GIS-E3010 Least-Squares Methods in Geoscience

Lecture 5, activation 3

Relative orientation

The coplanarity equation is

$$
G=\left|\begin{array}{lll}
b_{X} & b_{Y} & b_{Z} \\
X_{1} & Y_{1} & Z_{1} \\
X_{2} & Y_{2} & Z_{2}
\end{array}\right|=b_{X}\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right)-b_{Y}\left(X_{1} Z_{2}-X_{2} Z_{1}\right)+b_{Z}\left(X_{1} Y_{2}-X_{2} Y_{1}\right)=0
$$

And after linearization it looks like

$$
\begin{gathered}
{\left[\begin{array}{llll}
\frac{\partial G}{\partial x_{1}} & \frac{\partial G}{\partial y_{1}} & \frac{\partial G}{\partial x_{2}} & \frac{\partial G}{\partial y_{2}}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d y_{1} \\
d x_{2} \\
d y_{2}
\end{array}\right]+\left[\begin{array}{lllll}
\frac{\partial G}{\partial b_{Y}} & \frac{\partial G}{\partial b_{Z}} & \frac{\partial G}{\partial \omega_{2}} & \frac{\partial G}{\partial \phi_{2}} & \frac{\partial G}{\partial \kappa_{2}}
\end{array}\right]\left[\begin{array}{l}
d b_{Y} \\
d b_{Z} \\
d \omega_{2} \\
d \phi_{2} \\
d \kappa_{2}
\end{array}\right]+G^{0}=0} \\
C^{T} d l+D d p+G^{0}=0
\end{gathered}
$$

$d p$ is the solution vector including the corrections of unknown relative orientation parameters (the size of this vector doesn't change). G^{0} is the value of the coplanarity equation with current approximate parameters of relative orientation (e.g. initial values).
What is the interpretation of $\mathrm{dx}_{1}, \mathrm{dy}_{1}, \mathrm{dx}_{2}$ and dy_{2} ?

Let's assume that we have two tie points (corresponding points) measured between images (this is not enough to make solution). However, write (symbolically) the contents of matrices C^{T} and D and vector $d l$ in such case. Add a sub-index to x, y and G indicating the number of corresponding observation), e.g. for the first corresponding point, for $d l$ could be (number 1 added as an index)

$$
\left[\begin{array}{l}
d x_{11} \\
d y_{11} \\
d x_{21} \\
d y_{21}
\end{array}\right]
$$

Solution:

The interpretation is that this vector contains corrections to image observations. x_{1} and y_{1} refer to image observations from (e.g.) the left image and x_{2} and y_{2} to image observations from the right image.

$$
\begin{aligned}
C^{T} & =\left[\begin{array}{cccccccc}
\frac{\partial G_{1}}{\partial x_{11}} & \frac{\partial G_{1}}{\partial y_{11}} & \frac{\partial G_{1}}{\partial x_{21}} & \frac{\partial G_{1}}{\partial y_{21}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\partial G_{2}}{\partial x_{12}} & \frac{\partial G_{2}}{\partial y_{12}} & \frac{\partial G_{2}}{\partial x_{22}} & \frac{\partial G_{2}}{\partial y_{22}}
\end{array}\right] \\
d l & =\left[\begin{array}{l}
d x_{11} \\
d y_{11} \\
d x_{21} \\
d y_{21} \\
d x_{12} \\
d y_{12} \\
d x_{22} \\
d y_{22}
\end{array}\right] \\
D & =\left[\begin{array}{lllll}
\frac{\partial G_{1}}{\partial b_{Y}} & \frac{\partial G_{1}}{\partial b_{Z}} & \frac{\partial G_{1}}{\partial \omega_{2}} & \frac{\partial G_{1}}{\partial \varphi_{2}} & \frac{\partial G_{1}}{\partial \kappa_{2}} \\
\frac{\partial G_{2}}{\partial b_{Y}} & \frac{\partial G_{2}}{\partial b_{Z}} & \frac{\partial G_{2}}{\partial \omega_{2}} & \frac{\partial G_{2}}{\partial \varphi_{2}} & \frac{\partial G_{2}}{\partial \kappa_{2}}
\end{array}\right]
\end{aligned}
$$

