x/y/z) of current node’s bounding box

— Daistribute primitives to positive/negative based on which side
the primitive’s centroid lies

L
ﬁ

‘4‘4

<4<
4‘ <
< <«
MH
0.5L 0.5L
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Ways of Choosing Splits

* Object median
—Pick an axis (you can try them all)
—Sort primitives along the axis
— Assign half of the primitives to left, half to right

Q< AL A<

CS-E5520 Spring 2019 — Lehtinen

78



Ways of Choosing Splits

* Object median
—Pick an axis (you can try them all)
—Sort primitives along the axis
— Assign half of the primitives to left, half to right
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Ways of Choosing Splits

* Object median
—Pick an axis (you can try them all)
—Sort primitives along the axis
— Assign half of the primitives to left, half to right

Which one is better...?

CS-E5520 Spring 2019 — Lehtinen
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Traversal Cost

 Spatial and object median are heuristics to prune
efficiently either
—space (spatial median)
* The volumes of the nodes shrink as fast as possible

—tree depth (object median)
* The number of primitives in each node shrinks as fast as possible
* Builds a balanced tree. That's a good thing — right...?

* Do these actually determine how fast the tree 1s able to
answer ray queries?

— What determines ray tracing cost?

CS-E5520 Spring 2019 — Lehtinen
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Surface Area Heuristic (SAH)

* MacDonald, Booth 1990: Heuristics for ray tracing

using space subdivision, Visual Computer (6) 153-166.

* Rather simple, but surprisingly effective heuristic to
choose split planes. Main 1deas:

1. Assume rays are uniformly distributed 1n space.

2. Then, the probability of a

ray hitting a BVH node 1s

directly proportional to the node’s surface area.

3. The cost of traversing a node 1s proportional to the number
of primitives (triangles) 1t contains, plus some fixed

constant, plus the cost of t

he subtree rooted at the node

4. Ergo: a good split 1s one t]
(Note! Greedy algorithm. Global
unattainable.)

nat minimizes the expected cost
optimum over entire tree 1s
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http://graphics.ucsd.edu/courses/cse168_s06/ucsd/heuristics.pdf
http://graphics.ucsd.edu/courses/cse168_s06/ucsd/heuristics.pdf

SAH cont'd

* MacDonald and Booth suggest choosing split planes by
minimizing

f(b) = LSA(b) - L(b) + RSA(b) - (n — L(b))

» where b 1s the position of the split along an axis,
normalized to [0,1] along the extents of the node,

 LSA/RSA 1s the surface area of the resulting left/right
child nodes,

* L(b) 1s the number of primitives in the left child, and
* n 1s the number of primitives 1n the node being split.
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SAH Notes

* It’s a top-down greedy heuristic. Does not guarantee
any sort of global optimality.

 However, works surprisingly well 1n practice
— The research community has been confused as to why ;)
* Can also be done bottom-up, but harder

— Walter et al. 2008, Fast agglomerative clustering for rendering,
Proc. IRT 2008

» Strongly suggested for extra credit
in your first assignment

—Try object median, spatial median, SAH; which one gives you
the fastest tracer? The more test cases you have and the fancier
you describe results, the more points!
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http://www.graphics.cornell.edu/~bjw/IRT08Agglom3.pdf

“The research community has been confused
as towhy ;)’

* Not true any more!

* Timo Aila and Tero Karras and Samul1 Laine
(NVResearch) finally shed some light on this in 2013
“On Quality Metrics of Bounding Volume Hierarchies”

—See also slides from Timo’s homepage

—Highly recommended reading!

— Turns out the above doesn t actually optimize K\O Q

what it promises to optimize..

* Timo will tell you all about 1t 1n a few weeks!
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https://users.aalto.fi/~ailat1/publications/aila2013hpg_paper.pdf
https://users.aalto.fi/~ailat1/

Questions?
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BVH Discussion

* Advantages
—easy to construct
—casy to traverse
—binary tree (=simple structure)

* Disadvantages

—Choosing splits requires care

e Current fastest tracers use BVHs

—You should, too.
— The other choice: kD-trees

e Not going to cover here.
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Elephant in the Room

* Optimizing SAH makes sense 1n a static context where
the frame 1s going to take long to render anyway

* What about dynamic scenes?
—Greedy SAH way too slow

—Research in BVH construction for dynamic scenes advancing
rapidly these days
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Fast BVH Construction

* “Recent” (~2009) Hot Idea: use space-filling curves

—Treat triangles as points (Just take their centroid)

—Sort them along a Morton curve (a kind of space-filling curve)

—Morton sorting order implicitly corresponds to a hierarchy in a
uniform spatial median split

—Emit corresponding tree nodes
—Done!

» ~State of the Art pushed by Finns

—Tero Karras, 2012: Maximizing Parallelism 1n the
Construction of BVHs, Octrees and £-d trees. Proc. High
Performance Graphics 2012

—(Tero’s magic happens 1n hierarchy emission)
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http://en.wikipedia.org/wiki/Z-order_curve
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Absolute Top Perf

* Build bad tree fast using space-filling curves; then
perform exhaustive local optimization on tree topology.

—See Tero & Timo’s paper (HPG 2013)

Fast Parallel Construction of High-Quality Bounding Volume Hierarchies

Tero Karras Timo Aila
NVIDIA

Mrays/s SBVH = HLBVH ~ sseeses Our method
Abstract 450

400
We propose a new massively parallel algorithm for constructing 350
high-quality bounding volume hierarchies (BVHs) for ray tracing. 300
The algorithm is based on modifying an existing BVH to improve 250
its quality, and executes in linear time at a rate of almost 40M tri- 200
angles/sec on NVIDIA GTX Titan. We also propose an improved 150
approach for parallel splitting of triangles prior to tree construc- 100
tion. Averaged over 20 test scenes, the resulting trees offer over 50 77
90% of the ray tracing performance of the best offline construction 0

M 10M 100M 1G 10G 100G 1T

method (SBVH), while previous fast GPU algorithms offer only
about 50%. Compared to state-of-the-art, our method offers a sig-
nificant improvement in the majority of practical workloads that
need to construct the BVH for each frame. On the average, it gives
the best overall performance when tracing between 7 million and
60 billion rays per frame. This covers most interactive applications,
product and architectural design, and even movie rendering.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: ray tracing, bounding volume hierarchies

Number of rays

Figure 1: Performance of constructing a BVH and then casting
a number of diffuse rays with NVIDIA GTX Titan in SODA (2.2M
triangles). SBVH [Stich et al. 2009] yields excellent ray tracing
performance, but suffers from long construction times. HLBVH
[Garanzha et al. 2011a] is very fast to construct, but reaches only
about 50% of the performance of SBVH. Our method is able to
reach 97% while still being fast enough to use in interactive ap-
plications. In this particular scene, it offers the best quality—speed
tradeoff for workloads ranging from 30M to 500G rays per frame.
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https://research.nvidia.com/publication/fast-parallel-construction-high-quality-bounding-volume-hierarchies

Morton Curves

e 2D Morton
known as Z-curve

4

S/ 1S/
@

S/ S/
//////%
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Morton Curves

e 2D Morton
known as Z-curve

» Obtained by scaling E

the X, y, z

coordinates to some

convenient integer
range and then
interleaving bits
—E.g. 21-bit integer
coordinates result 1n

63-bit Morton code,
still fits 1n register

S/ 1S/
@

S/ S/
7////7///
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Scaling

Upper bound is exclusive, e.g. 0...255 = 2/8-1

>

Y integer coordinate [0,2n][

<

X integer coordinate [0,2n|

<

>
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Why Does This Work?

Two one-bit
coordlnates

YX=00 jJYX=01

0
0

Interpreting
the 2 bits as
a binary
number gives
the one-level
Z order
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Why Does This Work™?

Let's group
the bits!

First level:
first two bits

Second level:
2nd two bits

0000 | 0001 § 0100 0101

/ V V

N Z

10101 1011f 1110] 11 11

T Sﬂ& - '
‘ﬂﬁr .
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..and so on

Level 1

Level 3

4

/S /1S
ﬁ/y/

S/ NS/
/7///4
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..and so on

Key ideas:
1. Short 1D
Level 1 distance along
this curve
usually
corresponds
to spatial
//‘////}/ proximity
/S LS 2. It's
Level 3 hierarchical by
//;//}/ construction
L/ LS L
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The Implicit Hierarchy

<l
<4 < <
< 4 <
< <
< <
<
< <
< <

<
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The Implicit Quadtree Hierarchy

First level:
first two bits

CS-E5520 Spring 2019 — Lehtinen

99



The Implicit Quadtree Hierarchy

0001..

Second level;
next two bits
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Notes

» In 2D, Morton order provides implicit quadtree
subdivision

—Every node splits in 4 quadrants

e In 3D, 1t’s an octree
—Every node splits into 8

 Trivially easy to convert into a binary tree
—Each octree node becomes three binary tree nodes
—First split x, then y, then z

 Each split becomes a binary tree node. Simple!
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http://www.tabellion.org/et/paper11/index.html
http://www.tabellion.org/et/paper11/index.html

Assignment 1

* We will publish an leaderboard on the ray tracers you
write 1n the 1st assignment ;)

—No names shown, of course
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Questions?
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