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Summary of the Last Lecture

Linear regression problem can be solved as batch problem
or recursively – the latter solution is a special case of
Kalman filter.
A generic Bayesian estimation problem can also be solved
as batch problem or recursively.
If we let the linear regression parameter change between
the measurements, we get a simple linear state space
model – again solvable with Kalman filtering model.
By generalizing this idea and the solution we get the
Kalman filter algorithm.
By further generalizing to non-Gaussian models results in
generic probabilistic state space models.
Bayesian filtering and smoothing methods solve Bayesian
inference problems on state space models recursively.
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Probabilistics State Space Models: General Model

General probabilistic state space model:

dynamic model: xk ∼ p(xk |xk−1)

measurement model: yk ∼ p(yk |xk )

xk = (xk1, . . . , xkn) is the state and yk = (yk1, . . . , ykm) is
the measurement.
Has the form of hidden Markov model (HMM)

observed: y1 y2 y3 y4

hidden: x1 //

OO

x2 //

OO

x3 //

OO

x4 //

OO

. . .

Note that HMM often refers to models with discrete state –
but even with continuous state, the model is Markov and
hidden . . . and thus HMM.
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Probabilistics State Space Models: Example

Example (Gaussian random walk)
Gaussian random walk model can be written as

xk = xk−1 + wk−1, wk−1 ∼ N(0,q)

yk = xk + ek , ek ∼ N(0, r),

where xk is the hidden state and yk is the measurement. In
terms of probability densities the model can be written as

p(xk | xk−1) =
1√
2πq

exp

(
− 1

2q
(xk − xk−1)2

)
p(yk | xk ) =

1√
2πr

exp

(
− 1

2r
(yk − xk )2

)
which is a discrete-time state space model.
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Probabilistics State Space Models: Example (cont.)

Example (Gaussian random walk (cont.))
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Probabilistics State Space Models: Further Examples

Linear Gauss-Markov model:

xk = Ak−1 xk−1 + qk−1

yk = Hk xk + rk ,

Gaussian driven non-linear model:

xk = f(xk−1,qk−1)

yk = h(xk , rk ).

Hierarchical and/or non-Gaussian models

qk−1 ∼ Dirichlet(qk−1 |α)

xk = f(xk−1,qk−1)

σ2
k ∼ InvGamma(σ2

k |σ2
k−1, γ)

rk ∼ N(0, σ2
k I)

yk = h(xk , rk ).
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Probabilistics State Space Models: Markov and
Independence Assumptions

The dynamic model p(xk |xk−1) is Markovian:
1 Future xk is independent of the past given the present (here

“present” is xk−1):

p(xk |x1:k−1,y1:k−1) = p(xk |xk−1).

2 Past xk−1 is independent of the future given the present
(here “present” is xk ):

p(xk−1 |xk :T ,yk :T ) = p(xk−1 |xk ).

The measurements yk are conditionally independent given
xk :

p(yk |x1:k ,y1:k−1) = p(yk |xk ).
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Bayesian Filter: Principle

Bayesian filter computes the distribution

p(xk |y1:k )

Given the following:
1 Prior distribution p(x0).
2 State space model:

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk ),

3 Measurement sequence y1:k = y1, . . . ,yk .

Computation is based on recursion rule for incorporation of
the new measurement yk into the posterior:

p(xk−1 |y1:k−1) −→ p(xk |y1:k )
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Bayesian Filter: Derivation of Prediction Step

Assume that we know the posterior distribution of previous
time step:

p(xk−1 |y1:k−1).

The joint distribution of xk , xk−1 given y1:k−1 can be
computed as (recall the Markov property):

p(xk ,xk−1 |y1:k−1) = p(xk |xk−1,y1:k−1) p(xk−1 |y1:k−1)

= p(xk |xk−1) p(xk−1 |y1:k−1),

Integrating over xk−1 gives the Chapman-Kolmogorov
equation

p(xk |y1:k−1) =

∫
p(xk |xk−1) p(xk−1 |y1:k−1) dxk−1.

This is the prediction step of the Bayesian filter.
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Bayesian Filter: Derivation of Update Step

Now we have:
1 Prior distribution from the Chapman-Kolmogorov equation

p(xk |y1:k−1)

2 Measurement likelihood from the state space model:

p(yk |xk )

The posterior distribution can be computed by the Bayes’
rule (recall the conditional independence of
measurements):

p(xk |y1:k ) =
1
Zk

p(yk |xk ,y1:k−1) p(xk |y1:k−1)

=
1
Zk

p(yk |xk ) p(xk |y1:k−1)

This is the update step of the Bayesian filter.
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Bayesian Filter: Formal Equations

Bayesian filter
Initialization: The recursion starts from the prior distribution
p(x0).
Prediction: by the Chapman-Kolmogorov equation

p(xk |y1:k−1) =

∫
p(xk |xk−1) p(xk−1 |y1:k−1) dxk−1.

Update: by the Bayes’ rule

p(xk |y1:k ) =
1
Zk

p(yk |xk ) p(xk |y1:k−1).

The normalization constant Zk = p(yk |y1:k−1) is given as

Zk =

∫
p(yk |xk ) p(xk |y1:k−1) dxk .
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Bayesian Filter: Graphical Explanation

On prediction step the
distribution of previous
step is propagated
through the dynamics.

Prior distribution from
prediction and the
likelihood of
measurement.

The posterior
distribution after
combining the prior
and likelihood by
Bayes’ rule.
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Kalman Filter: Model

Gaussian driven linear model, i.e., Gauss-Markov model:

xk = Ak−1 xk−1 + qk−1

yk = Hk xk + rk ,

qk−1 ∼ N(0,Qk−1) white process noise.
rk ∼ N(0,Rk ) white measurement noise.
Ak−1 is the transition matrix of the dynamic model.
Hk is the measurement model matrix.
In probabilistic terms the model is

p(xk |xk−1) = N(xk |Ak−1 xk−1,Qk−1)

p(yk |xk ) = N(yk |Hk xk ,Rk ).

Simo Särkkä Lecture 3: Bayesian and Kalman Filtering



Kalman Filter: Derivation Preliminaries

Gaussian probability density

N(x |m,P) =
1

(2π)n/2 |P|1/2 exp

(
−1

2
(x−m)T P−1 (x−m)

)
,

Let x and y have the Gaussian densities

p(x) = N(x |m,P), p(y |x) = N(y |H x,R),

Then the joint and marginal distributions are(
x
y

)
∼ N

((
m

H m

)
,

(
P P HT

H P H P HT + R

))
y ∼ N(H m,H P HT + R).
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Kalman Filter: Derivation Preliminaries (cont.)

If the random variables x and y have the joint Gaussian
probability density(

x
y

)
∼ N

((
a
b

)
,

(
A C
CT B

))
,

Then the marginal and conditional densities of x and y are
given as follows:

x ∼ N(a,A)

y ∼ N(b,B)

x |y ∼ N(a + C B−1 (y− b),A− C B−1CT)

y |x ∼ N(b + CT A−1 (x− a),B− CT A−1 C).
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Kalman Filter: Derivation of Prediction Step

Assume that the posterior distribution of previous step is
Gaussian

p(xk−1 |y1:k−1) = N(xk−1 |mk−1,Pk−1).

The Chapman-Kolmogorov equation now gives

p(xk |y1:k−1) =

∫
p(xk |xk−1) p(xk−1 |y1:k−1) dxk−1

=

∫
N(xk |Ak−1 xk−1,Qk−1) N(xk−1 |mk−1,Pk−1).

Using the Gaussian distribution computation rules from
previous slides, we get the prediction step

p(xk |y1:k−1) = N(xk |Ak−1 mk−1,Ak−1 Pk−1 AT
k−1 + Qk−1)

= N(xk |m−k ,P
−
k )
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Kalman Filter: Derivation of Update Step

The joint distribution of yk and xk is

p(xk ,yk |y1:k−1) = p(yk |xk ) p(xk |y1:k−1)

= N

([
xk
yk

] ∣∣∣m′′,P′′) ,
where

m′′ =

(
m−k

Hk m−k

)
P′′ =

(
P−k P−k HT

k
Hk P−k Hk P−k HT

k + Rk

)
.
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Kalman Filter: Derivation of Update Step (cont.)

The conditional distribution of xk given yk is then given as

p(xk |yk ,y1:k−1) = p(xk |y1:k )

= N(xk |mk ,Pk ),

where

Sk = Hk P−k HT
k + Rk

Kk = P−k HT
k S−1

k

mk = m−k + Kk [yk − Hk m−k ]

Pk = P−k − Kk Sk KT
k .
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Kalman Filter: Equations

Kalman Filter
Initialization: x0 ∼ N(m0,P0)

Prediction step:

m−k = Ak−1 mk−1

P−k = Ak−1 Pk−1 AT
k−1 + Qk−1.

Update step:

vk = yk − Hk m−k
Sk = Hk P−k HT

k + Rk

Kk = P−k HT
k S−1

k

mk = m−k + Kk vk

Pk = P−k − Kk Sk KT
k .
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Kalman Filter: Properties

Kalman filter can be applied only to linear Gaussian
models, for non-linearities we need e.g. EKF or UKF.
The covariance equation is independent of measurements
– the gain sequence could be computed and stored offline.
If the model is time-invariant, the gain converges to a
constant Kk → K and the filter becomes stationary:

mk = (A− K H A) mk−1 + K yk

The gain of the above stationary Kalman filter can be
computed as K = P−HT (H P−HT + R)−1, where P− is the
solution to the following discrete-time algebraic Riccati
equation (DARE):

P− = A P−AT + Q− A P−HT (H P−HT + R)−1H P−AT
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Kalman Filter: Random Walk Example

Example (Kalman filter for Gaussian random walk)
Filtering density is Gaussian

p(xk−1 | y1:k−1) = N(xk−1 |mk−1,Pk−1).

The Kalman filter prediction and update equations are

m−k = mk−1

P−k = Pk−1 + q

mk = m−k +
P−k

P−k + r
(yk −m−k )

Pk = P−k −
(P−k )2

P−k + r
.
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Kalman Filter: Random Walk Example (cont.)

Example (Kalman filter for Gaussian random walk (cont.))
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Dynamic Model for a Car [1/3]

g1(t)

g2(t)

The dynamics of the car in 2d
(x1, x2) are given by the Newton’s
law:

g(t) = m a(t),

where a(t) is the acceleration, m is
the mass of the car, and g(t) is a
vector of (unknown) forces acting
the car.

We shall now model g(t)/m as a 2-dimensional white
noise process:

d2x1/dt2 = w1(t)

d2x2/dt2 = w2(t).

Simo Särkkä Lecture 3: Bayesian and Kalman Filtering



Dynamic Model for a Car [2/3]

If we define x3(t) = dx1/dt , x4(t) = dx2/dt , then the model
can be written as a first order system of differential
equations:

d
dt


x1
x2
x3
x4

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

F


x1
x2
x3
x4

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

L

(
w1
w2

)
.

In shorter matrix form:

dx
dt

= F x + L w.
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Dynamic Model for a Car [3/3]

If the state of the car is measured (sampled) with sampling
period ∆t it suffices to consider the state of the car only at
the time instances t ∈ {0,∆t ,2∆t , . . .}.
The dynamic model can be discretized, which leads to the
linear difference equation model

xk
yk
ẋk
ẏk

 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

A


xk−1
yk−1
ẋk−1
ẏk−1

+ qk−1

This can also be written as

xk = A xk−1 + qk−1,

where xk = x(tk ), A is the transition matrix and qk is a
discrete-time Gaussian noise process.
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Measurement Model for a Car

(y1, y2)

Assume that the position of the car
(x1, x2) is measured and the
measurements are corrupted by
Gaussian measurement noise
e1,k ,e2,k :

y1,k = x1,k + e1,k

y2,k = x2,k + e2,k .

The measurement model can be now written as

yk = H xk + ek , H =

(
1 0 0 0
0 1 0 0

)
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Model for Car Tracking

The dynamic and measurement models of the car now
form a linear Gaussian filtering model:

xk = A xk−1 + qk−1

yk = H xk + rk ,

where qk−1 ∼ N(0,Q) and rk ∼ N(0,R).
The posterior distribution is Gaussian

p(xk |y1, . . . ,yk ) = N(xk |mk ,Pk ).

The mean mk and covariance Pk of the posterior
distribution can be computed by the Kalman filter.
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Summary

Probabilistic state space models consist of Markovian
dynamic models and conditionally independent
measurement models.
Special cases are, for example, linear Gaussian models
and non-linear and non-Gaussian models.
Bayesian filtering equations form the formal solution to
general Bayesian filtering problem.
The Bayesian filtering equations consist of prediction and
update steps.
Kalman filter is the closed form filtering solution to linear
Gaussian models.
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Kalman Filter: Car Tracking Example [1/5]

The dynamic model of the car tracking model can be written in
discrete form as follows:

xk
yk
ẋk
ẏk

 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

A


xk−1
yk−1
ẋk−1
ẏk−1

+ qk−1

where qk is zero mean with a covariance matrix Q:

Q =


qc

1 ∆t3/3 0 qc
1 ∆t2/2 0

0 qc
2 ∆t3/3 0 qc

2 ∆t2/2
qc

1 ∆t2/2 0 qc
1 ∆t 0

0 qc
2 ∆t2/2 0 qc

2 ∆t
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Kalman Filter: Car Tracking Example [2/5]

The measurement model can be written in form

yk =

(
1 0 0 0
0 1 0 0

)
︸ ︷︷ ︸

H


xk
yk
ẋk
ẏk

+ ek ,

where ek has the covariance

R =

(
σ2 0
0 σ2

)
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Kalman Filter: Car Tracking Example [3/5]

The Kalman filter prediction equations:

m−k =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

mk−1

P−k =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

Pk−1


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


T

+


qc

1 ∆t3/3 0 qc
1 ∆t2/2 0

0 qc
2 ∆t3/3 0 qc

2 ∆t2/2
qc

1 ∆t2/2 0 qc
1 ∆t 0

0 qc
2 ∆t2/2 0 qc

2 ∆t
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Kalman Filter: Car Tracking Example [4/5]

The Kalman filter update equations:

Sk =

(
1 0 0 0
0 1 0 0

)
P−k

(
1 0 0 0
0 1 0 0

)T

+

(
σ2 0
0 σ2

)
Kk = P−k

(
1 0 0 0
0 1 0 0

)T

S−1
k

mk = m−k + Kk

(
yk −

(
1 0 0 0
0 1 0 0

)
m−k

)
Pk = P−k − Kk Sk KT

k

Simo Särkkä Lecture 3: Bayesian and Kalman Filtering



Kalman Filter: Car Tracking Example [5/5]

[Kalman filter for car tracking model in Matlab]
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